(完整版)多级模糊综合评判法案例
模糊综合评价法(终版)

31
5.评判指标处理法 将上述指标归一化得, B ' (0.32,0.27,0.27,0.14)
结果表明,这种服装在男顾客中,32%的人“很欢迎”,27% 的人“欢迎”,27%的人态度“一般”,14%的人“不欢迎”。
32
如果评判者是女顾客,由于她们特别看中花色和样式,故各因 素的权为;A=(0.30,0.35,0.10,0.10,0.05) 则综合评判的结果为:B=(0.20,0.30,0.35,0.10) 将上述评判指标归一化得B`=(0.21,0.315,0.37.0.105) 这表明,这种服装在女顾客中,21%的人“很欢迎”,31.5%的人“欢 迎”,37%的人态度“一般”,10.5%的人“不欢迎”。
0.2
0.2 0.2 0.3 0.2
b1
max
1i3
0.3,
0.3,
0.2
0.3
18
(2) M •, 算子(模型二):
m
bj
i 1
ai , rij
max 1i m
ai rij
, j 1, 2,
,n
0.5 0.3 0.2 0
0.3
0.3
0.3
0.3
0.4
0.2
0.1
0.15
26
(四)模糊综合判定法的应用案例分析
27
案例分析一
某服装厂生产某种服装,欲了解顾客对该种服装的欢迎程度。现采用模 糊综合评价法来解决这个问题。
1.确定模糊综合评判指标
取U={花色,式样,价格,耐用度,舒适度}
2.建立综合评判的评价集
取V={很欢迎 ,欢迎,一般,不欢迎}
28
3.进行单因素模糊评判,并求得评判矩阵 R R1=(0.2,0.5,0.3,0.0) R2=(0.1,0.3,0.5,0.1) R3=(0.0,0.1,0.6,0.3) R4=(0.0,0.4,0.5,0.1) R5=(0.5,0.3,0.2,0.0)
模糊数学综合评判法ppt课件

实例:某装修房经监测,其室内空气污染物含量如下,试 判断其污染程度。
甲醛: 0.32mg/m3 ;苯:0.18mg/m3;甲苯:0.23mg/m3;二甲苯: 0;氨:0.27mg/m3;可吸入物:0.21mg/m3。
解决方法——综合评判法
评价因子的确定 分级标准 各因子对评价等级的隶属度 综合评价 结论
n
i1
Wi 1
结果为:W 0 . 3 0 , 0 . 1 6 , 0 . 1 7 , 0 , 0 . 2 0 , 0 . 1 7
4.3综合评判——最大隶属度
R B 模糊综合评判模式为: W0 . 8 50 . 1 5 00 . 3 30 . 6 70 00 . 8 5 0 . 1 5 0 W R 0 . 3 0 , 0 . 1 6 , 0 . 1 7 , 0 , 0 . 2 0 , 0 . 1 7 0 , 0 . 4 2 9 3 , 0 . 5 2 5 7 , 0 . 0 4 5 10 0 0 00 . 6 5 0 . 3 5 0 0 0 . 6 0 . 4 0
结果表明该室内环境空气对优等级 的隶属度为0,对良好等级的隶属度为 0.4293, 对轻污染等级的隶属度为0.5257, 对重污染等级的隶属度为0.045。该室内 空气的监测结果对轻污染的隶属度最大, 故评判该室内空气的质量为轻污染等级。
5.结论
该装修房室内环境空气质量在良好与轻 污染之间,偏重于轻污染,在保持良好 的通风条件下,可居住。
2.用隶属度函数公式求各因子对评价等级 的隶属度
4.综合评价
建立模糊关系矩阵 计算权重——指数超标法 综合评判——最大隶属度
模糊综合评价法的例题计算方法

模糊综合评价法的例题计算方法模糊综合评价法是一种利用模糊数学理论进行综合评价的方法,它能够有效地处理评价指标间的不确定性和模糊性问题,因此在实际应用中被广泛使用。
下面我们将通过一个例题来介绍模糊综合评价法的计算方法。
假设某个公司要评价三名员工的工作表现,评价指标包括工作态度、工作效率和工作质量,评价等级分为优秀、良好、一般和较差四个等级。
经过考察和评估,得到如下各项指标的评价结果:员工一:工作态度优秀,工作效率一般,工作质量良好。
