高层建筑结构设计
高层建筑结构设计规范要求详解

高层建筑结构设计规范要求详解高层建筑结构设计是一项复杂而关键的任务,涉及到建筑的安全性、可靠性和经济性等方面。
为了保证高层建筑在设计、建造和使用过程中的安全和可持续性,各国纷纷制定了相应的规范要求。
本文将详解高层建筑结构设计规范要求,从抗震设计、荷载设计以及结构材料等方面进行论述。
一、抗震设计高层建筑面临的最大威胁之一是地震。
因此,抗震设计成为高层建筑结构设计中至关重要的一个方面。
抗震设计规范要求建筑结构能够在地震发生时保持稳定。
这包括考虑建筑的承重墙、框架结构以及剪力墙等。
设计师需要根据规范要求,选取适当的抗震设计参数,如设计地震加速度、设计顶点加速度、抗震设防烈度等,并进行合理的结构配置和强度设计。
二、荷载设计高层建筑所受到的荷载来自多个方面,如常规荷载、风荷载、地震荷载等。
荷载设计规范要求设计师在结构设计过程中考虑各种荷载的作用,并进行相应的计算和分析。
常规荷载包括自重、活载和寒假荷载等,设计师需要根据建筑的功能和使用要求来确定相关参数。
风荷载是一种重要的非常规荷载,规范要求对风荷载进行综合考虑,包括风压、风速、风向等因素。
地震荷载是另一个需要重视的因素,设计师需要根据地震烈度、场地类型和结构体系等要素进行计算和分析。
三、结构材料高层建筑的结构材料选择直接关系到建筑的安全和可靠性。
设计规范要求结构材料具有足够的强度和刚度,以应对各种荷载的作用。
一般来说,高层建筑的主要结构材料包括钢筋混凝土、钢结构和预应力混凝土等。
设计师需要根据规范要求选择适当的结构材料,并进行相应的材料性能检测和试验。
此外,设计师还需要考虑结构材料的耐久性和防火性能等方面,以确保建筑的使用寿命和安全性。
总结:高层建筑结构设计规范要求涵盖了抗震设计、荷载设计以及结构材料等方面。
设计师在进行高层建筑结构设计时,需要遵守相应规范要求,合理选择设计参数和结构材料,以保证建筑的安全和可靠性。
同时,设计师还要根据具体项目的情况进行综合考虑和分析,确保设计方案的合理性和经济性。
高层建筑结构设计(第三版) (豆瓣)

高层建筑结构设计(第三版) (豆瓣)高层建筑结构设计(第三版) (豆瓣)1. 引言1.1. 项目背景1.2. 设计目标1.3. 设计范围2. 建筑特点分析2.1. 地理、气候条件2.2. 地表状况2.3. 建筑用途和功能2.4. 建筑高度和规模3. 结构形式选择3.1. 结构类型比较3.2. 结构形式选择原则3.3. 结构系统分析4. 荷载计算4.1. 人工荷载4.2. 自重荷载4.3. 外载荷载(风荷载、地震荷载) 4.4. 动力荷载4.5. 季节性影响5. 材料和构件选用5.1. 钢材选型5.2. 混凝土强度等级5.3. 基础材料选用6. 结构分析与设计6.1. 结构计算模型建立6.2. 静力分析6.3. 动力分析6.4. 结构设计参数确定6.5. 结构设计计算7. 基础设计7.1. 基础类型选择7.2. 基础计算及尺寸确定7.3. 地下室结构设计8. 连接与节点设计8.1. 框架连接设计8.2. 钢-混凝土连接设计8.3. 梁柱节点设计9. 结构施工及监理9.1. 结构施工工序9.2. 施工工艺方案9.3. 结构监理要点10. 安全与防护10.1. 结构抗震安全性评定 10.2. 结构防火设计10.3. 结构抗风设计本文档涉及附件:附件1:结构形式选择表附件2:地震分析结果附件3:结构设计计算表本文所涉及的法律名词及注释:1. 基础设计:根据《建筑设计规范》第3部分的规定,进行基础尺寸、承载力、稳定性等方面的设计。
