模糊综合评价法

合集下载

模糊综合评判法(原理)

模糊综合评判法(原理)

05
多因素综合评判
根据权重和隶属度,对所有因素进行加权平均,得出 最终的综合评判结果。
02
模糊集合与隶属函数
模糊集合的概念
模糊集合
在经典集合论中,一个对象要么完全 属于某个集合,要么完全不属于该集 合。但在模糊集合中,一个对象可以 部分地属于某个集合。
模糊集合的表示
通常用大括号 {} 表示一个集合,在括 号内用小括号 () 括起来的元素表示该 集合中的成员。例如,A = {(x, y) | y = x^2} 表示一个曲线集合。
隶属函数的定义与分类
隶属函数
用于描述模糊集合中元素属于该集合 的程度。它是一个函数,输入为一个 元素,输出为一个介于0和1之间的实 数,表示该元素属于该集合的隶属度。
分类
根据不同的分类标准,隶属函数可以 分为不同的类型。例如,按照形状可 以分为三角形、梯形、高斯型等;按 照参数化可以分为非参数化、半参数 化、参数化等。
模糊综合评判法(原理)

CONTENCT

• 模糊综合评判法概述 • 模糊集合与隶属函数 • 模糊矩阵的运算与模糊关系 • 模糊综合评判的步骤与实例 • 模糊综合评判法的改进与发展
01
模糊综合评判法概述
定义与特点
定义
模糊综合评判法是一种基于模糊数学和模糊逻辑的决策方法,用 于解决具有模糊性和不确定性问题的评价和决策。
模糊关系的扩展
将一个普通关系扩展为模糊关系,以便在模糊逻辑中使用。
模糊关系的传递性
模糊关系的传递性定义
如果对于任意三个模糊集合A、B和C,有A∩B=A∩C且A∪B=A∪C,则称A与 B的交集和并集分别等于A与C的交集和并集,即A与B的传递性。
模糊关系传递性的性质

模糊综合评价法

模糊综合评价法

模糊综合评价法原理模糊综合评价法是一种基于模糊数学的综合评价方法,它应用模糊关系综合的原理,将一些界限不清、难以量化的因素量化,进行综合评价。

这种综合评价方法根据模糊数学的隶属度理论,将定性评价转化为定量评价,即利用模糊数学对受多种因素制约的事物或对象进行总体评价。

它具有结果明确、系统性强的特点,能解决模糊、难以量化的问题,适用于解决各种不确定性问题。

其特点是评价结果不是绝对肯定或否定的,而是用一个模糊集来表示。

模糊综合评价通常由目标层和指标层组成。

通过指标层与评价集之间的模糊关系矩阵(即隶属度矩阵),可以得到目标层对评价集的隶属度向量,从而得到目标层的综合评价结果。

隶属度和隶属度矩阵是模糊综合评价的关键概念。

计算步骤1、确定评价对象的因素集设U={u1,u2,...,um}为刻画被评价对象的m种评价因素(评价指标),其中:m是评价因素的个数,由具体的指标体系所决定。

2、确定评价对象的评语集设V={v1,v2,...,vn},是评价者对被评价对象可能做出的各种总的评价结果组成的评语等级的集合,一般划分为3-5个等级。

3、确定评价因素的权重向量设A=(a1,a2,...,am)为权重分配模糊矢量,其中ai表示第i个因素的权重,要求a1+a2+...+am=1,A反映了各因素的重要程度。

在模糊综合评价中,权重会对最终的评价结果产生很大的影响,不同的权重有时会得到完全不同的结论。

现在权重一般是凭经验给的,但很主观。

确定权重的方法有:(1)专家估计法;(2)加权平均法:当专家人数少于30人时,可采用此方法。

先由多位专家独立给出各因素的权重,然后取各因素的平均值作为其权重;(3)频率分布测定的权重法;(4)模糊协调决策方法:贴近度和贴近度选择原则;(5)层次分析法。

4、进行单因素模糊评价,确立模糊关系矩阵R5、综合评价6、对模糊综合评价结果进行定量分析模糊综合评价的结果是被评价对象对各等级模糊子集的隶属度,它一般是一个模糊矢量,而不是一个值,因而他能提供的信息比其它方法更丰富。

