模糊综合评判
模糊评判

模糊综合评判一:解决的实际问题:在实际工作中,对一个事物的评价或评估,常常涉及多个因素或多个指标,这时就要求根据这多个因素对事物作出综合评价,而不能只从某一因素的情况去评价事物,这就是综合评判。
模糊综合评判的基本思想是利用模糊线性变换原理和最大隶属度原则,考虑与被评价事物相关的各个因素,对其作出合理的综合评价模糊综合评判决策是对受多种因素影响的事物作出全面评价的一种十分有效的多因素决策方法。
二:模型与求解方法:设U ={u1, u2, … , u n}为n种因素(或指标),V ={v1, v2, … ,V}为m种评判(或等级).m由于各种因素所处地位不同,作用也不一样,可用权重A = (a1, a2, … , an )来描述,它是因素集U 的一个模糊子集.对于每一个因素u,单独作出的一个评判f (i u),可看i作是U到V 的一个模糊映射f ,由f 可诱导出U 到V 的一个模糊关系R f ,由R f可诱导出U 到V 的一个模糊线性变换TR(A)= A °R = B,它是评判集V 的一个模糊子集,即为综合评判.(U, V, R )构成模糊综合评判决策模型, U, V, R是此模型的三个要素.模糊综合评判决策的方法与步骤是:⑴ 建立因素集U ={u 1, u 2, … , u n }与决断集V ={1V , 2V , … , m V }.⑵ 建立模糊综合评判矩阵.对于每一个因素i u ,先建立单因素评判:(r i 1, r i 2, … , r im )即ij r (0≤ij r ≤1)表示j V 对因素i u 所作的评判,这样就得到单因素评判矩阵()ij n m R r ⨯=⑶ 几种常见没模糊综合评判模型.根据各因素权重A =(a 1, a 2, … , a n )综合评判: B = A ⊕R = (b 1, b 2, … , b m )是V 上的一个模糊子集,根据运算⊕的不同定义,可得到不同的模型.模型Ⅰ:M (∧,∨)——主因素决定型{(),1}j i ij b a r i n=∨∧≤≤1,2,...,j m = 由于综合评判的结果j b 的值仅由i a 与ij r 1,2,...,i n =中的某一个确定(先取小,后取大运算),着眼点是考虑主要因素,其他因素对结果影响不大,这种运算有时出现决策结果不易分辨的情况. 模型Ⅱ:M ( · , ∨)——主因素突出型{(),1}j i ij b a r i n=∨∧≤≤ 1,2,...,j m = M ( · , ∨)与模型M (∧,∨) 较接近, 区别在于用i a ij r 代替了M (∧,∨) 中的i a ∧ij r 。
模糊综合评判法(原理)

05
多因素综合评判
根据权重和隶属度,对所有因素进行加权平均,得出 最终的综合评判结果。
02
模糊集合与隶属函数
模糊集合的概念
模糊集合
在经典集合论中,一个对象要么完全 属于某个集合,要么完全不属于该集 合。但在模糊集合中,一个对象可以 部分地属于某个集合。
模糊集合的表示
通常用大括号 {} 表示一个集合,在括 号内用小括号 () 括起来的元素表示该 集合中的成员。例如,A = {(x, y) | y = x^2} 表示一个曲线集合。
隶属函数的定义与分类
隶属函数
用于描述模糊集合中元素属于该集合 的程度。它是一个函数,输入为一个 元素,输出为一个介于0和1之间的实 数,表示该元素属于该集合的隶属度。
分类
根据不同的分类标准,隶属函数可以 分为不同的类型。例如,按照形状可 以分为三角形、梯形、高斯型等;按 照参数化可以分为非参数化、半参数 化、参数化等。
模糊综合评判法(原理)
目
CONTENCT
录
• 模糊综合评判法概述 • 模糊集合与隶属函数 • 模糊矩阵的运算与模糊关系 • 模糊综合评判的步骤与实例 • 模糊综合评判法的改进与发展
01
模糊综合评判法概述
定义与特点
定义
模糊综合评判法是一种基于模糊数学和模糊逻辑的决策方法,用 于解决具有模糊性和不确定性问题的评价和决策。
模糊关系的扩展
将一个普通关系扩展为模糊关系,以便在模糊逻辑中使用。
模糊关系的传递性
模糊关系的传递性定义
如果对于任意三个模糊集合A、B和C,有A∩B=A∩C且A∪B=A∪C,则称A与 B的交集和并集分别等于A与C的交集和并集,即A与B的传递性。
模糊关系传递性的性质
模糊综合评价法

