电厂烟气余热回收换热器比较
烟气换热器与普通换热器的区别是怎样?

烟气换热器与普通换热器的区别是怎样?
烟气换热器和普通换热器是两种不同的热交换设备,它们的主要区别在于其对
不同的介质进行换热。
在以下几个方面,我们可以更好地理解这两种设备的区别。
工作原理
普通换热器主要用于油、水、空气等介质之间的热量传递。
两个流体在换热器
内部通过红外热交换的方式排列在不同的管道中。
热量通过传导从一个流体到另一个,从而完成热能转换。
而烟气换热器主要是将废弃烟气中的热能转移到空气或水中,以降低排放温度。
应用领域
普通换热器主要应用于电站、化工、制药等行业中的热能再利用领域。
烟气换
热器则主要用于提高工艺烟气排放的余热回收效率。
例如在烟气中的焚烧工艺、炉冷工艺、石油化工中的热力回收等方面的应用。
设计结构
普通换热器通常由进出口、管堆、壳体、支撑器、管板、加热器和防震装置等
组成。
烟气换热器则由烟囱、底架、烟气道、烟气传热管和换热器筒体等部分组成。
由于流体介质和环境的不同,对于实际使用可以根据需要进行强化、波纹管、双管等修饰。
换热效率
烟气换热器的高效率主要得益于其换热传热层合理的结构设计和恰当的制冷方式。
与此同时,普通换热器则是通过优化中传递机制的过渡来实现更高的液体温度差和更高的热转换效率。
大多数情况下,烟气换热器比普通换热器更为高效。
综上所述,该文介绍了烟气换热器和普通换热器两者之间的主要区别。
在实际
应用中,我们应该仔细选择适合我们需求的换热器,并根据应用场景来优化结构设计来达到更高的效率和更好的效果。
氟塑料在火电厂低温烟气余热回收换热器上的应用详细分析

氟塑料在火电厂低温烟气余热回收换热器上的应用详细分析发电厂进行烟气余热回收利用是为了降低排烟温度,回收热量的一种方式,目前采用的金属管式换热器,其换热能力主要是高温段,对于还有很大一部分的低温段烟气余热无法回收,主要受到电厂低温烟气酸露点腐蚀的限制。
为进一步降低烟温,火电厂采用氟塑料烟气余热回收换热器,能够防止烟气酸露点以下腐蚀,并将烟气温度最低可降至75℃。
一般火电厂氟塑料烟气余热回收换热器的工作温度为180℃~75℃。
燃煤电厂排烟热损失约占锅炉热损失的60%~70%,排烟损失是火电厂各种锅炉、焦炉运行中最重要的一项损失,脱硫水耗是电厂水耗的重要部分,采用低温氟塑料换热器是一种降低排烟温度,有效利用烟气余热,减少湿法脱硫耗水量,提高全火电厂热效率的节能方式。
但排烟温度降的过低,则会导致低温换热器受热面的腐蚀。
目前国内低温烟气余热回收换热器制造材料大多选用抗酸露点腐蚀钢ND钢(09CrCuSb),虽可以减缓低温腐蚀,但不能根本解决低温腐蚀问题。
陕西瑞特热工为您详细分析:火电厂氟塑料烟气余热回收换热器的技术可行性火电厂氟塑料低温烟气余热回收换热器是以小直径氟塑料软管作为换热管束的换热器。
常用的氟塑料有PTFE/F4)、聚四氟代乙丙烯(PEP,F46)和PFA(可熔性聚四氟乙烯)。
其是一种可以在较高工作温度和压力条件下仍具有耐强腐蚀性的换热器。
由于氟塑料与金属材料在物化性质的差异,逐渐被节能领域所重视及应用。
通过不断完善,氟塑料换热器将得到越来越广泛的应用。
下表是氟塑料烟气余热回收换热器与金属烟气换热器的对比。
1.1火电厂氟塑料烟气余热回收换热器——氟塑料的物理化学特性氟塑料的分子结构特点决定了其良好的耐热性和耐寒性,其长期使用温度范围较宽,可达-80℃~260℃,在-50℃以下仍柔软,在250℃高温条件下经240h老化后,其力学性能基本不变。
氟塑料属化学惰性材料,除高温下的元素氟、熔融态碱金属、三氟化氯、六氟化铀、全氟煤油外,几乎可以在所有的介质中工作。
烟气余热回收的体验与总结