员工二:工作态度良好,工作效率较差,工作质量一般。
员工三:工作态度一般,工作效率良好,工作质量优秀。
现在我们需要对三名员工的工作表现进行综合评价,采用模糊综合评价法,步骤如下:1. 设定各项指标的权重首先需要确定各项指标的权重,这里我们假设工作态度、工作效率和工作质量的权重分别为0.4、0.3和0.3。
2. 根据评价结果构建模糊矩阵根据员工的评价结果,构建出模糊矩阵如下:工作态度工作效率工作质量员工一优秀一般良好员工二良好较差一般员工三一般良好优秀其中,对于每个评价等级,可以使用一个模糊数来表示,如优秀可以表示为{0,1,0},良好可以表示为{0,0.5,1,0.5,0},一般可以表示为{0,0,0.5,1,0.5,0,0},较差可以表示为{0,0,0,0.5,1,0.5,0,0}。
3. 计算模糊矩阵的加权平均值将权重矩阵与模糊矩阵相乘,得到加权矩阵,然后对加权矩阵的每一列求和,得到每个指标的加权平均值,如下所示:工作态度工作效率工作质量加权平均值 {0.3,0.3,0.4} {0.25,0.4,0.35}{0.25,0.4,0.35}4. 求解综合评价结果将每个指标的加权平均值相加,即可得到最终的综合评价结果,如下所示:员工一的综合评价结果为0.39,员工二的综合评价结果为0.33,员工三的综合评价结果为0.38。
因此,我们可以得出结论:员工一的工作表现最好,员工二的工作表现最差,员工三的工作表现居中。
模糊综合评判完美版PPT

R=( rij)m×n=
rm1
rm2 … rmn
其中rij表示从因素ui着眼,该评判对象能被评为 vj的隶属度(i=1,2,…,m; j=1,2, …,n)。具
二、模糊综合评判步骤
〔四〕求得评判矩阵(模糊矩阵)R
R1=( 0.2, 0.5, 0.3, 0.0 ) 0.2 0.5 0.3 0.0
其他方法:分级隶属函数法 等
二、模糊综合评判步骤
〔四〕求得评判矩阵(模糊矩阵)R
这样m个着眼因素的评价集就构造出一个总的评价
矩阵R。即每个被评价对象确定了从U到V的模糊关
〔二〕确定评判等级〔评价集〕 V
系R: R=( rij)m×n=
思路:通过专家评议确定某项定性指标在每一评语等级下“专家投票〞数,计算其频率即为相应的隶属度向量。
二、模糊综合评判步骤
〔一〕确定评判因素〔因素集〕U 〔二〕确定评判等级〔评价集〕 V 〔三〕单因素模糊评判〔求Ri〕 〔四〕求得评判矩阵〔模糊矩阵〕R 〔五〕建立权重〔权数分配集〕A 〔六〕选择适当的合成算法〔算子o〕 〔七〕计算模糊评价B
二、模糊综合评判步骤
对于各步骤的描述与讨论将结合如下案例进行:
“取小取大〞法忽略了局部因素的影响,简单而粗糙,有可能失真。
〔一〕确定评判因素〔因素集〕U
r12 … r1n 这时的算子为普通积,所以,它是一个很容易理解、很容易接受的合成方法。
R2=( 0.
R2=( 0.
r11
…
… …
r21 r21 … r2n
R2=( 0.
r21
r21 … r2n 〔四〕求得评判矩阵〔模糊矩阵〕R
种因素(即评价指标) 此处,m为评价因素的个数,由具体指标体系决定
研究方法之模糊综合评价法(原理及案例分析)

2017/5/1
昆明理工大学
8
一、模糊综合评价法的思想和原理
模糊数学的产生:1965年,美国伯克利加利 福尼亚大学电机工程与计算机科学系教授、 自动控制专家L.A. Zadeh(扎德) 发表了 文章《模糊集》(Fuzzy Sets,Information and Control, 8, 338-353 ),第一次成功 滴运用精确的数学方法描述了模糊概念,从 而宣告了模糊数学的诞生.他所引进的模糊 集(边界不明显的类)提供了一种分析复杂 系统的新方法.因发展模糊集理论的先驱性 工作而获电气与电子工程师学会(IEEE)的教 育勋章。 如果说关肇直院士(及后来的蒲保明院士和 李国平院士)是我国模糊集合论研究的倡导 者及推动者,那么汪培庄便是我国模糊集合 论研究的先驱者或开拓者之一.刘应明(川大) 模糊综合评定法:汪培庄(北京师范大学数 学系)提出了模糊数学的一种具体应用方法.