2. 结构施工工序:指按照建筑工程施工组织设计要求进行施工的工序及顺序。
高层建筑结构设计(第三版) (豆瓣)1. 简介1.1. 项目背景与目标1.2. 设计范围1.3. 文档编写目的2. 建筑特点与环境分析2.1. 地理位置与气候条件2.2. 地表状况调查2.3. 建筑用途与功能要求2.4. 建筑高度与规模3. 结构形式选择3.1. 结构类型比较分析3.2. 结构形式选择原则3.3. 结构系统分析4. 荷载计算4.1. 人工荷载4.2. 自重荷载4.3. 外部荷载(风荷载、地震荷载) 4.4. 动力荷载4.5. 季节性影响5. 材料与构件选用5.1. 钢材选型与规格5.2. 混凝土强度等级与配合比5.3. 基础材料选用6. 结构分析与设计6.1. 结构计算模型建立6.2. 静力分析6.3. 动力分析6.5. 结构设计计算与验算7. 基础设计7.1. 基础类型选择7.2. 基础计算与尺寸确定7.3. 地下室结构设计8. 连接与节点设计8.1. 框架连接设计8.2. 钢-混凝土连接设计8.3. 梁柱节点设计9. 结构施工与监理9.1. 结构施工方案9.2. 施工工序与要点9.3. 结构监理与要求10. 安全保护与防护10.1. 结构抗震安全性评定 10.2. 结构防火设计本文档涉及附件:附件1:结构形式选择模板表附件2:地震分析结果表附件3:结构设计计算表格本文所涉及的法律名词及注释:1. 基础设计:按照《建筑设计规范》第3部分的规定,进行基础尺寸、承载力、稳定性等方面的设计。
高层建筑结构设计复杂高层建筑结构设计

02
高层建筑结构设计的基本 要素
基础设计
01
02
03
地质勘察
对建筑所在地的地质条件 进行详细的勘察,为结构 设计提供基础数据。
基础类型选择
根据地质勘察结果,选择 合适的基础类型,如桩基 、独立基础等。
基础承载力设计
根据建筑荷载和使用要求 ,设计基础能够承受的承 载力。
主体结构设计
结构体系选择
根据建筑高度、功能和抗 震要求,选择合适的结构 体系,如框架结构、剪力 墙结构等。
结构施工工艺与质量控制
总结词
结构施工工艺与质量控制是高层建筑结构设计的关键 环节。合理的施工工艺和严格的质量控制能够保证结 构的稳定性和安全性,延长建筑的使用寿命。
详细描述
在高层建筑结构设计中,应充分考虑施工工艺的可行 性和质量控制的可靠性。首先,应制定详细的施工方 案,包括施工流程、施工方法、施工时间等方面的规 划。其次,应采用先进的施工技术和设备,提高施工 质量和效率。此外,还应建立严格的质量控制系统, 对施工过程中的关键环节进行监督和检测,确保施工 质量符合规范要求。同时,对于施工过程中的安全隐 患应及时处理和纠正,确保施工过程的安全性。
绿色水资源
采用雨水收集和利用系统,减少用水量。
绿色能源
利用太阳能、风能等可再生能源,降低能源 消耗和碳排放。
绿色建筑外观
设计美观、实用、与周围环境相融合的建筑 外观。
数字化设计与优化
数字化建模
利用计算机辅助设计软件进行 建筑结构建模,提高设计效率
和准确性。
数字化仿真
通过数值模拟技术对建筑结构进行 性能分析和优化,降低成本和风险 。
建筑高度
结构体系
风阻设计
高层建筑结构设计课程简介

高层建筑结构设计课程简介关键信息1、课程名称:高层建筑结构设计2、课程性质:专业核心课程3、学分:具体学分4、学时:具体学时5、授课方式:理论讲授与实践操作相结合6、考核方式:考试/考查(具体方式)7、先修课程:列举相关先修课程8、适用专业:具体专业11 课程概述高层建筑结构设计是一门涉及土木工程专业的重要课程,旨在培养学生掌握高层建筑结构的设计理论、方法和技能。