烟气余热回收的体验与总结烟气余热回收是一种利用工业生产过程中产生的烟气中的热能进行能量回收的技术。
这种技术可以有效地提高能源利用效率,降低企业的能源消耗,减少对环境的污染。
在实际应用中,我有幸亲身体验了烟气余热回收技术,下面我将结合我的体验和总结来谈谈对这项技术的认识。
烟气余热回收技术的应用范围非常广泛。
无论是电力、化工、冶金、石油、钢铁等行业,都可以通过烟气余热回收来提高能源利用效率。
我所了解的一个案例是一个钢铁企业,他们通过回收炉烟气中的余热,将其转化为蒸汽,用于发电和供热,从而实现了能源的循环利用,大大降低了能源成本,提高了企业的竞争力。
烟气余热回收技术的效益非常显著。
通过回收烟气中的余热,企业不仅可以大幅度降低能源消耗,还可以减少二氧化碳等温室气体的排放,对环境保护起到了积极的作用。
据统计,一个钢铁企业通过烟气余热回收技术每年可以节约数百万吨标准煤,减少几十万吨二氧化碳排放。
这样的效益不仅可以为企业带来经济效益,还可以为社会和环境做出贡献。
烟气余热回收技术的应用过程相对简单。
一般来说,烟气余热回收系统由余热锅炉、余热换热器、余热管道等组成。
烟气经过余热换热器后,释放出的热能可以用于加热水或蒸汽的产生,然后再用于生产和供应。
在实际应用中,只需要对这些设备进行合理的布局和管道连接,加上一些控制系统的设置,就可以实现烟气余热的高效回收。
然而,烟气余热回收技术也存在一些挑战和问题。
首先,由于不同行业和企业的生产工艺和烟气特点不同,烟气余热回收系统的设计和改造需要根据实际情况进行定制化。
这对于技术人员的专业能力和经验要求较高。
其次,烟气余热回收系统的运行和维护需要一定的技术支持和人力投入。
如果没有专业的技术人员进行维护和管理,可能会导致系统不稳定,甚至出现故障。
烟气余热回收技术是一项非常有前景和潜力的能源节约技术。
通过回收烟气中的余热,可以提高能源利用效率,减少能源消耗,降低企业的生产成本。
同时,烟气余热回收也是一项环保的技术,可以减少温室气体的排放,保护环境。
余热回收的方法

余热回收的方法余热回收是指将工业生产、能源消耗等过程中产生的废热进行收集和利用的技术手段。
通过余热回收,可以实现能源的有效利用,减少能源浪费,降低环境污染,提高能源利用效率。
下面将介绍几种常见的余热回收的方法。
1. 烟气余热回收烟气余热回收是指将工业生产过程中产生的高温烟气中的余热进行回收利用的方法。
常见的烟气余热回收技术包括烟气换热器和烟气蒸发器。
烟气换热器通过烟气与工艺流体之间的换热,将烟气中的余热传递给工艺流体,实现能量的转移。
烟气蒸发器则通过将烟气中的水分蒸发,将烟气中的余热转化为水蒸气的热量,进而用于其他工艺过程。
2. 冷凝余热回收冷凝余热回收是指将工业生产过程中产生的冷凝热量进行回收利用的方法。
常见的冷凝余热回收技术包括冷凝器和热泵。
冷凝器通过将冷凝热量传递给其他工艺流体,实现能量的转移。
热泵则通过利用工艺流体中的低温热量,将其升温并用于其他工艺过程,实现能量的回收和再利用。
3. 液体余热回收液体余热回收是指将工业生产过程中产生的废液中的余热进行回收利用的方法。
常见的液体余热回收技术包括热交换器和蒸发器。
热交换器通过将废液中的余热传递给其他工艺流体,实现能量的转移。
蒸发器则通过将废液中的水分蒸发,将废液中的余热转化为水蒸气的热量,进而用于其他工艺过程。
4. 高温烟气余热回收高温烟气余热回收是指将工业生产过程中产生的高温烟气中的余热进行回收利用的方法。
常见的高温烟气余热回收技术包括烟气换热器和烟气蒸发器。
烟气换热器通过烟气与工艺流体之间的换热,将烟气中的余热传递给工艺流体,实现能量的转移。
烟气蒸发器则通过将烟气中的水分蒸发,将烟气中的余热转化为水蒸气的热量,进而用于其他工艺过程。