其中:bj表示被评级对象从整体上看对评价等级模糊子集元 素vj的隶属程度。
2017/5/1
昆明理工大学
18
二、模糊综合评价法的模型和步骤
常用的模糊合成算子有以下四种:
M ,
m i 1
b j ai rij max min ai , rij , j 1,2, , n
评判集、评价集、决断集、评语集、等级集实为同一涵义. 每一个评价等级可对应一个模糊子集. 什么是模糊子集? 论域上的模糊集合称为模糊子集. 经典集合的指示函数扩展为模糊集合的隶属函数.
模糊综合评价模【范本模板】

模糊综合评价模模糊数学是从量的角度研究和处理模糊现象的科学.这里模糊性是指客观事物的差异在中介过渡时所呈现的“亦此亦比”性。
比如用某种方法治疗某病的疗效“显效"与“好转”、某医院管理工作“达标”与“基本达标”、某篇学术论文水平“很高"与“较高”等等.从一个等级到另一个等级间没有一个明确的分界,中间经历了一个从量变到质变的连续过渡过程,这个现象叫中介过渡。
由这种中介过渡引起的划分上的“亦此亦比”性就是模糊性.模糊综合评价是以模糊数学为基础.应用模糊关系合成的原理,将一些边界不清,不易定量的因素定量化,进行综合评价的一种方法。
一、单因素模糊综合评价的步骤(1)根据评价目的确定评价指标(Evaluation Indicator )集合{}m u u u U ,,,21 =例如:评价某项科研成果,评价指标集合为={学术水平,社会效益,经济效益}。
(2)给出评价等级(Evaluation Grade )集合{}n v v v V ,,,21 =例如:评价某项科研成果,评价等级集合为={很好,好,一般,差}。
(3)确定各评价指标的权重(Weight){}m w μμμ,,,21 =权重反映各评价指标在综合评价中的重要性程度,且∑=1iμ例如:假设评价科研成果,评价指标集合={学术水平,社会效益,经济效益}其各因素权重设为{}4.0,3.0,3.0=w(4)确定评价矩阵R请该领域专家若干位,分别对此项成果每一因素进行单因素评价(One —Way Evaluation ),例如对学术水平,有50%的专家认为“很好”,30%的专家认为“好",20%的专家认为“一般”,由此得出学术水平的单因素评价结果为()0,2.0,3.0,5.01=R同样如果社会效益,经济效益两项单因素评价结果分别为()1.0,2.0,4.0,3.02=R()2.0,3.0,2.0,2.03=R那么该项成果的评价矩阵为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=2.03.02.02.01.02.04.03.002.03.05.0321R R R R(5)进行综合评价通过权系数矩阵W 与评价矩阵R 的模糊变换得到模糊评判集S 。
模糊综合评价法案例ppt【基于模糊综合评价法的项目风险评估】
模糊综合评价法案例ppt【基于模糊综合评价法的项目风险评估】项目本身具有一次性、创新性和独特性等特性使得项目在实施过程中存在着各种风险。
如果不能很好的管理这些风险就会给项目相关利益主体造成损失,因此可以说风险管理是项目管理中最重要的任务之一。
风险评价作为风险管理中的重要组成部分,是对项目风险发生的可能性、发生时间、后果严重程度及影响范围等多个方面进行评价和估量。
根据评价结果制定风险应对措施,开展风险的控制工作。
模糊综合评价法主要运用模糊集和隶属度函数等概念,应用模糊变换原理,采用定性与定量相结合的方法,从多个方面对事物隶属度及其他等级状况进行整体的评价。
模糊综合评价法将定量分析和定性分析有效地结合在一起,既考虑了人为判断情况又将风险进行了量化,实现了风险因素的重要排序。
一、项目风险因素的确定识别项目风险是风险评价的基础,按照风险的属性不同,大致将其分为以下几类:(一)政策与环境风险国家政策与自然环境会直接或间接影响到项目的开展及实施,从给给项目带来风险。
(二)项目管理风险实施项目管理是为了使项目更好更顺利的实施,但如果管理者出现没有全面了解项目,提出错误的决策,又会更项目带来严重的影响。
(三)项目进度风险项目进度风险是指项目实施某些环节或整个项目的时间延误所造成的风险。
这种时间上的延误往往伴随着成本的增加。
(四)项目财务风险项目财务风险是指项目在实施过程中的资金融通、资金调度、资金周转、利息等不确定性因素影响项目的预期收益的可能性。
二、建立风险层次分析结构根据上述风险因素的分类分析,项目的风险因素层次分析结构。
将风险发生时可能的损失和风险发生的概率作为模型的一级指标,从这两个方面来对风险因素进行排序。
然后按照项目中可能发生的几种风险作为二级指标,即上面提到的政策与环境风险、项目管理风险、进度风险和财务风险。
这一层是主要因素层。
然而这四种风险因素还包括下一层因素,这一层因素作为模型的三级指标。
其中政策风险因素主要包括政治风险、法律风险、社会风险、经济风险、自然条件风险;管理风险主要包括高层战略风险、决策风险、项目实施风险;进度风险主要包括成员技术熟练程度、工作效率、突发事件;财务风险主要包括筹集资金、资金的调度、资金周转、利润分配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 模糊综合评判法的应用案例二、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。