通过本课程的学习,学生将能够具备独立进行高层建筑结构设计的能力,并为今后从事相关工程实践和研究工作奠定坚实的基础。
111 课程目标1、使学生掌握高层建筑结构的基本概念、受力特点和设计原则。
2、让学生熟悉常见的高层建筑结构体系,如框架结构、剪力墙结构、框架剪力墙结构等。
3、培养学生运用相关设计规范和标准进行结构分析和设计的能力。
4、提高学生解决实际工程问题的思维能力和创新能力。
112 课程内容1、高层建筑结构的发展历程和趋势。
2、风荷载和地震作用的计算方法。
3、框架结构、剪力墙结构、框架剪力墙结构等的受力分析和设计要点。
4、高层建筑结构的基础设计。
5、结构的抗震设计原理和方法。
6、高层建筑结构的计算机辅助设计软件应用。
12 教学方法121 课堂讲授通过课堂讲授,系统地传授高层建筑结构设计的理论知识,包括基本概念、原理和方法。
讲解过程中结合实际工程案例,帮助学生理解和掌握重点和难点内容。
122 案例分析选取具有代表性的高层建筑结构设计案例,进行详细的分析和讨论。
引导学生从案例中学习设计思路、方法和技巧,培养学生的实际工程应用能力。
123 课程设计安排课程设计环节,让学生在实际设计任务中运用所学知识,锻炼学生的设计能力和团队协作精神。
124 实验教学如有条件,可开展相关实验教学,如结构模型试验等,增强学生对结构性能的直观认识。
13 学习资源131 教材选用权威、适用的教材,为学生提供系统的学习资料。
132 参考书籍推荐相关的参考书籍,供学生深入学习和拓展知识面。
高层建筑结构设计心得

高层建筑结构设计心得在建筑领域,高层建筑结构设计是一项极具挑战性和复杂性的工作。
作为一名从事高层建筑结构设计多年的工程师,我积累了一些宝贵的经验和心得,在此与大家分享。
高层建筑的出现,是为了满足城市人口增长和土地资源有限的需求。
然而,与低层建筑相比,高层建筑在结构设计方面面临着更多的难题和挑战。
首先,高层建筑需要承受更大的竖向荷载和水平荷载,如风荷载和地震作用。
其次,由于高度的增加,结构的稳定性和变形控制变得至关重要。
此外,高层建筑的施工难度大,对材料和施工技术的要求也更高。
在进行高层建筑结构设计时,首要任务是选择合适的结构体系。
常见的结构体系包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。
每种结构体系都有其特点和适用范围,需要根据建筑的功能、高度、抗震要求等因素进行综合考虑。
例如,框架结构适用于多层建筑和小高层建筑,具有布置灵活、空间利用率高的优点;剪力墙结构则适用于高层住宅,能够提供较好的抗侧力性能;框架剪力墙结构结合了框架结构和剪力墙结构的优点,适用于综合性的高层建筑;筒体结构则适用于超高层建筑,具有很强的抗风抗震能力。
在确定结构体系后,需要对结构进行详细的计算分析。
这包括计算结构的内力、位移、周期等参数,以评估结构的安全性和稳定性。
计算分析通常采用计算机软件进行,但工程师需要对计算结果进行仔细的判断和校核,确保其准确性和可靠性。
在计算过程中,需要合理地确定计算模型和参数,如梁柱的截面尺寸、材料强度、荷载取值等。
同时,还需要考虑结构的非线性特性,如混凝土的开裂、钢筋的屈服等,以更真实地反映结构的受力情况。
高层建筑的基础设计也是至关重要的。
基础是结构的根基,它需要承受上部结构传来的巨大荷载,并将其均匀地传递到地基中。
常见的基础形式包括独立基础、条形基础、筏板基础、桩基础等。
选择合适的基础形式需要考虑地质条件、建筑物的荷载、施工条件等因素。