5. 低温烟气余热回收低温烟气余热回收是指将工业生产过程中产生的低温烟气中的余热进行回收利用的方法。
常见的低温烟气余热回收技术包括烟气换热器和烟气蒸发器。
烟气换热器通过烟气与工艺流体之间的换热,将烟气中的余热传递给工艺流体,实现能量的转移。
电厂余热资源的有效利用

电厂余热资源的有效利用摘要:燃气发电机组包括燃气轮机、余热锅炉、汽轮机等,用以产生高温高压蒸汽的热锅炉驱动汽轮机发电。
然而,在能量的级联利用方面,余热的进一步利用还有很大的空间。
如汽轮机排汽余热的综合利用和锅炉烟气余热的回收利用。
关键词:发电厂;燃气锅炉;热能利用率导言随着能源供应的日益紧张,节能降耗、提高能源利用率越来越受到人们的重视。
只有约30%~35%的燃气热能转化为电能,约30%与废气一起排放,35%~40%通过发动机本体消散,由冷却水循环带走。
由于发电机组产生的废气所产生的热量几乎等于发电机组的有用功,因此可以利用燃气燃烧后排出的废气所产生的热量,废热利用装置可转为废热利用。
1电站锅炉余热资源气利用情况1.1减少热损失火电厂锅炉热损失是指由于热转换引起的不可逆的能量形式问题。
烟囱热是降低热损失的有效途径。
电站锅炉的实施应根据实际需要提供质、量的能源供应,减少不可逆转换造成的能量损失,保证电站锅炉运行的质量要求。
产生热能转换的原因是:锅炉在有效出力状态下产生的热能损失。
排热损失占热损失的比例最大,占15%;化学完全燃烧损失,占热损失的5%;机械不完全燃烧损失,占热损失的3%;散热损失最小,约占1%。
烟气余热减少了热损失,实现了能量循环,提高了电站锅炉的经济效益。
1.2能源系统应用烟气总能量系统取决于烟气余热容量、能量比、科学比以及动能、热能和势能的转换。
从热、经济、环保综合考虑,提高锅炉设备的能源利用率,实现能源循环利用,最大限度地发挥能源价值,减少能源的过度浪费。
避免废气排放,缓解“烟雾”的生态问题。
烟气余热的开发利用,采用科学的能量回收预测方法。
选用具有废气净化处理功能的设备,提高资源化利用效率。
2电厂余热资源余热利用技术2.1锅炉烟气余热回收利用然气烃含量较高,燃烧时会产生大量的水蒸气。
水蒸气中含有大量的气化潜热。
这部分热量可达到天然气低热值的10%~11%,目前难以充分利用。
一方面,由于天然气中含有硫,燃烧后会产生微量的硫化物,为防止锅炉终冷系统等设备腐蚀产生的烟气中硫化物沉淀。
火力发电厂余热利用技术及其在节能减排中的应用

火力发电厂余热利用技术及其在节能减排中的应用摘要:火力发电厂余热利用技术是一种重要的节能减排手段。
本文首先介绍了火力发电厂余热利用技术的分类和原理,包括低温、中温和高温余热回收技术,以及余热发电、制冷、供暖和干燥技术。
然后分析了余热利用技术在火力发电厂中的应用现状,并评估了其节能减排效果。
最后,介绍了节能减排效果评价方法与指标,为火力发电厂余热利用技术的进一步推广和应用提供了参考。
关键词:火力发电厂;余热利用技术;节能减排引言:随着能源需求的不断增长和环境保护意识的提高,火力发电厂余热利用技术成为了节能减排的重要手段。
通过对火力发电过程中产生的余热进行回收和利用,不仅可以提高能源利用效率,减少能源消耗,还可以减少二氧化碳等温室气体的排放。
因此,研究火力发电厂余热利用技术及其在节能减排中的应用具有重要的理论和实践意义。
一、火力发电厂余热利用技术简介火力发电厂余热利用技术是指将火力发电过程中产生的废热进行回收和利用的技术。
火力发电厂在燃烧燃料时会产生大量的余热,如果不加以利用,将会造成能源的浪费和环境的污染。
因此,火力发电厂余热利用技术的研究和应用对于节能减排具有重要的意义。