在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。
基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。
这些模型及算法相当复杂。
其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。
(2) 约束条件和变量多使问题的难度呈指数增长。
模糊综合评价方法是一种适合于物流中心选址的建模方法。
它是一种定性与定量相结合的方法,有良好的理论基础。
特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。
1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, ki ij i U U U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。
③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。
④ 单级综合评判B A R =⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。
无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。
所以,需采用分层的办法来解决问题。
2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。
根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层: 第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。
表3-8 某区域的模糊综合评判⑴ 分层作综合评判{}51511512513,,u u u u =,权重{}511/3,1/3,1/3A =,由表3-8对511512513,,u u u 的模糊评判构成的单因素评判矩阵:510.600.710.770.600.820.950.650.760.600.710.700.600.800.950.650.760.910.900.930.910.950.930.810.89R ⎛⎫ ⎪= ⎪ ⎪⎝⎭用模型(,)M •+计算得:515151(0.703,0.773,0.8,0.703,0.857,0.943,0.703,0.803)B A R ==类似地:525252(0.895,0.885,0.785,0.81,0.95,0.77,0.775,0.77)B A R ==5550.7030.7730.80.7030.8570.9430.7030.8030.8950.8850.7850.810.950.770.7750.77(0.40.30.20.1)0.810.940.890.600.650.950.950.890.900.600.920.600.600.840.650.81B A R ⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭=(0.802,0.823,0.826,0.704,0.818,0.882,0.769,0.811)4440.600.950.600.950.950.950.950.950.600.690.920.920.870.740.890.95(0.10.10.40.4)0.950.690.930.850.600.600.940.780.750.600.800.930.840.840.600.80B A R ⎛⎫⎪⎪== ⎪⎪⎝⎭=(0.8,0.68,0.844,0.899,0.758,0.745,0.8,0.822)1110.910.850.870.980.790.600.600.950.930.810.930.870.610.610.950.87(0.250.250.250.25)0.880.820.940.880.640.610.950.910.900.830.940.890.630.710.950.91B A R ⎛⎫⎪⎪== ⎪⎪⎝⎭=(0.905,0.828,0.92,0.905,0.668,0.633,0.863,0.91)(2)高层次的综合评判{}12345,,,,U u u u u u =,权重{}0.1,0.2,0.3,0.2,0.2A =,则综合评判 12345B B B A R A B B B ⎛⎫ ⎪ ⎪⎪== ⎪ ⎪ ⎪⎝⎭0.9050.8280.920.9050.6680.6330.8630.910.950.900.90.940.600.910.950.94 =(0.10.20.30.20.2)0.900.900.870.950.870.650.740.610.80.680.8440.8990.7580.7450.80.8220.8020.8230.8260.7040.8180.8820.7690.811⎛ ⎝⎫⎪⎪⎪⎪⎪ ⎪⎭ =(0.871,0.833,0.867,0.884,0.763,0.766,0.812,0.789)由此可知,8块候选地的综合评判结果的排序为:D,A,C,B ,G,H,F,E,选出较高估计值的地点作为物流中心。