模糊综合评价法原理模糊综合评价法是一种基于模糊数学的综合评价方法,它应用模糊关系综合的原理,将一些界限不清、难以量化的因素量化,进行综合评价。
这种综合评价方法根据模糊数学的隶属度理论,将定性评价转化为定量评价,即利用模糊数学对受多种因素制约的事物或对象进行总体评价。
它具有结果明确、系统性强的特点,能解决模糊、难以量化的问题,适用于解决各种不确定性问题。
其特点是评价结果不是绝对肯定或否定的,而是用一个模糊集来表示。
模糊综合评价通常由目标层和指标层组成。
通过指标层与评价集之间的模糊关系矩阵(即隶属度矩阵),可以得到目标层对评价集的隶属度向量,从而得到目标层的综合评价结果。
隶属度和隶属度矩阵是模糊综合评价的关键概念。
计算步骤1、确定评价对象的因素集设U={u1,u2,...,um}为刻画被评价对象的m种评价因素(评价指标),其中:m是评价因素的个数,由具体的指标体系所决定。
2、确定评价对象的评语集设V={v1,v2,...,vn},是评价者对被评价对象可能做出的各种总的评价结果组成的评语等级的集合,一般划分为3-5个等级。
3、确定评价因素的权重向量设A=(a1,a2,...,am)为权重分配模糊矢量,其中ai表示第i个因素的权重,要求a1+a2+...+am=1,A反映了各因素的重要程度。
在模糊综合评价中,权重会对最终的评价结果产生很大的影响,不同的权重有时会得到完全不同的结论。
现在权重一般是凭经验给的,但很主观。
确定权重的方法有:(1)专家估计法;(2)加权平均法:当专家人数少于30人时,可采用此方法。
先由多位专家独立给出各因素的权重,然后取各因素的平均值作为其权重;(3)频率分布测定的权重法;(4)模糊协调决策方法:贴近度和贴近度选择原则;(5)层次分析法。
4、进行单因素模糊评价,确立模糊关系矩阵R5、综合评价6、对模糊综合评价结果进行定量分析模糊综合评价的结果是被评价对象对各等级模糊子集的隶属度,它一般是一个模糊矢量,而不是一个值,因而他能提供的信息比其它方法更丰富。
模糊综合评价法及例题

指标
很好
好
一般
差
疗效
治愈
显效
好转
无效
住院日
≤15
16~20
21~25
>25
费用(元) ≤1400 1400~1800 1800~2200 >2200
表2 两年病人按医疗质量等级的频数分配表
指标
很好 质量好 等级一般 差
疗效 住院日 费用
01年 02年
01年 02年
01年 02年
160 170
180 200
•模糊概念 秃子悖论: 天下所有的人都是秃子
设头发根数n n=1 显然 若n=k 为秃子 n=k+1 亦为秃子
模糊概念:从属于该概念到不属于该概念之间 无明显分界线
年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨、礼品。
共同特点:模糊概念的外延不清楚。 模糊概念导致模糊现象 模糊数学就是用数学方法研究模糊现象。
模糊综合评价
▪ 假设评价科研成果,评价指标集合U={学术水 平,社会效益,经济效益}其各因素权重设为
W {0.3,0.3,0.4}
模糊综合评价
▪ 请该领域专家若干位,分别对此项成果每一因素进行单因素 评价(one-way evaluation),例如对学术水平,有50%的 专家认为“很好”,30%的专家认为“好”,20%的专家认为 “一般”,由此得出学术水平的单因素评价结果为
• 术语来源 Fuzzy: 毛绒绒的,边界不清楚的 模糊,不分明,弗齐,弗晰,勿晰
模糊数学的产生与基本思想
•产生 1965年,L.A. Zadeh(扎德) 发表了文章《模糊集 》
(Fuzzy Sets,Information and Control, 8, 338-353 )
topsis-模糊综合评判法