火力发电厂余热利用技术可以分为余热回收技术和余热利用技术两大类。
余热回收技术主要是通过换热器等设备将余热回收,以提高能源利用效率。
而余热利用技术则是将回收的余热用于发电、制冷、供暖、干燥等领域,实现能源的综合利用。
火力发电厂余热利用技术的应用可以有效提高能源利用效率,减少能源消耗。
同时,通过余热利用,还可以减少二氧化碳等温室气体的排放,降低对环境的影响。
因此,火力发电厂余热利用技术在实现可持续发展和节能减排目标方面具有重要的作用。
然而,火力发电厂余热利用技术在实际应用中还面临着一些技术难题和经济问题,如余热回收设备的成本高、技术复杂等。
因此,需要进一步加强研究和开发,完善相关政策和标准,推动火力发电厂余热利用技术的进一步应用和推广,为实现可持续发展做出贡献。
烟气余热回收技术方案
烟气余热回收技术方案1.引言:随着工业化的发展,许多工业过程会产生大量的烟气余热。
如果这些余热不加以利用,不仅对环境造成负面影响,还会浪费能源资源。
因此,烟气余热回收技术的研发和应用变得至关重要。
本文将探讨一些常见的烟气余热回收技术方案。
2.烟气余热回收技术方案:2.1烟气热交换器烟气热交换器是一种常见的烟气余热回收技术方案。
烟气热交换器的原理是通过传导、对流、辐射等方式,将烟气中的热量传递给工作介质(如水或空气),从而提高工作介质的温度。
具体来说,烟气经过烟气热交换器后,冷却,而介质则被加热,可以用于供暖、工业热水等。
2.2高温烟气直接回收在一些高温烟气的情况下,可以直接回收其中的热能。
例如,高温烟气可以用于直接发电或驱动蒸汽涡轮机,从而产生电力或机械功。
这种烟气直接回收技术方案不仅能够有效回收热能,还能够实现能源的多次利用。
2.3烟气余热利用系统烟气余热利用系统是一种集成化的烟气余热回收技术方案。
该系统由多个组件组成,包括烟气余热锅炉、热交换器、余热净化装置等。
其工作原理是将从工业烟气中回收的余热传递给工作介质,并进一步利用该余热进行供热、发电等用途。
2.4烟气余热发电系统烟气余热发电系统是一种通过回收烟气中的热能来发电的技术方案。
该系统在烟气热交换器中通过热能传递的方式将烟气中的热量传递给工作介质,使其达到足够高的温度和压力,从而驱动蒸汽涡轮机产生电力。
3.烟气余热回收技术方案的应用和优势:3.1工业领域应用3.2环境保护优势3.3节能效益4.结论烟气余热回收技术方案在工业生产和环境保护中具有重要的意义。
通过采用适当的技术方案,可以有效回收烟气中的热能,提高能源利用效率,降低能源消耗和环境污染。
值得注意的是,不同的行业和工艺过程可能需要采用不同的烟气余热回收技术方案,因此在具体应用中需要根据实际情况进行选择和调整。
烟气余热回收换热器参数
烟气余热回收换热器参数
烟气余热回收换热器(气-水)是燃煤、油、气锅炉的专用设备,安装在锅
炉烟口,回收烟气余热加热生活用水或锅炉补水。
工作时,烟气流经热管余热回器烟道冲刷热管下端,热管吸热后将热量导至上端,热管上端放热将水加热。
为了防止堵灰和腐蚀,余热回收器出口烟气温度一般控制在露点以上,即燃油、燃煤锅炉排烟温度≮130℃,燃气锅炉排烟温度≮100℃,节约燃料
4-18%。
此外,还有余热回收器(气-气)的换热器,这种换热器是燃油、煤、气锅
炉的专用设备,安装在锅炉烟口或烟道中,将烟气余热回收后加热空气,热风可用作锅炉助燃和干燥物料。
其构造为四周管箱,中间隔板将两侧通道隔开,热管为全翅片管,单根热管可更换。
工作时,高温烟气从左侧通道向上流动冲刷热管,此时热管吸热,烟气放热温度下降。
热管将吸收的热量导致右端,冷空气从右侧通道向下逆向冲刷热管,此时热管放热,空气吸热温度升高。
以上信息仅供参考,建议咨询专业人士获取准确信息。
