超高速磨削技术

合集下载

高速切削技术简介

高速切削技术简介

1.3 高速切削的研究发展现状
日本:
日本是在20世纪60年代开始高速切削机理的研究。 近些年来吸收了各国的研究成果,现在已后来居上,跃居世 界领先地位。 20世纪90年代研制出了日本第一台卧式加工中心,主轴转速 达到30000r/min,最大进给速度为80m/r,加速度为2g, 重复定位精度为±lµm。 同时他们也致力于高速切削工艺,特别是高速切削工艺数据 库、刀具磨损与破损机理、CAD/CAM系统开发及质量控制等 方面的研究。
1)提高排屑性能,具体措施:
①采用内部供液方式,压力为2~7MPa; ②钻尖角比普通钻头大,易于分断厚型切屑; ③对钻头横刃进行修磨,使之成为中心涡卷形状。
汽车零件孔的高速切削加工
高速钻削加工应注意的问题:
2)提高刀具刚性,具体措施:
①增大钻头芯厚; ②增大倒棱锥度。
汽车零件孔的高速加工
3)防止钻尖过热,具体措施:
1.5.1 汽车工业中的高速切削
汽车工业:
在20世纪20年代主要采用由组合机床组成的刚性生产 线。 在20世纪80年代后,开始采用由加工中心组成的柔性 生产线。 生产的柔性提高了,但生产效率不如组合机床生产线。 怎么办?能否采用高速加工来提高生产率?
1.5.1 汽车工业中的高速切削
汽车工业: 从20世纪80年代中期开始,在单轴专用加工 中心上,采用高速加工技术,以10倍于普通加工 的速度加工,使加工中心的柔性和生产率得到兼 顾,例如一台高速加工中心在一年中就能加工 40000件变速箱箱体。
汽车零件平面的高速铣削加工
1)铸铁缸体、缸盖端面的高速铣削加工:
如Lamb公司: 缸体、缸盖大平面加工采用高速铣削,用氮化硅 (Si3N4基)陶瓷刀片铣削缸体顶面,切削速度达 1524m/min,进给速度达6350mm/min,生产效率提高了 50%。

高速切削加工技术

高速切削加工技术

基本结构
进给机构 CNC控制 冷却系统
高速加工虽具有众多的优点,但由于技术复杂,且对于相关 技术要求较高,使其应用受到限制。
与高速加工密切相关的技术主要有:
○ 高速加工刀具与磨具制造技术; ○ 高速主轴单元制造技术; ○ 高速进给单元制造技术; ○ 高速加工在线检测与控制技术; ○ 其他:如高速加工毛坯制造技术,干切技术,高速加工的排屑技
术、安全防护技术等。
此外高速切削与磨削机理的研究,对于高速切削的发展也具 有重要意义。
高速切削 加工的关 键技术
高速主轴系统
高速主轴系统是高速切削技术最重要的关键技术之一。目前主 轴转速在15000-30000rpm的加工中心越来越普及,已经有转 速高达100000-150000rpm的加工中心。高速主轴由于转速 极高,主轴零件在离心力作用下产生振动和变形,高速运转摩 擦热和大功率内装电机产生的热会引起热变形和高温,所以必 须严格控制,为此对高速主轴提出如下性能要求:(1) 要求结 构紧凑、重量轻、惯性小、可避免振动和噪音和良好的起、停 性能;(2) 足够的刚性和高的回转精度;(3) 良好的热稳定性; (4) 大功率;(5) 先进的润滑和冷却系统;(6) 可靠的主轴监测 系统。
• 高速切削已成为当今制造业中一项快速发展的新技术,在工业发 达国家,高速切削正成为一种新的切削加工理念。
第 一 章 节 • 人们逐渐认识到高速切削是提高加工效率的关键技术。
高速切削的特点
随切削速度提高,单位时间内材料切除率增加,切削加工时间减 少,切削效率提高3~5倍。加工成本可降低20%-40%。
高速切削加工在国内的研究与应用
高速切削加工在国内的研究与 应用
20世纪90年代后,我们先后相继研究了模具高速切削加工技术与策 略、涂层刀具与PCBN刀具和陶瓷刀具等高速切削铸铁和钢的切削力、 刀具磨损寿命、加工表面粗糙度以及高速切削数据库技术等。