模糊综合评价法

模糊综合评价法

模糊综合评价法模糊综合评价法(Fuzzy Comprehensive Evaluation)是一种常用的多指标决策方法,它可以在不确定、模糊的条件下对不同选项进行评估和排序。

该方法通过将不同指标的评价结果用模糊集合表示,结合权重和评价等级,最终得出各选项的综合评估结果。

本文将介绍模糊综合评价法的概念、基本步骤和具体应用。

模糊综合评价法的核心思想是将模糊集合理论与评价方法相结合,从而克服了传统评价方法只考虑确定性条件下的不足。

在现实问题中,往往存在不确定和模糊的因素,无法用简单的数学模型描述。

而模糊综合评价法可以通过模糊集合的运算和推理,对这些模糊因素进行量化和评估。

模糊综合评价法的基本步骤如下:1. 确定评价指标:根据评价对象的特征和目标,确定几个关键评价指标。

这些指标应该能够反映出评价对象的综合性能。

2. 构建评价集合:对于每个评价指标,需要构建其对应的模糊集合。

模糊集合由隶属函数表示,它可以描述事物的不同特征和评价等级之间的关系。

3. 确定权重:为不同评价指标确定权重,反映出它们在综合评价中的重要性。

常用的方法有主观赋权、层次分析法等。

4. 进行评价计算:根据评价指标的隶属函数和权重,对每个指标进行评估计算。

通常采用隶属度最大值法、隶属度平均值法等方法。

5. 综合评价:将各个指标的评估结果综合起来,得出最终的综合评价结果。

可以通过加权平均法、熵权法等进行综合。

模糊综合评价法在实践中有着广泛的应用。

它可以用于企业绩效评估、项目可行性分析、人才选拔、产品质量评价等领域。

通过综合考虑多个指标,可以更全面地评估对象的优劣,为决策提供科学依据。

然而,模糊综合评价法也存在一些问题和挑战。

首先,评价指标的选择和权重的确定往往具有主观性,不同人对同一指标的看法可能存在差异。

其次,模糊综合评价法的计算过程较为繁琐,需要较高的数学基础和专业知识。

最后,由于模糊综合评价法忽略了指标之间的相互关系,可能导致评价结果的不准确性。

模糊综合评价法

模糊综合评价法

3、进行单因素评价,建立模糊关系矩阵R
单独从一个因素出发进行评价,以确定评价对象 对评价集合V的隶属程度,称为单因素模糊评价。 在构造了等级模糊子集后,就要逐个对被评价对象 从每个因素 u i ( i = 1, 2 , L , m ) 上进行量化,也就是确 定从单因素来看被评价对象对各等级模糊子集的隶 属度,进而得到模糊关系矩阵:
权重选择的合适与否直接关系到模型的成败。 确定权重的方法有以下几种: 层次分析法 Delphi法 加权平均法 专家估计法
5、多因素模糊评价
利用合适的合成算子将A与模糊关系矩阵R合成得 到各被评价对象的模糊综合评价结果向量B。 R中不同的行反映了某个被评价对象从不同的单 因素来看对各等级模糊子集的隶属程度。用模糊权 向量A将不同的行进行综合就可以得到该被评价对 象从总体上来看对各等级模糊子集的隶属程度,即 模糊综合评价结果向量B。
常用的模糊合成算子有以下两种: M (∧ , ) 算子: ∨
b j = ∨ (a i ∧ rij ) = max {min (a i , rij )} j = 1, 2 , L , n ,
m i =1 1≤ i ≤ m
M (⋅, ) 算子: ∨
b j = ∨ (a i , rij ) = max
m i =1
ri = (ri1 , ri 2 , L , rim ) 来刻画的(在其他评价方法中多
是由一个指标实际值来刻画,因此从这个角度讲, 模糊综合评价要求更多的信息),r i 称为单因素评 价矩阵,可以看作是因素集U和评价集V之间的一种 模糊关系,即影响因素与评价对象之间的“合理关 系”。
在确定隶属关系时,通常是由专家或与评价问题 相关的专业人员依据评判等级对评价对象进行打分 ,然后统计打分结果,然后可以根据绝对值减数法 求得 r ij ,即:

模糊综合评价法

模糊综合评价法

模糊综合评价法模糊综合评价当需要对评价对象做出客观全⾯的评价,但是存在⼤量的模糊性的概念,⽐如⼀个⼈的好坏这样的主观因素会起很⼤作⽤,会使很多指标都⽆法量化,这时就很适合⽤模糊综合评价。

⼀级模糊综合评判1. 确定因素集把所有需要评价的指标构成⼀个集合,即因素集U={u1,u2,...u n}其中的每个u i就为⼀个评价指标2. 确定评语集由于每个指标的评价值不同,那么我们需要有⼀个等级制度来评判各个指标把所有等级构成⼀个集合,即为评语集V={v1,v2,...,v m}⽐如V={好,较好,中等,较差,差}3. 确定各个因素的权重W=[w1,w2,...,w n]$w_i$为第i个元素的权重,且满⾜$\sum_{k=1}^{n}w_i=1$确定权重的⽅法有不少,如Delphi法,加权平均法,众⼈评估法等4. 确定模糊综合评价矩阵对于第i个评价指标u i来说,它有m个评语,我们把对它的评判向量记为R iR i=[r i1,r i2,...,r im]那么对各个指标的总模糊综合评价矩阵就为R=[R1,R2,...R n]它是⼀个从U到V的模糊关系矩阵,即是从因素到评语的关系5. 综合评判综合评价结果B就是权重W和关系矩阵R的乘积,即B=W.R那么最后的评价结果就是B=[b1,b2,...,b m]中最⼤的⼀个元素多层次的模糊综合评价1. 实际上多层次的分析就是在单层次的分析上在多⼀次分析就可由第⼀级的分析得到⼀级评判向量B=[b1,b2,...,b m]。

2. B的权重为A=[a1,a2,....a m]3. ⼆级评判向量B2为B2=A.B4. 故也可以继续推出第三级,第四级,甚⾄更⾼层次的步骤。

Processing math: 100%。

模糊综合评价法

模糊综合评价法

(二)模糊综合评价法“模糊综合评价方法是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,从多个因素对被评价事物隶属等级状况进行综合性评级的一种方法[33]”。

具体地说,确立评价指标集和评价集,并且通过方法对评价指标的权重进行计算以及确定其相应隶属度,从而构建模糊评判矩阵。

然后将模糊评判矩阵与指标的权向量矩阵进行模糊运算并进行归一化,主要采用矩阵相乘的方法得到模糊综合评价结果。

其主要是在模糊环境下对多种因素进行分析,为达到某种目的而对事物做出综合决策的方法。

模糊综合评价法可以不受评价对象所在环境的影响,对评价对象有唯一的评价值。

对评价指标进行模糊综合评价的目的主要是从中选出优胜和低质的指标,并且对指标进行非负赋值,然后对其进行排序和对结果进行比较研究。

(一)三角模糊评价法三角模糊评价主要是基于三角模糊理论,依据模糊化法则对评语变量进行模糊综合评价,从而获得游客对评语变量的平均认知水平。

然后以模糊化的评语变量为基础,以及通过去模糊化法则对评价指标满意度进行去模糊化计算,获得评价指标的满意度分值和整体满意度去模糊化值。

其目的是为了更好的避免了因不同游客对评语变量认知的不同,而导致的对评语变量满意度调查的误差,更加准确的计算了游客对评价指标满意度的去模糊化值。

在对评语变量进行去模糊化的基础上,对数据的获取可由两种方法进行:第一是直接获取受访对象关于评语变量的认知以及对评价指标的满意度;第二是在对评语变量进行模糊综合评价的基础上,通过对评价指标进行满意度问卷调查,然后将两者一元化归一。