火力发电厂烟气低温余热利用技术
火力发电厂烟气低温余热利用技术火力发电厂烟气低温余热利用技术1. 简介火力发电厂是一种利用燃煤、燃油或天然气等化石燃料燃烧产生高温烟气,通过锅炉转化为蒸汽,最终驱动汽轮发电机发电的设备。
在这个过程中,发电厂往往会产生大量的废热,其中包括烟气中的低温余热。
如何有效利用这些低温余热成为了一项重要的技术挑战和发展方向。
2. 烟气低温余热的特点和现状烟气低温余热一般指的是温度在150℃以下的废热,由于温度较低,传统的蒸汽循环发电技术无法高效利用。
在很长时间内,烟气低温余热往往被直接排放或仅仅用于供热等低效能领域,导致能源的浪费和环境的污染。
3. 烟气低温余热利用技术的发展随着能源需求的增长和环境保护的要求,烟气低温余热利用技术得到了广泛关注和研发。
目前,有以下几种常见的烟气低温余热利用技术:3.1 烟气余热锅炉烟气余热锅炉是将烟气中的低温余热通过锅炉进行回收,产生高温高压蒸汽用于发电或供热。
利用烟气余热锅炉可以将废热转化为有用热能的同时减少对燃料的需求,实现能源和环保的双重效益。
3.2 烟气余热汽轮发电烟气余热汽轮发电是利用烟气中的低温余热直接驱动汽轮机发电。
相比于烟气余热锅炉,这种技术更加高效,能够直接将低温余热转化为动力能源,提高能源利用效率。
3.3 烟气废热换热器烟气废热换热器是在烟气管道中设置换热器,通过与其他介质的热交换,将烟气中的余热传递给其他工艺流体,如空气、水等。
这种技术可以将烟气中的低温余热有效利用,并用于加热或提供热水、热风等需求。
4. 烟气低温余热利用技术的优势和应用烟气低温余热利用技术具有以下几个优点:4.1 节能减排:有效利用废热可以减少对化石燃料的需求,降低能源消耗,减少二氧化碳等温室气体的排放。
4.2 综合利用:烟气低温余热可用于发电、供热、工业生产等多个领域,实现能源的综合利用和优化配置。
4.3 环境友好:废热的充分利用有助于减少大气污染物的排放,改善环境质量。
烟气低温余热利用技术的应用非常广泛,包括钢铁、化工、建材、石油等行业,以及供热和发电领域。
烟气余热回收技术方案
烟气余热回收技术方案一、引言工业生产过程中产生的烟气中含有大量的余热能量,如果能够将这部分余热回收并有效利用,不仅可以提高能源利用率,减少能源消耗,还可以减少对环境的污染。
因此,烟气余热回收技术的开发和应用对于企业的可持续发展具有重要意义。
二、烟气余热回收技术的原理烟气余热回收技术主要包括两个方面的内容:烟气的热量回收和余热的利用。
烟气的热量回收主要是通过烟气净化设备对烟气中的热量进行回收,常见的技术有烟气换热器、烟气脱硫设备等。
余热的利用则需要通过适当的设备将余热转化为可用能源,常见的方式有蒸汽循环、制冷循环等。
三、烟气换热器的设计和应用烟气换热器是烟气余热回收的核心设备,其主要功能是通过换热器将烟气中的热量传递给工艺流体,从而实现能量的转化。
烟气换热器的设计应考虑以下几个因素:1.换热器的材料选择:应根据烟气中存在的腐蚀物质和工艺流体的特性选择合适的材料,常见的材料有不锈钢、碳钢等。
2.换热器的热交换效率:应通过优化换热器的结构和流体的流动方式,提高热交换效率。
可以采用流体的迂回流动、增加流体的速度等方式提高换热效率。
3.换热器的清洁方式:由于烟气中含有灰尘和颗粒物等杂质,容易在换热器的表面形成污垢,影响换热效果。
因此,应考虑对换热器进行清洗和维护。
四、余热利用技术方案1.蒸汽循环技术:将回收的余热用于蒸汽发生器中,产生蒸汽用于工艺或供暖等用途。
蒸汽循环技术的优点是热效率高,适用于大量余热的回收利用。
2.制冷循环技术:将回收的余热用于制冷设备中,通过制冷设备产生低温热能,可用于制冷或其他低温工艺需求。