磨削技术的发展及关键技术-文献综述

磨削技术的发展及关键技术-文献综述

磨削技术的发展及关键技术摘要:砂带磨削几乎能用于加工所有的工程材料,作为在先进制造技术领域有着"万能磨削"和"冷态磨削"之称的新型工艺,砂带磨削已成为与砂轮磨削同等重要的不可缺少的加工方法。

综观近几年来国内外各类机床及工具展览会和国际生产工程学会的学术会议,结合砂带磨削在国内外各行业的应用状况,可以看出砂带磨削在制造业中发挥着越来越重要的作用,有着广泛的应用及广阔的发展前景。

关键字:磨削砂带机床技术Keyword:Grinding Abrasive belt Machine tool Technology一,前言砂带磨床是一种既古老而又新兴的工艺。

近30多年来,粘满尖锐砂粒的砂布或砂纸制成一种高速的多刀多刃连续切削工具用于砂带磨床之后,砂带磨削技术获得了很大的发展。

这种砂带磨削技术远远超越了原有的只用来加工和抛光的陈旧概念。

现在砂带磨床的加工效率甚至超过了车、铣、刨等常规加工工艺,加工精度已接近或达到同类型机床的水平,机床功率的利用率领先于所有的金属切削机床,应用范围不仅遍及各行各业,而且对几乎所有的材料,无论是金属还是非金属都可以进行加工。

长期以来不大引人注意的砂带磨削工艺现在正进入现代化发展的新阶段。

而数控磨床又是磨床的发展方向,所以研究数控砂带磨床本有很大的意义。

【正文】一.磨削技术的发展及关键技术1.磨削技术发展史高速高效磨削、超高速磨削在欧洲、美国和日本等一些工业发达国家发展很快,如德国的Aachen大学、美国的Connecticut大学等,有的在实验室完成了速度为250m/s、350m/s、400m/s的实验。

据报道,德国Aachen大学正在进行目标为500m/s 的磨削实验研究。

在实用磨削方面,日本已有200m/s的磨床在工业中应用。

我国对高速磨削及磨具的研究已有多年的历史。

如湖南大学在70年代末期便进行了80m/s、120m/s的磨削工艺实验。

高速切削及其关键技术

高速切削及其关键技术

高速切削及其关键技术摘要自20世纪30年代德国 Carl Salomon博士首次提出高速切削概念以来,经过50年代的机理与可行性研究,70年代的工艺技术研究,80年代全面系统的高速切削技术研究,到90年代初,高速切削技术开始进入实用化,到90年代后期,商品化高速切削机床大量涌现,21世纪初,高速切削技术在工业发达国家得到普遍应用,正成为切削加工的主流技术。

根据1992年国际生产工程研究会(CIRP)年会主题报告的定义,高速切削通常指切削速度超过传统切削速度5-10倍的切削加工。

因此,根据加工材料的不同和加工方式的不同,高速切削的切削速度范围也不同.高速切削包括高速铣削、高速车削、高速钻孔与高速车铣等,但绝大部分应用是高速铣削.目前,加工铝合金已达到2000-7500m/min;钛合金达150-1000m/min;纤维增强塑料为2000-9000m/min。

高速切削是一项系统技术,企业必须根据产品的材料和结构特点,购置合适的高速切削机床,选择合适的切削刀具,采用最佳的切削工艺,以达到理想的高速加工效果。

高速切削是一项先进的、正在发展的综合技术,必须将高性能的高速切削机床、与工件材料相适应的刀具和对于具体加工对象最佳的加工工艺技术相结合,充分发挥高速切削技术的优势。