在软弱地基上,通常需要采用桩基础或筏板基础,以提高基础的承载能力和减少不均匀沉降。
高层建筑结构设计 课后答案 (沈蒲生)

高层建筑结构设计课后答案 (沈蒲生)(文档1)一:前言高层建筑结构设计是现代建筑领域中的重要内容之一,它涉及到各种工程技术和专业知识,需要设计师在结构力学、材料力学、施工技术等方面具备丰富的经验和知识。
本文档旨在提供关于高层建筑结构设计的详细指导,以便设计师能够准确、科学地进行设计工作。
二:设计要求1. 建筑结构安全性要求高层建筑结构设计的首要是确保建筑安全。
设计师需要根据相关标准和规范,对结构进行合理的安全设计,包括承载能力、抗震性能、防火性能等方面的考虑。
2. 施工工艺要求高层建筑的施工工艺相对复杂,设计师需要考虑到施工的可行性和效率,设计结构时要尽量避免施工过程中的困难和瓶颈。
3. 节能环保要求随着社会对节能环保的要求越来越高,高层建筑结构设计也需要考虑到节能环保的要求。
设计师需要选用合适的材料和结构形式,以达到节能环保的效果。
三:设计内容1. 建筑结构形式选择高层建筑可以采用多种结构形式,如框架结构、筒体结构、网壳结构等。
设计师需要根据建筑性质和功能要求,选用合适的结构形式。
2. 结构布置设计高层建筑的结构布置需要考虑到空间利用效果和施工工艺要求。
设计师需要进行综合考虑,以确保结构布置的合理性和稳定性。
3. 结构荷载计算高层建筑的结构荷载计算是设计过程中的重要环节。
设计师需要详细了解建筑的使用情况和荷载特点,根据相关规范进行荷载计算。
4. 结构分析与设计高层建筑的结构分析与设计是设计过程的核心内容。
设计师需要运用结构力学和材料力学的知识,进行结构的全面分析和设计。
四:附件本文档涉及的附件包括:1. 高层建筑结构设计图纸;2. 高层建筑结构设计报告;3. 高层建筑结构材料选型表;4. 高层建筑结构施工工艺流程图等。
五:法律名词及注释1. 建筑结构安全标准 - 国家标准GB 50010该标准规定了建筑结构设计的安全性要求和技术规范。
2. 结构荷载标准 - 国家标准GB 50009该标准规定了建筑结构设计中的荷载计算方法和荷载数值。
高层建筑结构设计基本原则

高层建筑结构设计基本原则在当今城市发展的进程中,高层建筑如雨后春笋般拔地而起。
高层建筑的出现不仅有效地解决了城市土地资源紧张的问题,还成为了城市现代化的重要标志之一。
然而,高层建筑的结构设计是一项复杂而又至关重要的工作,需要遵循一系列基本原则,以确保建筑的安全性、适用性、耐久性和经济性。
一、安全性原则安全性是高层建筑结构设计的首要原则。
这意味着结构必须能够承受各种可能的荷载,包括自重、活荷载、风荷载、地震荷载等,并且在这些荷载作用下不会发生破坏或倒塌。
在设计过程中,首先要对建筑所在地的地震烈度、风荷载等自然条件进行详细的勘察和分析。
根据这些数据,合理确定结构的抗震等级和抗风性能要求。
同时,要选择合适的结构体系,如框架结构、剪力墙结构、框架剪力墙结构等,以提供足够的承载能力和抗侧力能力。
材料的选择也是确保安全性的重要环节。
高强度、高质量的建筑材料能够提高结构的强度和耐久性。
此外,结构的连接节点设计也不容忽视,节点的可靠性直接影响到整个结构的稳定性。
为了验证结构的安全性,还需要进行详细的结构分析和计算。
现代计算机技术的发展为结构分析提供了强大的工具,但设计师仍需对计算结果进行合理的判断和校核,确保结构的安全性得到充分保障。
二、适用性原则适用性原则要求高层建筑在使用过程中能够满足人们的各种需求,提供舒适、便捷的使用空间。