制冷循环技术的优点是适用于低温余热的回收利用。
3.热泵技术:热泵是一种将低温热能转化为高温热能的装置,通过热泵技术可以将回收的低温余热升温并利用于工艺流程。
热泵技术的优点是能够实现高效率的能量转化,适用于低温余热的回收利用。
五、烟气余热回收技术应用案例1.钢铁行业:钢铁生产中烟气中含有大量高温余热,可以通过烟气换热器将余热回收并用于烧结热风炉、蒸汽发生器等设备,提高能源利用率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能源与动力工程专业导论期末小论文换热器电厂烟气余热回收换热器比较摘要:介绍了目前运用在电厂锅炉烟气余热回收的主要换热器类型,并对各个换热器的优劣进行分析比较,探讨了目前制约换热器行业发展面临的主要问题,对我国换热器未来发展进行了展望。
关键词:换热器电厂烟气余热回收烟气节能1.前言当前节能已经成为能源行业的一个共同话题,而余热资源的回收和利用亦是节能的重点话题。
而作为耗能大户的发电企业,更是有大量的余热无法得到有效回收和利用,被白白浪费。
其中,烟气热损失是各项热损失中最大的一项,一般在5%~8%之间,占锅炉总热损失的80%或更高。
因此急需寻找一条科学的烟气回收途径,使烟气中的余热得到高效的回收利用,降低能耗,同时对于我国实现节能减排、环保发展战略也具有着重要的现实意义。
而在余热回收中不可或缺的装置便是换热器,所以,一直以来余热回收利用换热器的强化传热技术就备受世界各国的关注,使得新型高效节能的换热器层出不穷。
自20世纪60年代起国外便开始实验与研究热管换热器技术,在80年代开始了方形板片板壳式换热器的使用,而我国自1985年起,开始引进国外的“烟气深度冷却余热利用”技术,引发了国内烟气回收余热利用换热器的研究。
进入21世纪后,针对行业中的关键技术,国内制造商加大了研究力度和投入,并且随着国内材料技术、外扩展受热面技术及火电行业整体技术水平的提高,我国烟气余热利用换热器制造开始进入技术创新和突破的新时期。
制造和运用更加先进的换热器,更加高效地回收余热,减少能耗,合理高效地利用有限的资源,已成为一个重要的课题。
2.换热器的介绍与工作原理换热器在电厂烟气余热回收中的利用十分普遍,目前国内外的余热回收装置主要有:板式换热器、GGH换热器、热管换热器、热媒体换热器、低压省煤器等,介绍及工作原理如下:2.1 板式换热器板式交换器,在表面上具有一定的波纹,并且由许多金属片叠装而组成的一种换热器,这一种换热十分新型亦十分高效。
这一种换热器的每个金属板片间都有薄矩形通道,通过板片进行热量交换,我们可以通过结构来区分板式换热器,在电厂中使用的换热器主要分为两类①可拆卸板式换热器②焊接板式换热器,而第二种即焊接板式换热器中,在现在应用更加广泛的是全焊式板式换热器的换热板片,它以不锈钢为原材料,再通过特有的模具进行加工,压制而做成。
板式换热器主要由换热芯体和外壳组成,换热芯体由板片组焊而成, 采用周边组焊的板束形式,取消了密封垫片,故耐热、板片系模块化结构,可根据不同的工艺要求改变流程形式和流道面积的大小。
用同一模块压制板片,根据需要其长度可为216~12 000 mm,这种换热器在国外供热工程中应用较广泛。
其表面的光滑也使得其具有不易结垢的优点。
板式换热器还消除了管壳式换热器和可拆卸板式换热器存在的死区现象。
由于全焊式板式换热器的特有性能,特别适用于在城市热电联产供热工程一级站中作为高峰换热器使用,它也将成为管壳式换热器的替代产品。
2.2 GGH换热器GGH又叫烟气再热器,是烟气脱硫系统中的主要装置之一。