高速切削技术已成为切削加工的主流和先进制造技术的一个重要发展方向。

高速切削较之常规切削是一种创新的加工工艺和加工理念。

本文分析了高速切削技术的特点,研究了高速切削的关键技术:机床技术、刀具技术和工艺技术,介绍了高速切削技术在航空航天和汽车制造等领域的发展及应用.关键词:高速切削 ;机床;刀具 ;切削工艺一.引言机械加工技术正朝着高效率、高精度、高柔性和绿色制造的方向发展。

在机械加工技术中,切削加工是应用最广泛的加工方法。

近年来,高速切削技术蓬勃发展,已成为切削加工的主流和先进制造技术的一个重要发展方向。

在数控机床出现以前,用于工件上下料、测量、换刀和调整机床等的辅助时间超过工件加工总工时的70%;以数控机床为基础的柔性制造技术的发展和应用,大大降低了工件加工的辅助时间,切削所占时间比例越来越大。

磨削技术及精密、超精密加工

磨削技术及精密、超精密加工

郑州工业安全职业学院毕业论文题目:磨削技术及精密、超精密加工姓名:赵会海系别:机电工程系专业:机电一体化年级:08 机电二班指导教师:年月日毕业论文成绩评定表学生姓名赵会海学生所在系机电工程系专业班级机电技术二班毕业论文课题名称磨削技术及精密超精密加工指导教师评语:成绩:指导教师签名:年月日系学术委员会意见:签名:年月日目录前言 (1)第一章磨削理论的研究 (2)第一节磨削机理 (2)第二节表面完整性 (2)第二章砂带磨削技术 (5)第一节沙袋磨削简介 (5)第二节磨削工艺的进展 (5)第三节精密及超精密磨削 (6)第四节砂带磨削趋势 (7)第三章精密与超精密磨削技术 (9)第一节塑性磨削 (9)第二节镜面磨削 (10)第四章结论及展望 (14)参考文献 ............................................. 错误!未定义书签。

致谢 (16)内容摘要摘要:磨削在现代制造业中占有重要地位,技术发展迅速,国内外都采用超精密磨削、精密修整、微细磨料磨具进行亚微米级以下切深磨削的研究,以获得亚微米级的尺寸精度。

当前磨削除向超精密、高效率和超硬磨料方向发展外,自动化也是磨削技术发展的重要方向之一。

本文就精密和超精密磨削,砂带磨削,磨削自动化进行了研究与论述。

关键词:磨削技术, 砂带磨削, 磨削自动化Abstract:The grinding holds the important status in the modern manufacturing industry, the technological development is rapid, domestic and foreign all uses the ultra microfinishing, the precise conditioning, the tiny grinding compound grinding tool carries on the submicron level to undercut the deep grinding the research, obtains the submicron level the size precision.Outside the current grinding except to ultra precise, the high efficiency and the ultra hard grinding compound direction develops, the automation also is one of grinding technological development important directions.This article on precise and the ultra microfinishing, the belt grinding, the grinding automation has conducted the research and the elaboration.Key word:ELID grinding technology, belt grinding, grinding automation.前言磨削加工是机械制造中重要的加工工艺。

高速切削技术

高速切削技术

高速切削(HSM=High Speed Machining)一、高速切削理论的提出和定义1.提出:高速切削理论最早是由德国物理学家Carl.J.Salomon 在1931 年4 月提出。

并发表了著名的Salomon曲线[1]。

如图1(a)所示。

主要内容是:在常规切削速度范围内,切削温度随着切削速度的提高而升高,但切削速度提高到一定值后,切削温度不但不升高反会降低,如图1(b)所示,且该切削速度值与工件材料的种类有关。

(a) (b)图1 切削温度变化曲线2、高速切削定义:目前高速切削技术比较普及的定义是根据1992年国际生产工程研究会(CIRP) 年会主题报告的定义:高速切削通常指切削速度超过传统切削速度5 - 10 倍的切削加工。

机床主轴转速在10000-20000r/min以上,进给速度通常达15-50m/min,最高可达90m/min。

实际上,高速切削是一个相对概念,它包括高速铣削、高速车削、高速钻孔与高速车铣(绝大部分应用是高速铣削)等不同的加工方式,根据被加工材料的不同及加工方式的不同,其切削速度范围也不同。

