2017年湖北省鄂州市鄂城区七年级(上)期中数学试卷与参考答案PDF
2017-2018学年鄂州市鄂城区七年级上期中数学试卷(有答案)

2017-2018学年湖北省鄂州市鄂城区七年级(上)期中数学试卷一、选择题(每空3分,共30分)1.(3分)下列四个数中,最小的数是()A.﹣B.﹣3 C.0 D.2.(3分)某天早晨气温是﹣3℃,到中午升高了5℃,晚上又降低了3℃,到午夜又降低了4℃,午夜时温度为()A.5℃B.15℃C.﹣5℃D.1℃3.(3分)下列各组数中,互为相反数的是()A.﹣(+7)与+(﹣7)B.+(﹣)与﹣(+0.5)C.+(﹣0.01)与﹣(﹣)D.﹣1与4.(3分)如果a,b互为相反数,,y互为倒数,则(a+b)+y的值是()A.2 B.3 C.3.5 D.45.(3分)节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108 C.3.5×109 D.3.5×10106.(3分)我省为了解决药品价格过高的问题,决定大幅度降低药品价格,其中将原价为a 元的某种常用药降价40%,则降价后的价格为()A.元 B.元C.60%a元 D.40%a元7.(3分)下列各组代数式中,不是同类项的是()A.2与﹣5 B.﹣0.5y2与32yC.﹣3t与200t D.ab2与﹣b2a8.(3分)若(m﹣2)y2是关于,y的五次单项式,则m的值为()A.5 B.±2 C.2 D.﹣29.(3分)当代数式2+3+5的值为7时,代数式32+9﹣2的值为()A.4 B.2 C.﹣2 D.﹣410.(3分)某学校在一次数学活动课中,举行用火柴摆“摆金鱼”活动,如图所示:按照上面的规律,摆n个“金鱼”需要用火柴的根数为()A.2+6n B.8+6n C.4+4n D.8n二、填空题(每空3分,共24分)11.(3分)的倒数是.12.(3分)绝对值小于2.5的整数有个,它们的积为.13.(3分)若规定一种运算法则,请帮忙运算= .14.(3分)如图所示是计算机程序图,若开始输入=﹣1,则最后输入出的结果是.15.(3分)已知长方形的周长为4a+2b,其一边长为a﹣b,则另一边长为.16.(3分)若,则2+y2的值是.17.(3分)若||=2,|y|=3,则|+y|的值为.18.(3分)由1开始的连续奇数排成如图所示,观察规律并完成问题(1)表中第8行的第一个数是.(2)第n行的第一个数是,(用含有n 的代数式表示)三、解答题(共66分)19.(16分)计算与化简:(1)﹣(﹣2.75)﹣(﹣0.5)+3﹣55(2)(﹣3)3×(﹣5)÷[(﹣3)2+2×(﹣5)](3)0.7×1+2×(﹣15)+0.7×+×(﹣15)(4)a2﹣[(ab﹣a2)+4ab]﹣ab.20.(6分)某自行车厂一周计划生产1050辆自行车,平均每天生产150辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行计件工资制,每辆车50元,超额完成任务每辆奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?21.(7分)已知A=3b2﹣2a2+5ab,B=4ab﹣2b2﹣a2.(1)化简:3A﹣4B.(2)当a=1,b=﹣1时,求3A﹣4B的值.22.(8分)有理数a,b,c在数轴上的位置如图所示,请化简:﹣|a|+|a+b|+|c﹣a|﹣|b+c|.23.(8分)如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)24.(9分)阅读:|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.探索:(1)|5﹣(﹣2)|= .(2)利用数轴,找出所有符合条件的整数,使所表示的点到5和﹣2的距离之和为7(3)由以上探索猜想,对于任何有理数,|﹣2|+|+3|是否有最小值?如果有,写出最小值;如果没有,说明理由.25.(12分)某开发公司生产的960件新产品需要精加工后才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲厂单独加工这批产品比乙工厂单独加工完这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工数量的,公司需付甲工厂加工费用每天80元,需付乙工厂加工费用每天120元.(1)甲、乙两个工厂每天各能加工多少个新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成,在加工过程中,公司派一名工程师到厂进行技术指导,并负担每天10元的午餐补助费,请你帮助公司选择一种既省时又省钱的加工方案,并说明理由.2017-2018学年湖北省鄂州市鄂城区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每空3分,共30分)1.(3分)下列四个数中,最小的数是()A.﹣B.﹣3 C.0 D.【解答】解:﹣3<﹣<0<,即最小的数是﹣3,故选B.2.(3分)某天早晨气温是﹣3℃,到中午升高了5℃,晚上又降低了3℃,到午夜又降低了4℃,午夜时温度为()A.5℃B.15℃C.﹣5℃D.1℃【解答】解:根据题意得:﹣3+5﹣3﹣4=﹣10+5=﹣5(℃),则午夜时温度为﹣5℃,故选C3.(3分)下列各组数中,互为相反数的是()A.﹣(+7)与+(﹣7)B.