它的功能在于使排出的烟温度加热上升,达到露点温度以上,而过程便是将喷水后原烟气中脱硫后的净烟气重新加热到符合环保法规要求的排放温度(通常不低于75~80 ℃) ,从而做到污染物在排出后能够在大范围内扩散,而不是在电厂周围集中沉降。
烟气露点腐蚀是因为硫元素掺杂在燃料中,当燃料燃烧时会生成SO2,SO3,一旦换热面的外表面温度低于烟气露点温度时,在换热面上经过的SO2或SO3就会形成硫酸雾露珠,导致换热面腐蚀,而GGH就在这个过程中担任重要的角色,可以减轻对进烟道和烟囱的腐蚀、提高污染物的扩散度、降低进入吸收塔的烟气温度、降低塔内对防腐的工艺技术要求。
2.3. 热管换热器热管式换热器在结构上可分为整体式热管换热器和分离式热管换热器两种。
整体式热管换热器的等温性相对分离式热管换热器较突出,所以可回收热风炉烟道废气的低温余热,另一方面可预热助燃空气和煤气便是利用了其容易密封,结构简单的优点。
但是,在助燃空气和煤气方面,整体式热管换热器也存在不足,由于大直径的助燃空气管道和煤气管道往返较多,若安装上整体式热管换热器,便增大了投资,并且管道容易破裂。
分离式热管换热器的工作原理,与整体式热管换热器的区别在于分离式热管的受热端和冷凝端置于不同的换热器内,分离式热管换热器利用了液化与汽化的原理,用两条管道在连接分离的受热端和冷凝端,一个为蒸汽连接管,另一个则为液体连接管。
由于放在热端的热媒体被高温的废气所加热,所以变成蒸汽,加热后的蒸汽经过蒸汽连接管送到冷凝端。
带着从加热端加热的蒸汽在经过冷凝端时,便被煤气或助燃空气冷却,变成液体,液体在通过液体管道流通到加热端受热,而做到蒸汽-液体间的顺畅转换则是依靠分离式管道内两端的高低差实现,在整个过程中实现热量的连续传递。
但在高温端的加热蒸汽在冷凝端不一定可以做到100%的冷凝,因此会产生不凝性气体,热管换热器则加装了不凝性气体分离装置,产生的不凝性气体可随时排放。
热管换热器可分为:气—气、气-汽、气—液、液—液、液—气式换热。
2.4. 热媒体换热器热媒体利用了矿物有机油,这种矿物有机油化学性质稳定、流动性、亲热性良好、具有高沸点、高闪点的,因而油价格十分昂贵。
其价格昂贵的原因更在于系统能够长期有效地回收热量热媒。
为了避免此类有机油在交换过程中受损,所以利用热媒体换热的电厂对设备的安装要求极高,因为密封性十分重要。
换热器的工作原理是:热风炉道中的高温废气加热着从烟气换热器中的热媒体,被冷却后的热风炉烟道废气再通过烟囱排入大气,加热后的热媒体则在钢管内将从废气带来的热量供于助燃空气换热器和煤气换热器,将热量传递给助燃空气和煤气,加热后的助燃空气和煤气送入热风炉内燃烧,在助燃空气和煤气燃烧后,其便冷却,冷却后的热媒体经过循环泵再次送入烟气换热器内加热,就这样进行反复循环。
2.5. 低压省煤器锅炉低压省煤器又叫低压省煤器低压省煤器,是利用锅炉排烟余热,节约能源的有效措施之一。
低压省煤器的名字由来使因为其利用了低压凝结水而不是高压给水,而且水侧的压力比较低,其结构上与普通的省煤器相似,但一般在引风机之后;二是连接于汽水系统中,在回热系统中串并联。
低压省煤器的水侧联接于汽轮机回热系统的低压加热部分。
煤耗的节省则是它通过回热系统排挤抽汽实现的。
低压省煤器安装之后,汽轮机在工作时不仅可以得到一份外来的热量,而且节省了一部分抽汽,从而减少了浪费,提高了效率,使汽轮机在工作时更加环保。
3.主要换热器的优劣比较3.1 焊接板式换热器优势:(1)全焊式板式换热器的换热板片,是用特殊的不锈钢,以特制的模具压制而成,表面光滑不易结垢,便于清洗。
(2)全焊接板式换热器波纹状的设计使流体在较低的流速下也能产生湍流,提高了传热效率。
(3)全焊接板式换热器的整个板片束并没有采用任何非金属材料,而是全部采用本体材料由氩弧焊焊接而成,因而有较高的耐温、耐压性能。