目前,不同的加工材料,切削速度约在下述范围,如表1所示[1]:表1 切削速度范围被加工材料切削速度范围铝合金1000~7500m/min铜合金900~5000m/min铸铁900~5000m/min钢500~2000m/min耐热镍基合金500m/min钛合金150~1000m/min纤维增强塑料2000~9000m/min3.特征现代研究表明,高速切削时,切屑变形所消耗的能量大多数转变为热,切削速度高,产生的热量越大,基本切削区的高温有助于加速塑性变形和切屑形成。

而且大部分热量都被切屑带走。

高速切削变形过程显著特征为:第一变形区变窄,剪切角增大,变形系数减少,如图2;第二变形区的接触长度变短,切屑排出速度极高,前刀面受周期载荷的作用。

所以高速切削的切削变形小,切削力有大幅度下降,切削表面损伤减轻。

2.4磨削机理

2.4磨削机理

1)车削修整法
以单颗粒金刚石(或以细碎金刚石制成 的金刚笔、金刚石修整块) 作为刀具车 削砂轮是应用最普遍的修整方法。安装 在刀架上的金刚石刀具通常在垂直和水 平两个方向各倾斜约5°~15°;金刚 石与砂轮的接触点应低于砂轮轴线 0.5~2mm,修整时金刚石作均匀的低速 进给移动。要求磨削后的表面粗糙度越 小,则进给速度应越低,如要达到 Ra0.16~0.04µm的表面粗糙度,修整进 给速度应低于50mm/min。修整总量一般 为单面0.1mm左右,往复修整多次。粗 修的切深每次为0.01~0.03mm,精修则 小于0.01mm。
当砂轮硬度较低,修整较粗,磨削载荷较 重时。易出现脱落型。这时,砂轮廓形失真, 严重影响磨削表面质量及加工精度。 在磨削碳钢时由于切屑在磨削高温下发生 软化,嵌塞在砂轮空隙处,形成嵌入式堵塞, 在磨削钛合金时,由于切屑与磨粒的亲合力强, 使切屑熔结粘附于磨粒上,形成粘附式堵塞。 砂轮堵塞后即丧失切削能力,磨削力及温度剧 增,表面质量明显下降。
根据条件不同,磨粒的切削过程的3个阶段可以全部存 在,也可以部分存在 。
典型磨屑有带状、挤裂状、 球状及灰烬等(图10— 7).
三、磨削力及磨削功率 尽管单个磨粒切除的材料很少,但一个砂轮表层 有大量磨粒同时工作,而且磨粒的工作角度很不合理, 因此总的磨削力相当大。总磨削力可分解为三个分力: Rz——主磨削力(切向磨削力);
根据表面颜色,可以推断磨削温度及烧伤程度。如淡黄色 约为400℃~500℃,烧伤深度较浅;紫色为800℃~900℃, 烧伤层较深。 5、磨削表面裂纹 磨削过程中,当形成的残余拉应力超过工件材料的强 度极限时,工件表面就会出现裂纹。 磨削裂纹极浅,呈网状或垂直于磨削方向。有时不在表层, 而存在于表层之下。有时在研磨或使用过程中,由于去除 了表面极薄金属层后,残余应力失去平衡,形成微细裂纹。 这些微小裂纹,在交变载荷作用下,会迅速扩展,并造成 工件的破坏。

先进制造技术 第2章 高速切削技术2-1

先进制造技术 第2章 高速切削技术2-1



萨洛蒙在l924一1931年间,进行了一系列的高速切削实验: 在非黑色金属材料,如铝、铜和青铜上,用特大直径的刀 盘进行锯切,最高实验的切削速度曾达到14000m/min, 在各种进给速度下,使用了多达20齿的螺旋铣刀。l931年 申请了“超极限速度”专利,随后卖给了“Krupp钢与工 具制造厂”。 萨洛蒙和他的研究室实际上完成了大部分有色金属的切削 试验研究,并且推断出铸铁材料和钢材的相关曲线。 萨洛蒙理论提出了一个描述切削条件的区域或者是范围, 在这个区域内是不能进行切削的。萨洛蒙没有提出可靠的 理论解释,而且他的许多实验细节也没有人知道。
刀具磨损曲线
三、高速切削切屑形成