TOPSIS与模糊综合评判法:多属性决策方法比较与选择一、引言在决策分析中,多属性决策问题是一个常见的问题类型。
这些问题涉及多个属性或指标,需要对这些属性进行权重分配和综合评价,以确定最优方案。
TOPSIS和模糊综合评判法是两种常用的多属性决策分析方法。
本文将介绍这两种方法,并通过比较它们的优缺点,为实际应用提供选择依据。
二、TOPSIS 方法TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)是一种多属性决策分析方法,它通过计算每个方案与理想解和负理想解的距离,来评估方案的优劣。
理想解是所有方案中最好的解,负理想解是最差的解。
步骤:1.构建属性权重向量,确定各属性的权重。
2.归一化属性值,将各属性的值转换到同一量纲。
3.计算每个方案与理想解和负理想解的距离。
4.计算每个方案的相对接近度,根据相对接近度的大小,对方案进行排序。
优点:1.可以处理不同的属性类型,包括效益型、成本型和区间型。
2.可以考虑属性的不同权重。
3.易于理解和计算。
缺点:1.对数据分布敏感,如果数据分布不均匀,可能导致评价结果失真。
2.对属性值的小幅变化敏感,可能导致评价结果不稳定。
三、模糊综合评判法模糊综合评判法是一种基于模糊逻辑的多属性决策分析方法。
它通过模糊集合和模糊规则来描述属性之间的模糊关系,从而对方案进行综合评价。
步骤:1.确定属性集合和方案集合。
2.确定属性之间的模糊关系,建立模糊矩阵。
3.确定属性权重向量,确定各属性的权重。
4.进行模糊运算,得到每个方案的隶属度和优先度。
5.根据隶属度和优先度对方案进行排序。
优点:1.可以处理不确定性和模糊性。
2.可以考虑属性的不同权重。
3.可以结合专家的经验和知识。
缺点:1.对模糊规则的描述需要较高的专业知识水平。
2.计算复杂度高,需要较高的计算成本。
3.对数据分布的稳定性要求较高。
四、比较与选择通过对TOPSIS和模糊综合评判法的介绍和比较,我们可以发现它们各有优缺点。
模糊综合评判

n
数.
4. 主因素突出型: M (∨, T ) 设
A = (a1 , a2 ,L , an ) ∈ [0,1]n
n
是正规化权向量,对
n
∀ ( x1 , x2 ,L , xn ) ∈ [0,1]
x1 |→ f ( x1 ) = x2 |→ f ( x2 ) = 1 , y1 1 0.4 0.9 0.5 + + + , y1 y2 y3 y4
0.5 0.7 , x3 |→ f ( x3 ) = + y1 y3
则 f 是从 X 到 Y 的模糊映射.
二、 性质. 为了方便与直观,我们只给出有 限论域情形下模糊映射 f 与模糊关系
n i =1
∀ ( x1 , x2 ,L , xn ) ∈ [0,1]
,令 f ∑ ( x1 , x2 ,L , xn ) = ∑ ai xi ,称 f ∑ 为
加权平均模型模糊综合函数, ai 是第 i 个因素在 综合评判中所占的比重
2. 几何平均型: 设 A = (a1 , a2 ,L , an ) ∈ [0,1]n 是归一化权向量, 对 ∀ ( x1 , x2 ,L , xn ) ∈ [0,1]n , 令
则
TR : F ( X ) → F (Y ), A |→ TR ( A) = A o R = B = (b1 , b2 ,L , bm ) ∈ F (Y ) ,
(ai ∧ rij ) ( j = 1, 2,L , m) , 并 TR 称是由模糊关系 其中 b j = i∨ =1
n
诱导出的.
模糊综合评价法讲解

B1=(0.46,0.18,0.12,0.12,0.12) B2=(0.17,0.17,0.42,0.12,0.12) 若规定评价“好”“较好”要占50%以上才可晋升, 则此教师晋升为教学型教授,不可晋升为科研型教
是由一个指标实际值来刻画,因此从这个角度讲,
模糊综合评价要求更多的信息),ri 称为单因素评
价矩阵,可以看作是因素集U和评价集V之间的一种 模糊关系,即影响因素与评价对象之间的“合理关
系”。
在确定隶属关系时,通常是由专家或与评价问题 相关的专业人员依据评判等级对评价对象进行打分
,然后统计打分结果,然后可以根据绝对值减数法
1.80 1.93 0.87 1.12 1.21 0.87 0.89 2.52 0.81 0.82 1.01
A=(0.2,0.3,0.5)
专家评价结果表
由上表,可得甲、乙、丙三个项目各自 的评价矩阵P、Q、R:
0.7 0.2 0.1 P 0.1 0.2 0.7
0.3 0.6 0.1
0.3 0.6 0.1 Q 1 0 0
0.7 0.3 0
0.1 0.4 0.5 R 1 0 0
0.1 0.3 0.6
例3:“晋升”的数学模型,以高校教师晋 升教授为例
因素集:
U={政治表现及工作态度,教学水平,科 研水平,外语水平};
评判集:
V={好,较好,一般,较差,差};
(1)建立模糊综合评判矩阵
当学科评审组的每个成员对评判的对象进 行评价,假定学科评审组由7人组成,用打分 或投票的方法表明各自的评价
模糊综合评价法