在工作温度300℃,压力3.0Mpa的极端工况条件也十分适用。
(4)全焊接板式换热器结构设计紧凑,传热性能高效,使用方便灵活,因而具有完全取代传统管壳式换热器的优越性能。
(5)便于改变换热面积或流程组合,适用于多重介质换热。
劣势:(1)不适用于易堵塞介质。
(2)密封性较差,易泄露。
需要更换垫圈,比较麻烦。
(3)使用温度受垫圈材料耐温性能的限制。
(4)使用压力受一定限制。
(5)流道小,不适用于气--气换热或蒸汽冷凝。
3.2 GGH换热器优势:(1)利用进入脱硫吸收塔的高温原烟气加热从脱硫吸收塔出来的温度较低的净烟气,既回收了高温原烟气的一部分热能,又提高了净烟气的温度,减少了对烟囱的腐蚀。
(2)其中,水热媒式换热器原烟气侧和净烟气侧的分离设计,避免造成二次污染;采用中间辅助蒸汽加热器,有利于保证运行设备参数的稳定。
劣势:(1)GHH换热器占地面积大,初次投资很高,费用约占脱硫系统总投资的15%(2)安装GGH引起烟道压降,造成约1200Pa左右的压损,必须增加增压风机和引风机的压头来克服这些阻力,因而大大增加了运行电耗。
(3)原烟气在GGH中释放热量后温度会降低到80℃,低于酸露点,导致 GGH 的热侧( 即原烟气侧) 产生大量粘稠的浓酸液,不仅对GGH 的换热元件和壳体造成腐蚀,而且会粘附大量烟气中的飞灰,造成严重积灰,会降低换热效率,并且进一步增加 GGH 的压降。
(4)GGH在运行过程中产生的积灰和酸沉淀物需要用压缩空气、蒸汽和高压水进行冲洗,而冲洗后的废水有很强的腐蚀性,必须作专门处理后才能排放,因此增加了设备投资。
(5)其中回转式GGH的原烟气侧向净烟气侧的泄露会降低系统的脱硫效率,易造成二次污染,而且更容易堵灰。
3.3 热管换热器优势:(1)在运行过程中单根热管由于磨损、腐蚀、超温等原因发生破坏时基本不影响换热器整体运行。
因而将热管换热器应用于易然、易爆、腐蚀性强的流体换热场合非常可靠。
(2)热管换热器的冷、热流体完全分开流动,易实现冷、热流体的逆流换热。
冷热流体均在管外流动,由于管外流动的换热系数远高于管内流动的换热系数,用于品位较低的热能回收场合非常经济。
(3)流体含尘量较高时,热管换热器可以通过改变结构、扩展受热面等形式解决换热器的磨损和堵灰问题。
(4)热管换热器在回收具有腐蚀性的烟气余热时,通过调整蒸发段、冷凝段的传热面积来调整热管管壁温度,可以使热管尽可能避开最大的腐蚀区域。
劣势:(1)管道往返较多,增加了投资,工作温度受热媒体的限制,且管道容易破裂。
(2)抗氧化、耐高温性能较差。
3.4 热煤式换热器优势:(1)热效率高,气密性好,可以通过调节热媒体的流量来调节预热助燃空气和预热煤气之间的热量。
(2)热媒不外泄,可以安全地预热,回收更多热量。
(3)预热助燃空气和煤气的热交换器可分开设置,比较灵活,适应于热风炉区场地狭窄的技术改造。
(4)受热侧、放热侧分离设置,可同时预热空气和煤气,避免因漏气造成预热煤气不安全的问题。
(5)热媒换热器的体积小而轻,便于安装和更换,维护简便。
(6)热媒体采用导热油,在较高温度下也具有热稳定性,可长期连续使用。
劣势:(1)要注意密封件的质量,防止热媒的泄漏。
(2)为了安全,热媒贮存罐必须与热风炉保持一定的距离。
(3)翅片和翅片管间距小,阻力大,清灰困难,因而对加压循环泵的要求比较高。
3.5 低压省煤器优势:(1)低压省煤器的用镍络渗层零隙阻钎焊螺旋鳍片管作传热元件,接触热阻几乎为零,具有抗腐蚀,耐磨损及防堵灰等综合性能,即便烟气流阻限制较严格,也可将烟气流阻控制在允许范围内。
(2)直接降低了排烟温度,因而节省煤炭用量,同时减少了脱硫系统所需的工艺用水,进一步保证了除尘效率和脱硫效率。