高速切削试验表明,工件材料及 性能对切屑形态 有决定性影响。
低硬度和高热物理性能的工件材料(铝合金、低碳钢、未 淬硬钢等)易形成连续带状切屑。 高硬度和低热物理性能的工件材料(钛合金钢、未淬硬钢 等)易形成锯齿状切屑。

切削速度对切屑形态有重要影响。对钛合金,在 (1.5~4800)m/min的切削速度范围内形成锯齿状 切屑,随切削速度的增加,锯齿程度(锯齿的齿 距)在增加,直至成为分离的单元切屑。
不同切削速度下车削45钢件的切削形态。

一方面,切削速度增加,应变速度加大,导致脆 性增加,易于形成锯齿状切屑;另一方面,切削 速度增加,切屑温度增加,导致脆性降低,不易 形成锯齿状切屑;
绝热剪切理论(Adiabatic Shear Theory) 周期脆性断裂理论(Periodic brittle fracture theoty)

萨洛蒙(Salomon)曲线
1600
切削温度/℃

1200
青铜
铸铁 硬质合金980℃ Stelite合金850℃ 高速钢650℃ 碳素工具钢450℃
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速/超高速磨削技术摘要:超高速点磨削是一种先进的高速磨削技术,它集成了高速磨削、CBN 超硬磨料及CNC 车削技术,具有优良的加工性能。

对国内外高速磨削技术发展的作了比较详细的介绍,重点论述和分析了超高速点磨削的技术特征、关键技术和在汽车制造中的应用,最后分析了我国汽车工业发展超高速点磨削技术的必要性。

关键词: 超高速点磨削; 技术特征; 关键技术; 汽车工业Abstract: Super-highspeed point-grinding is an advanced manufacture technology that hasintegrated high speed grinding,thin super-abrasive wheel and CNC turning technologies,and has m any excellent performance sin grindingshafts process. The development and the technical characters o f super-highspeed point-grinding were introduced,and the key technology and applicationon automobile manufacturing o f super-high speed point-grindingwere also analyzed. The significance of super-h igh speed point-grindingon automobile manufacturing was presented.Keywords: Super-high speed point-grinding; Technicalcharacteristics;Key technology; Automobile manufacturing1.国内外高速磨削技术简介通常所说的“磨削”主要是指用砂轮或砂带进行去除材料加工的工艺方法。

它是应用广泛的高效精密的终加工工艺方法。

一般来讲,按砂轮线速度V的高低将磨削分为普通磨削( Vs < 45m/ s) 、高速磨削( 45≤ Vs<150m/s) 、超高速磨削(Vs≥150m/s)[1]。

20世纪90年代以后,人们逐渐认识到高速和超高速磨削所带来的效益,开始重视发展高速和超高速磨削加工技术,并在实验和研究的基础上,使其得到了迅速的发展[2]。

1.1 国外磨削技术的发展磨削加工是一种古老而自然的制造技术,应用范围遍布世界各地,然而数千年来磨削速度一直处于低速水平。

20世纪后,为了获得高加工效率,世界发达国家开始尝试高速磨削技术[2]。

在高速、超高速精密磨削加工技术领域,德国及欧洲领先,日本后来居上,美国则在奋起直追[3]。

1.1.1 欧洲磨削技术的发展情况超高速切削的概念源于德国切削物理学家Carl.J.Salomon 博士1929 年所提出的假设,即在高速区当切削速度的“死谷”区域,继续提高切削速度将会使切削温度明显下降,单位切削力也随之降低[1]。