在平面布局方面,要考虑功能分区的合理性,如办公区、居住区、商业区等的划分。
同时,要保证交通流线的顺畅,避免出现拥堵和不便。
对于竖向布局,要注意层高的设置,既要满足使用功能的要求,又要考虑到建筑的经济性。
此外,还要考虑设备管道的布置,避免对使用空间造成影响。
在结构设计中,要控制结构的变形和振动,以保证建筑在正常使用条件下不会出现过大的位移和振动,影响使用者的舒适度和安全感。
例如,对于风荷载较大的地区,要通过优化结构设计来减小风振响应。
三、耐久性原则耐久性是指高层建筑在规定的使用年限内,能够保持其结构性能和外观质量。
高层建筑结构设计练习题及答案

高层建筑结构设计练习题及答案一、选择题1、高层建筑结构设计中,以下哪种结构体系适用于高度较高、风荷载较大的建筑?()A 框架结构B 剪力墙结构C 框架剪力墙结构D 筒体结构答案:D解析:筒体结构具有良好的抗风和抗震性能,适用于高度较高、风荷载较大的高层建筑。
2、在高层建筑结构的水平荷载计算中,风荷载的计算主要考虑()。
A 平均风压B 脉动风压C 阵风风压D 以上都是答案:D解析:在风荷载计算中,需要综合考虑平均风压、脉动风压和阵风风压等因素,以准确评估风对高层建筑结构的作用。
3、高层建筑结构的抗震设计中,以下哪种地震作用计算方法适用于高度不超过 40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的结构?()A 底部剪力法B 振型分解反应谱法C 时程分析法D 以上都不是答案:A解析:底部剪力法适用于上述特定条件的结构,计算相对简单。
4、对于高层建筑的框架柱,轴压比限值的主要目的是()。
A 保证柱子的延性B 控制柱子的截面尺寸C 节省材料D 以上都不是答案:A解析:轴压比限值是为了保证框架柱在地震等作用下具有足够的延性,防止柱子发生脆性破坏。
5、剪力墙结构中,墙肢的长度不宜大于()。
A 8mB 10mC 12mD 15m答案:A解析:墙肢长度过长容易导致脆性破坏,一般不宜大于 8m。
二、填空题1、高层建筑结构的主要竖向承重构件有_____、_____和_____。
答案:框架柱、剪力墙、筒体2、风荷载标准值的计算公式为_____。
答案:ωk =βzμsμzω0 (其中ωk 为风荷载标准值,βz 为风振系数,μs 为风荷载体型系数,μz 为风压高度变化系数,ω0 为基本风压)3、高层建筑结构的抗震设防烈度根据_____确定。
答案:国家规定的地震烈度区划图4、框架剪力墙结构中,框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的_____时,按框架结构进行抗震设计。
答案:50%5、剪力墙的厚度不应小于_____mm,且不应小于层高的 1/20。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高层建筑结构设计
高层结构设计要确保结构在风荷载作用下具有足够的抵抗变形能力和承载能力,保证结构在风荷载作用下的安全性。
同时,高层建筑物在风荷载作用下将产生振动,过大的振动加速度将使在高楼内居住的人们感觉不舒适,因此高层建筑结构应具有良好的使用条件,满足舒适度的要求。
1.1 等效静态风荷载
一般作用在建筑物上的风包括平均风和脉动风。
其中平均风是风荷载的长周期部分作用在建筑物上,其周期常在10min以上,可认为是作用在建筑物上的静荷载,因为其周期与建筑物的自振周期相差较远;脉动风则是短周期部分作用在建筑物上,其脉动的周期很短,一般只有几秒,其作用可以被认为是作用在建筑物上随机的动荷载,因为其周期与建筑物的自振周期比较接近。