具体的说是将三角模糊化的评语变量与评价指标满意度进行矩阵相乘。

(二)IPA分析法IPA分析法(Importance-Performance Analysis),即重要性及其表现分析法,马提拉(Martilla)率先将其应用于评价服务性企业的服务质量与顾客的感知程度[36]。

在旅游研究方面是由伊万斯和晁恩将其引入,并对美国两个旅游目的地进行了旅游政策制定与评估研究[37]。

模糊综合分析法

模糊综合分析法

模糊综合评价法模糊综合评价法是一种基于模糊数学的综合评价方法。

该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。

它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

中文名模糊综合评价法理论依据模糊数学属性综合评标方法提出人查德模糊集合理论(fuzzy sets)的概念于1965 年由美国自动控制专家查德(L.A.Zadeh)教授提出,用以表达事物的不确定性。

术语定义为了便于描述,依据模糊数学的基本概念,对模糊综合评价法中的有关术语定义如下:1.评价因素(F):是指对招标项目评议的具体内容(例如,价格、各种指标、参数、规范、性能、状况,等等)。

为便于权重分配和评议,可以按评价因素的属性将评价因素分成若干类(例如,商务、技术、价格、伴随服务,等),把每一类都视为单一评价因素,并称之为第一级评价因素(F1)。

第一级评价因素可以设置下属的第二级评价因素(例如,第一级评价因素“商务”可以有下属的第二级评价因素:交货期、付款条件和付款方式,等)。

第二级评价因素可以设置下属的第三级评价因素(F3)。

依此类推。

2.评价因素值(Fv):是指评价因素的具体值。

例如,某投标人的某技术参数为120,那么,该投标人的该评价因素值为120。

3.评价值(E):是指评价因素的优劣程度。

评价因素最优的评价值为1(采用百分制时为100分);欠优的评价因素,依据欠优的程度,其评价值大于或等于零、小于或等于1(采用百分制时为100分),即0≤E≤1(采用百分制时0≤E≤100)。

4.平均评价值(Ep):是指评标委员会成员对某评价因素评价的平均值。

平均评价值(Ep)=全体评标委员会成员的评价值之和÷评委数5.权重(W):是指评价因素的地位和重要程度。

第一级评价因素的权重之和为1;每一个评价因素的下一级评价因素的权重之和为1 。

模糊综合评价方法

模糊综合评价方法

模糊综合评价方法
1.建立评价指标体系:根据评价对象的性质和评价目标,建立评价指
标体系。

评价指标体系应具有科学性、全面性和可操作性,包括定性指标
和定量指标。

2.构建评价模型:根据评价指标体系的准则层和子准则层,采用层次
分析法或层次分解法构建评价模型。

通过对指标之间的层次关系进行定量
分析,确定每个指标的权重,并将其转化为模糊权重。

3.收集评价数据:根据评价指标体系,收集评价数据。

评价数据可以
是具体数值,也可以是模糊数值或模糊语言,通过对数据进行模糊化处理,将其转化为模糊数值。

4.建立模糊评价矩阵:将收集到的评价数据构建成模糊评价矩阵。


糊评价矩阵是一个模糊数矩阵,其中每个元素代表一个指标对应的模糊评价。

5.计算模糊评价值:通过模糊综合运算,计算出模糊评价值。

常用的
模糊综合运算方法有模糊加法、模糊乘法、模糊加权平均等。

6.做出评价决策:根据模糊评价值,进行评价决策。

可以通过与模糊
评价值相对应的评价等级或评价区间来进行判断和决策。

需要注意的是,模糊综合评价方法的可行性和有效性依赖于评价指标
体系的合理性和模糊度的合理界定。

评价指标体系应尽可能全面反映评价
对象的特征,模糊度的合理界定可以通过专家知识和历史数据进行确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业
某市直属单位因工作需要,拟向社会公开招聘8 名公务员,具体的招聘办法和程序如下:
(一)公开考试:凡是年龄不超过30 周岁,大学专科以上学历,身体健康者均可报名参加考试,考试科目有:综合基础知识、专业知识和“行政职业能力测验”三个部分,每科满分为100 分。