~ 1 2 n
i
i 1
在 A 与 R 求出之后,则综合评判为 b V a r , j 1, 2 , , m 记 B b , b , , b ,它是V上的一个模糊子集,其中
n
~
j
~
i 1
i
ij
1
2
m
B A R
~ ~ ~
m
如果评判结果 b
j 1
j
1
,应将它归一划。
关键点:建立单因素评判矩阵R 和确定权重分配 A ,一 般采用的是模糊统计实验或专家评分方法求出。
~
~
THE END
~
r12 r22 rn 2
r1 m r2 m rnm
称 R 为单因素评判矩阵,于是(U,V,R)构成了一个综 合评判模型或称综合评判空间。 ④进行综合评判。由于对U中各因素有不同的侧重,需要 对每个不同的因素赋予不同的权重,它可以表示为U上 的一个模糊子集 A a , a , , a ,并且规定 a 1 。
模糊综合评价法
张小君
模糊综合评价法
模糊综合评价数学模型分为一级模型和多级模型两类。 一级模型进行模糊综合评价,一般可归为以下几个步骤: ①建立评判的因素集 U u , u , , u 。因素就是对象的各种属 性或性能,在不同场合也称为 参数指标或质量指标, 根据这些因素给对象评价。 ②建立评判集 V v , v , , v 。如工业产品,评判集就是等级 的集合。 ③建立单因素评判,即建立一个从U到F(V)的模糊映射。
1 2 n 1 2 m
f : U F V , u i U
~Leabharlann u i f u i ~
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•模糊矩阵及运算与性质
模糊矩阵间的关系及并、交、余运算
模糊矩阵的合成设A=(a),B=(b)都是模糊矩阵,定义
模糊方阵的幂
模糊综合评判法及其应用步骤
二、进行单因素评判,建立模糊关系矩阵:以教师授课质量评估为例:
X={教材熟练程度,逻辑性,启发性,趣味性,模糊关系矩阵的数据来源是十分重要的.许多情况三.确定评价因素集的权向量,
四.选择合适的算子,计算得出模糊评判结果向
综合评价的模糊算子常用的有下面几种:
模型1的评价结果只考虑了主要因素,忽略了其他
教师授课质量的模糊综合评价的结果向量为:B
模糊综合评判法的优点:
模糊综合评判法的缺点:故障诊断的模糊综合评判方法
基于模糊综合评判的轴向柱塞泵故障诊断
(1)
1)各症状的隶属度2)故障与症状的关系系数
0, 0.2, 0.4, 0.6, 0.8, 1.0代表症状隶属度,如表1所示。
测得某一状态下
评价系统多级模糊综合评判
模糊综合评判向量为
基于模糊综合评判液压起重系统故障诊断
阀处于右路时,高压液压油经油滤
①、泵②、单向阀③、电液换向阀
④、平衡阀⑤、进人伸缩臂液压缸
⑥无无杆腔,活塞杆一级一级伸出,
起重臂伸出,吊运重物;液压缸另一
腔的液压油沿回油路,经顺序阀⑦、
电液换向阀④回油箱;⑧、⑨为溢流
阀,主要用于调整压力.
故障:起重吊力不足
原因(征兆、主因素):压力不足,
油液污染,使用期长,流量不足
压力不足可由泵泄露,阀芯卡死,阀芯
阀座磨损,阀类密封泄漏,密封损
坏或封而不严造成(子因素)。
流量不足可由配合间隙增大,各处泄
漏增大造成(子因素)
9.2.4 液压起重设备故障诊断综合评判
1. 确立评判指标集X.
主因素集
X={压力不足,油液污染,使用期长,流量不足};
子因素集:
压力不足={泵泄露,阀芯卡死,阀芯阀座磨损,阀类密封泄漏,密封损坏或封而不严}
流量不足={配合间隙增大,各处泄漏增大};
压力不足油液污染流量不足
使用期长
2.进行单因素评判,建立模糊关系矩阵:
(2)
(3) 确定权重分配,得出综合评判结果:根据层次分析法确定权重分配为
同理可得
根据层次分析法确定四个主因素的权重分配为
3. 确定四个主因素的权重分配, 得到综合评判结果.。