作用在建筑结构上的风荷载除了平均风和脉动风产生的平均风力和脉动风力,还有风振产生的惯性力。
平均风力、脉动风力和惯性力组合得到最终的等效静态风荷载。
(1)惯性力
根据高频动态天平试验结果,可以求出高层建筑底部的平均风力(包含力矩和剪力)和脉动风力,在给出高层建筑结构参数的情况下,可以计算出位移和加速度响应,由共振加速度可以进一步求出惯性力。
惯性力是由振动产生的,由加速度和质量决定,沿高度分布惯性力均方根σaf(z)表达式为:
上式中m(z)为沿高度的质量,
为沿高度的加速度。
(2)平均风力和脉动风力
空气来流沿高层建筑高度分布的风力可通过下式表达:
其中:ρ为空气密度;
是z处单位高度上的力系数,一般通过风压测量试验确定;
是来流风速。
风速是平均风速与脉动风速的合成,即:
一般来说,脉动风速相对于平均风速是小量,忽略二阶小量,即可得到沿高度分布的平均风力和脉动风力分别如下:
脉动力均方根为:
其中
,为沿高度的来流湍流度。
(3)等效静态风荷载
沿高度分布的等效静态风荷载由下式给出:
式中g为峰值因子,可取3.5。
1.2 结构体型系数
对于普通的高层结构,结构体型系数一般按《建筑结构荷载规范》(GB 50009-2012)表8.3.1和《高层建筑混凝土结构技术规程》(JGJ3-2010)第4.2.3条取包络值。
需要更细致进行风荷载计算的建筑可由风洞试验确定。
风洞试验中各点的风压系数的计算公式如下:
其中,
为风压系数,
为测点压力,
为参考点静压,ρ为空气密度,
为参考点风速。
风载体型系数μsi与风压系数Cp有如下关系:
其中,
为参考点和i点的风压高度变化系数,根据《建筑结构荷载规范》(GB 50009-2012)8.2取值。
以270m高的某框架核心筒结构的体型系数为例,从图1.21可知,结构不同高度的体型系数不同,高度越高,体型系数越大,体型系数从底部的0.6增大至顶部的1.6。
图1.21 某高层结构体型系数
1.3 结构风振系数
对于普通的建筑结构,风振系数可按《建筑结构荷载规范》(GB 50009-2012)式(8.4.3)计算;
对平面形状或立面形状复杂,立面开洞或连体建筑的风振系数可按风洞试验确定。
时域法的步骤是:
(1)通过风洞试验或模拟获得结构表面风压时程,利用有限元软件对结构进行建模,将风压荷载力时程Fi作用在表面节点上:
式中,
为表面i节点处的风压系数时程,
为风流的参考风压,
为节点i位置所对应的表面面积。
(2)进行时程计算分析,可得结构各个节点的位移时程响应,结构风振系数计算公式为:β=Ra/Rd(1.3-2)
式中,Rd为平均风产生的静位移,Ra为风荷载作用下结构的总响应。
(1)基本周期
计算风荷载时输入的结构基本周期需根据结构特征值计算的实际周期取值,否则会影响风计算结果的准确性。
以14层框架结构为例,计算风荷载时软件默认的结构基本周期为0.2s,实际结构的基本周期为0.7s。
基本周期按0.2s输入得到的X向剪力3524kN,基本周期按0.7s输入得到的X向剪力3689kN,剪力偏小4.5%,导致结构偏于不安全。
(2)地震组合
YJK软件缺省设置的参数是风荷载不参与地震组合,对于高度大于60m建筑,应勾选风荷载参与地震组合,否则会导致结构偏于不安全。
(3)局部风控构件
对于风控的建筑结构,风荷载的增加或减少对结构构件的承载力影响较大,比如斜屋面、屋顶构架层、顶部广告牌等需考虑风荷载对结构的影响。
(4)山地建筑的风压高度变化系数取值