欧洲高速磨削技术的发展起步早。

最初高速磨削基础研究是在20世纪60年代末期,实验室磨削速度已达210-230m/s。

70年代末期,高速磨削采用CBN 砂轮。

意大利的法米尔( Famir ) 公司在1973年9月西德汉诺威国际机床展览会上,展出了砂轮圆周速度120m/s的RFT-C120/ 50R 型磨轴承内套圈外沟的高速适用化磨床[1] 。

德国的Guehring Automation 公司1983 年制造了功率60kW、转速10000r/min、砂轮线速度209m/s[4]和砂轮直径400mm 的强力磨床。

该公司于1992 年成功制造出砂轮线速度为140-160m/s的CBN 磨床,线速度达180m/s的样机[5]。

Aachen 大学、Bremm 大学等在实验室已完成了Vs为250m/s、350m/ s 的实验。

瑞士Studer 公司开发的CBN 砂轮线速度在60m/s 以上,并向120-130m/s方向发展[2、6、7]。

目前在试验室内正用改装的S45型外圆磨床进行280m/s的磨削试验。

瑞士S40高速CBN 砂轮磨床,在125m/s时,高速磨削性能发挥最为充分,在500m/s时也能照常工作。

1.1.2 美国磨削技术的发展情况1967 年,美国的61m/s 磨床投入市场,1969 年生产出80m/s的高速无心磨床。

1970 年,本迪克斯公司曾生产了91m/s切入式高速磨床。

1971 年,美国Carnegie Mellon大学制造了一种无中心孔的钢质轮,在其周边上镶有砂瓦,其试验速度可达185m/s,工作速度达到125m/s,用于不锈钢锭磨削和切断,也可用于外圆磨削。

1993 年,美国的 Edgetek Machine 公司首次推出的超高速磨床,采用单层CBN 砂轮,圆周速度达到了203m/ s,用以加工淬硬的锯齿等,可以达到很高的金属切除率。

美国Connectiout 大学磨削研究与发展中心的无心外圆磨床,最高磨削速度250m/s,主轴功率30kW,修整盘转速12000r/min,砂轮自动平衡,自动上料。

2000 年美国马萨诸塞州立大学的S.Malkin 等人,以149m/s的砂轮速度,使用电镀金刚石砂轮通过磨削氮化硅研究砂轮的地貌和磨削机理。

至2000年,T. W. Hwang 等人一直在进行超高速磨削研究。

目前美国的高效磨削磨床很普遍,一个重要的研究方向是低损伤磨削高级陶瓷,试图采用粗精加工一次磨削,以高的材料去除率和低成本加工高品质的氮化硅陶瓷零件[8]。

1.1.3 日本磨削技术的发展情况从20世纪60年代初日本首先提出高速磨削理论以来,尤其随着CBN 磨料的使用和其它高效磨削技术的进步,超高速磨削在一些发达国家发展很快。

日本高速磨削技术在近20年来发展迅速。

1976 年,在凸轮磨床上开始应用CBN砂轮进行40m/ s的高速磨削。

1985 年前后,在凸轮和曲轴磨床上,磨削速度达到了80m/s。

1990 年后,开始开发160m/ s 以上的超高速磨床。

1993 年前后,使用单颗粒金刚石进行了250m/s的超高速磨削试验研究[9、10]。

1994 年使用铍( Be)芯金刚石砂轮进行了超高速磨削研究[11、12]。

目前,实用的磨削速度已达到了200m/s。

400m/s的超高速平面磨床也已研制出来,该磨床主轴最大转速30 000r/ min,最大功率22kW,采用直径250mm 的砂轮,最高周速达395m/s。

并在30m/s-300m/s 速度范围内研究了速度对铸铁可加工性的影响。

日本的丰田工机、三菱重工、冈本机床制作所等公司均能生产应用CBN 砂轮的超高速磨床。

至2000 年,日本已进行500m/s的超高速磨削试验。

Shinizu 等人,为了获得超高磨削速度,利用改造的磨床,将两根主轴并列在一起:一根作为砂轮轴,另一根作为工件主轴,并使其在磨削点切向速度相反,取得了相对磨削速度为Vs+ Vw 的结果。