应用模糊综合评判方法进行物流中心选址,模糊评判模型采用层次式结构,把评判因素分为三层,也可进一步分为多层。
这里介绍的计算模型由于对权重集进行归一化处理,采用加权求和型,将评价结果按照大小顺序排列,决策者从中选出估计值较高的地点作为物流中心即可,方法简便。
五、在人事考核中的应用随着知识经济时代的到来,人才资源已成为企业最重要的战略要素之一,对其进行考核评价是现代企业人力资源管理的一项重要内容。
人事考核需要从多个方面对员工做出客观全面的评价,因而实际上属于多目标决策问题。
对于那些决策系统运行机制清楚,决策信息完全,决策目标明确且易于量化的多目标决策问题,已经有很多方法能够较好的将其解决。
但是,在人事考核中存在大量具有模糊性的概念,这种模糊性或不确定型不是由于事情发生的条件难以控制而导致的,而是由于事件本身的概念不明确所引起的。
这就使得很多考核指标都难以直接量化。
在评判实施过程中,评价者又容易受人际关系、经验等主观因素的影响,因此对人的综合素质评判往往带有一定的模糊性与经验性。
这里说明如何在人事考核中运用模糊综合评判,从而为企业员工职务的升降、评先晋级、聘用等提供重要依据,促进人事管理的规范化和科学化,提高人事管理的工作效率。
1.一级模糊综合评判在人事考核中的应用在对企业员工进行考核时,由于考核的目的、考核对象、考核范围等的不同,考核的具体内容也会有所差别。
有的考核,涉及的指标较少,有些考核,又包含了非常全面丰富的内容,需要涉及很多指标。
鉴于这种情况,企业可以根据需要,在指标个数较少的考核中,运用一级模糊综合评判,而在问题较为复杂,指标较多时,运用多层模糊综合评判,以提高精度。
一级模糊综合评价模型的建立,主要包括以下步骤。
⑴ 确定因素集对员工的表现,需要从多方面进行综合评判,如员工的工作业绩、工作态度、沟通能力、政治表现等。
所有这些因素构成了评价体系集合,即因素集,记为:12{,,,}n U u u u =⑵ 确定评语集由于每个指标的评价值的不同,往往会形成不同的等级。
如对工作业绩的评价有好、较好、中等、较差、很差等。
由各种不同决断构成的集合被称作评语集 记为:12{,,,}m V v v v =⑶ 确定各因素的权重一般情况下,因素集中的各因素在综合评价中所起的作用是不同的,综合评价结果不仅与各因素的评价有关,而且在很大程度上还依赖与各因素对综合评价所起的作用,这就需要确定一个各因素之间的权重分配,它是U 上一个模糊向量,记为:12(,,,)n A a a a =其中i a 表示第i 个因素的权重,且11ni i a ==∑。
确定权重的方法很多,例如Delphi法、加权平均法、众人评估法等。
⑷ 确定模糊综合判断矩阵对第i 个指标来说,对各个评语的隶属度为V 上的模糊子集。
12(,,,)i i i in R r r r =,各指标的模糊综合判断矩阵为:111212122212m m n n nm r r r r r r R r r r ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦它是一个从U 到V 的模糊关系矩阵。
⑸ 综合评判如果有一个从U 到V 的模糊关系()ij n m R r ⨯=,那么利用R 就可以得到一个模糊变换::()()R T F U F V −−→由此变换,就可得到综合评判结果*B A R =。
综合后的评判可看作是V 上的模糊向量,记为:12(,,,)m B b b b =B 的求法有很多种,例如用Zadeh 算子。
这种方法很简单,但算子比较粗糙,为了加细算子,可以使用普通乘法算子等。
下面以某单位对员工的年终综合评定为例,来说明其应用。
⑴ 取因数集{}234,,,i U u u u u =政治表现工作能力工作态度工作成绩; ⑵ 取评语集{}12345,,,V v v v v v =优秀良好一般,较差差; ⑶ 确定个因素的权重:(0.25,0.2,0.25,0.3)A = ⑷ 确定模糊综合判断矩阵:对每个因素i u 做出评价。
① 1u 比如由群众评议打分来确定1(0.1,0.5,0.4,0,0)R =上面式子表示,参与打分的群众当中,有10%的人认为政治表现优秀,50%的人认为政治表现良好,40%的人认为政治表现一般,认为政治表现较差或差的人为0,用同样的方法对其它因素进行评价。
② 23,u u 由部门领导打分来确定2(0.2,0.5,0.2,0.1,0)R =3(0.2,0.5,0.3,0,0)R =③ 4u 由单位考核组员打分来确定4(0.2,0.6,0.2,0)R =以i R 为i 行构成评价矩阵0.10.50.400.20.50.20.100.20.50.3000.20.60.200R ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 它是从因素集U 到评语集V 的一个模糊关系矩阵。