根据考试总分的高低排序选出16 人选择进入第二阶段的面试考核。

(二)面试考核:面试考核主要考核应聘人员的知识面、对问题的理解能力、应变能力、表达能力等综合素质。

按照一定的标准,面试专家组对每个应聘人员的各个方面都给出一个等级评分,从高到低分成A/B/C/D 四个等级,具体结果如表1所示。

现要求根据表1中的数据信息对16 名应聘人员作出综合评价,选出8 名作为录用的公务员。

折衷型模糊多属性决策方法
(1)折衷型模糊决策的基本原理
折衷型模糊决策的基本原理是:从原始的样本数据出发,先虚拟模糊正理想和模糊负理想,其中模糊正理想是由每一个指标中模糊指标值的极大值构成;模糊负理想是由每一个指标中模糊指标值的极小值构成。

然后采用加权欧氏距离的测度工具来计算各备选对象与模糊正理想和模糊负理想之间的距离。

在此基础上,再计算各备选对象属于模糊正理想的隶属度,其方案优选的原则是,隶属度越大,该方案越理想。

(2)折衷型模糊决策的基本步骤
Step1:指标数据的三角形模糊数表达
下面运用以上的定义将定性、定量指标以及权重数据统一量化为三角形模糊数.
1) 对于定性指标,可以将两极比例法改进为三角模糊数比例法。

再利用三角模糊数比例法将定性指标转化为定量指标,其具体的转化形式见表2。

表2 定性指标向定量指标转化的三角模糊数比例法
2) 对于精确的定量指标值,也写成三角模糊数的形式。

设a 是一个具体的精确数,由三角模糊数的定义,则a 表示成三角模糊数的形式为:
a = (a,a,a) (1)
当所有的属性指标全部化为三角模糊数后,设此时得到的模糊指标矩阵为
3)对于权重向量的三角模糊数表示
①若权重是定量的形式给出的,则由公式(1)可表示为
②若权重是定性描述给出的,此时可以利用表3 的转化方法将其转化为三角模糊数的表达形式.
Step2: 模糊指标矩阵F 归一化处理
Step3: 构造模糊决策矩阵
将归一化后的模糊指标矩阵R 进行加权处理可得到模糊决策矩阵
建模过程:
①借鉴表2 的思想,对于定性指标值A,B,C,D,可以定义表1 的量化标准,将这些定性指标进行量化,其具体的量化形式见表3。

表3 定性指标量化标准
②由表3 和公式(1)把表1中的指标信息、权重信息化成三角形模糊数,得到
⑤模糊优选决策
由公式(6)~(8),可求出相应的
表4 计算结果数据表
由以上结果可知,16 个人的综合水平的高低排序为:
因此被选种的8 个人员是人员1、4、2、9、8、5、7、12。

计算的MATLAB 程序如下:
%把表3 中的数据复制到纯文本文件mohu.txt 中,然后把A 替换成85 90 100,%B 替换成75 80 85,C 替换成60 70 75,D 替换成50 55 60
clc,clear
load mohu.txt
sj=[repmat(mohu(:,1),1,3),mohu(:,2:end)];
%首先进行归一化处理
n=size(sj,2)/3;m=size(sj,1);
w=[0.5*ones(1,3),0.125*ones(1,12)];
w=repmat(w,m,1);
y=[];
for i=1:n
tm=sj(:,3*i-2:3*i);
max_t=max(tm);
max_t=repmat(max_t,m,1);
max_t=max_t(:,3:-1:1);
yt=tm./max_t;yt(:,3)=min([yt(:,3)';ones(1,m)]);
y=[y,yt];
end
%下面求模糊决策矩阵
r=[];
for i=1:n
tm1=y(:,3*i-2:3*i);tm2=w(:,3*i-2:3*i);
r=[r,tm1.*tm2];
end
%求M+、M-和距离
mplus=max(r);mminus=min(r);
dplus=dist(mplus,r');dminus=dist(mminus,r');
%求隶属度
mu=dminus./(dplus+dminus);
[mu_sort,ind]=sort(mu,'descend')。

相关文档
最新文档