因此,砂轮和工件间的磨削线速度实际接近1000m/s[13]。

这是迄今为止,公开报道的最高磨削速度。

1.2 国内磨削技术的发展情况超高速磨削技术在国外发展十分迅速,在国内也引起了高度重视。

我国高速磨削起步较晚,自1958 年,我国开始推广高速磨削技术。

1964年,磨料磨具磨削( 三磨) 研究所和洛阳拖拉机厂合作进行了50m/s 高速磨削试验,在机床改装和工艺等方面获得一定成果[7]。

1974 年,第一汽车厂、第一砂轮厂、瓦房店轴承厂、华中工学院、郑州三磨所等先后进行50m/ s-60m/ s的磨削试验; 湖南大学进行了60m/ s-80m/ s 高速磨削试验。

1976年,上海机床厂、上海砂轮厂、郑州三磨所、华中工学院、上海交通大学、广州机床研究所、武汉材料保护研究所等组成高速磨削试验小组,对80m/s 和100m/s 高速磨削工艺进行了试验研究。

1977 年,湖南大学在实验室成功地进行了100m/ s 和120m/ s 高速磨削试验。

1982 年10月,湖南大学进行了60m/s 高速强力凸轮磨削工艺试验研究,为发展高速强力磨削凸轮轴磨床和高速强力磨削砂轮提供了实验数据。

至1995年,汉江机床厂使用陶瓷CBN砂轮,进行了200m/ s 的超高速磨削试验。

广西大学于1997 年前后开展了80m/ s 的高速高表面粗糙度的磨削试验研究工作。

在2000年中国数控机床展览会( CCMT’ 2000) 上,湖南大学推出了最高线速度达120m/s 的数控凸轮轴磨床[6]。

2001年,广西大学开展了高速磨削表面微观形貌的研究[2]。

从2002 年开始,湖南大学开始针对一台250m/ s超高速磨床主轴系统进行高速超高速研究,并在国内首次进行了磁浮轴承设计[14]。

1976 年,东北大学与阜新第一机床厂合作,研究成功F1101型60 m/ s 高速半自动活塞专用外圆磨床。

到20世纪80 年代初,东北大学进行了大量的高速磨削试验研究。

以东北大学为主开发的YLM-1型双面立式半自动修磨生产线,磨削速度达到80m/s,磨削压力在2500N-5 000N 以上[6]。

20 世纪90年代至现在,东北大学一直在开展超高速磨削技术的研究,并首先研制成功了我国第一台圆周速度200m/s、额定功率55kW 的超高速试验磨床,最高速度达250m/s[1]。

2.高速/超高速磨削的特点及关键技术2.1 磨削机理在高速超高速磨削加工过程中,在保持其它参数不变的条件下,随着砂轮速度的大幅度提高,单位时间内磨削区的磨粒数增加,每个磨粒切下的磨屑厚度变小,则高速超高速磨削时每颗磨粒切削厚度变薄。

这导致每个磨粒承受的磨削力大大变小,总磨削力也大大降低[15]。

超高速磨削时,由于磨削速度很高,单个磨屑的形成时间极短。

在极短的时间内完成的磨屑的高应变率(可近似认为等于磨削速度) 形成过程与普通磨削有很大的差别,表现为工件表面的弹性变形层变浅,磨削沟痕两侧因塑性流动而形成的隆起高度变小,磨屑形成过程中的耕犁和滑擦距离变小,工件表面层硬化及残余应力倾向减小。

此外,超高速磨削时磨粒在磨削区上的移动速度和工件的进给速度均大大加快,加上应变率响应的温度滞后的影响,会使工件表面磨削温度有所降低,因而能越过容易发生磨削烧伤的区域,而极大扩展了磨削工艺参数的应用范围[16-17]。

2.2 高速磨削加工特点砂轮周速提高后,在单位宽度金属磨除率一定的条件下,单位时间内作用的磨粒数大大增加;如进给量与普通磨削相同,则每颗磨粒的切削厚度变薄、负荷减轻。

相关文档
最新文档