根据《建筑结构荷载规范》(GB 50009-2012)第8.2.2条,山地建筑应考虑地形条件的修正,对于山峰和山坡,修正系数应按式8.2.2计算;对于山间盆地,谷地等闭塞地形,修正系数可在0.75~0.85选取;对于与风向一致的谷口,山口,修正系数可在1.20~1.50选取。
(5)风压取值
在某些地区,不同规范给出的基本风压会不一致。
比如不同规范对广州南沙的基本风压规定见表2-1。
从表2-1可知,不同规范确定的广州南沙的基本风压相差较大,但从风压分布图看南沙的基本风压在0.6kN/㎡与0.65kN/㎡之间,综合判断认为对于普通的多层结构基本风压可取0.6kN/㎡,对于高层结构基本风压可取0.65kN/㎡。
因此当地方标准的基本风压高于国家标准的基本风压时,宜按地方标准的基本风压执行。
表2-1广州南沙的基本风压
(6)规范风荷载与风洞试验风荷载对比分析(略)
可参考《高层建筑结构计算分析实用指南》。
(7)结构阻尼比
风振舒适度评价中的阻尼比取值是风振下结构舒适度评价的关键问题之一。
结构阻尼比的一般变化规律有:
1)结构基本周期长时,阻尼比较小;
2)随着建筑高度的增加,结构阻尼比减小;
3)填充墙少的结构的阻尼比小于填充墙多的结构的阻尼比;
4)建筑结构短方向阻尼比小于长方向的阻尼比;
5)小振幅时的阻尼比小于大振幅时的阻尼比;
6)小应力水平下的阻尼比小于大应力水平下的阻尼比。
风振舒适度问题涉及的结构一般是高度高,基本周期长,而且风作用下振幅小、应力水平也比较低,因此风振舒适度评价时所采用的阻尼比远小于常规结构强度计算时采用的阻尼比。
图21为某高层结构采用不同阻尼比计算的楼层剪力,由图可知,阻尼比越大,楼层剪力越小,当阻尼比增大一倍时,楼层剪力减小约6%。
(8)地面粗糙度对结构变形的影响
地面粗糙度是描述该地面上不规则障碍物分布状况的等级,地面粗糙度对结构整形性能影响很大,图22为不同地面粗糙度类别的层间位移角,从图可知,地面粗糙度越大,层间位移角越小,B级粗糙度比A级粗糙度变形小约10%,C级粗糙度比B级粗糙度变形小约20%,D级粗糙度比C级粗糙度变形小约25%。
(9)连梁刚度折减问题
根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第5.2.1条文说明,“仅在计算地震作用效应时可以对连梁刚度进行折减,对如重力荷载、风荷载作用效应计算不宜考虑连梁刚度折减。
有地震作用效应组合工况,均可按考虑连梁刚度折减后计算的地震作用效应参与组合”。
相对于地震作用来说,风力作用持续时间较长,往往达几十分钟,甚至几个小时,因此不能要求连梁通过塑性变形将内力转移到其他尚未屈服的构件上。
结构计算时刚度折减愈多,就意味着风荷载作用下裂缝可开展得愈大,如发生强大阵风时,连梁塑性铰会过早出现,原结构的联肢墙刚度出现较大削弱,甚至成为各个独立的单肢墙受力。
在长时间的风荷作用下,这无疑对建筑结构安全是很不利的。
故而为了避免连梁在风荷载作用下裂缝开展过早过大,刚度折减系数应取较大值。
根据各种不同荷载作用下取不同刚度折减系数的方法,在地震荷载作用下,连梁刚度折减系数可取0.5~0.8;在风荷载作用下,折减系数可取0.80~1.0;在竖向荷载作用下,折减系数取1.0(即不折减)。
广州良业大厦地上塔楼2建筑面积4.7万㎡,塔楼3建筑面积6.4万㎡。
塔楼建筑高度152.7m,地上35层,如图31所示。
本工程抗震设防烈度为7度,设计地震分组为第一组,场地类别为II类,基本风压为0.5kN/㎡,地面粗糙度为C类,体型系数根据风洞试验确定。
图31建筑效果图。