+(﹣)与﹣(+0.5)C.+(﹣0.01)与﹣(﹣)D.﹣1与【解答】解:A、﹣(+7)=﹣7与+(﹣7)=﹣7相等,不是互为相反数,故本选项错误;B、+(﹣)=﹣与﹣(+0.5)=﹣0.5相等,不是互为相反数,故本选项错误;C、+(﹣0.01)=﹣0.01与﹣(﹣)=是互为相反数,故本选项正确;D、﹣1与不是互为相反数,故本选项错误.故选C.4.(3分)如果a,b互为相反数,,y互为倒数,则(a+b)+y的值是()A.2 B.3 C.3.5 D.4【解答】解:∵a,b互为相反数,,y互为倒数,∴a+b=0,y=1,∴(a+b)+y=×0+×1==3.5,故选C.5.(3分)节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108 C.3.5×109 D.3.5×1010【解答】解:350 000 000=3.5×108.故选:B.6.(3分)我省为了解决药品价格过高的问题,决定大幅度降低药品价格,其中将原价为a 元的某种常用药降价40%,则降价后的价格为()A.元 B.元C.60%a元 D.40%a元【解答】解:依题意得:价格为:a(1﹣40%)=60%a元.故选C.7.(3分)下列各组代数式中,不是同类项的是()A.2与﹣5 B.﹣0.5y2与32yC.﹣3t与200t D.ab2与﹣b2a【解答】解:A是两个常数项,是同类项;B中两项所含字母相同但相同字母的指数不同,不是同类项;C和D所含字母相同且相同字母的指数也相同的项,是同类项.故选B.8.(3分)若(m﹣2)y2是关于,y的五次单项式,则m的值为()A.5 B.±2 C.2 D.﹣2【解答】解:∵(m﹣2)y2是关于,y的五次单项式,∴m2﹣1=5﹣2,m﹣2≠0,∴m=﹣2.故选:D.9.(3分)当代数式2+3+5的值为7时,代数式32+9﹣2的值为()A.4 B.2 C.﹣2 D.﹣4【解答】解:由题意得:2+3+5=7,即2+3=2,则原式=3(2+3)﹣2=6﹣2=4,故选A10.(3分)某学校在一次数学活动课中,举行用火柴摆“摆金鱼”活动,如图所示:按照上面的规律,摆n个“金鱼”需要用火柴的根数为()A.2+6n B.8+6n C.4+4n D.8n【解答】解:由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20;…;第n个金鱼需用火柴棒的根数为:2+n×6=2+6n.故选:A.二、填空题(每空3分,共24分)11.(3分)的倒数是﹣3 .【解答】解:因为(﹣)×(﹣3)=1,所以的倒数是﹣3.12.(3分)绝对值小于2.5的整数有 5 个,它们的积为0 .【解答】解:根据绝对值的意义,可得绝对值小于2.5的整数有﹣2、﹣1、0、1、2,共5个,它们的积为0,故答案为5,0.13.(3分)若规定一种运算法则,请帮忙运算= ﹣28 .【解答】解:=2×(﹣5)﹣6×3=﹣10﹣18=﹣28.故答案为:﹣28.14.(3分)如图所示是计算机程序图,若开始输入=﹣1,则最后输入出的结果是﹣11 .【解答】解:当=﹣1时,4+1=4×(﹣1)+1=﹣4+1=﹣3由于﹣3>﹣5,需重新输入,当=﹣3时4+1=4×(﹣3)+1=﹣11因为﹣11<﹣5,直接输出.故答案为:﹣11.15.(3分)已知长方形的周长为4a+2b,其一边长为a﹣b,则另一边长为a+2b .【解答】解:∵长方形的周长为4a+2b,其一边长为a﹣b,∴另一边长为(4a+2b)÷2﹣(a﹣b),即(4a+2b)÷2﹣(a﹣b)=2a+b﹣a+b=a+2b.故答案为:a+2b.16.(3分)若,则2+y2的值是.【解答】解:∵|﹣|+(2y+1)2=0,∴=,y=﹣,则原式=,故答案为:17.(3分)若||=2,|y|=3,则|+y|的值为5或1 .【解答】解:∵||=2,|y|=3,∴=±2,y=±3,∴+y=±1或±5,∴|+y|=5或1.故答案为5或1.18.(3分)由1开始的连续奇数排成如图所示,观察规律并完成问题(1)表中第8行的第一个数是57 .(2)第n行的第一个数是n(n﹣1)+1 ,(用含有n 的代数式表示)【解答】解:(1)由题意得,第1行的第一个数是1=1×(1﹣1)+1,第2行的第一个数是3=2×(2﹣1)+1,第3行的第一个数是5=3×(3﹣1)+1,则第8行的第一个数是8×(8﹣1)+1=57,故答案为:57;(2)由(1)得,第n行的第一个数是n(n﹣1)+1,故答案为:n(n﹣1)+1.三、解答题(共66分)19.(16分)计算与化简:(1)﹣(﹣2.75)﹣(﹣0.5)+3﹣55(2)(﹣3)3×(﹣5)÷[(﹣3)2+2×(﹣5)](3)0.7×1+2×(﹣15)+0.7×+×(﹣15)(4)a2﹣[(ab﹣a2)+4ab]﹣ab.【解答】解:(1)原式=2.75+0.5+3.25﹣55.5=﹣49;(2)原式=﹣27×(﹣5)÷(﹣1)=﹣135;(3)原式=0.7×(1+)﹣15×(2+)=1.4﹣45=43.6;(4)原式=a2﹣ab+a2﹣4ab﹣ab=a2﹣5ab.20.(6分)某自行车厂一周计划生产1050辆自行车,平均每天生产150辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):)根据记录可知前三天共生产449 辆;(2)产量最多的一天比产量最少的一天多生产26 辆;(3)该厂实行计件工资制,每辆车50元,超额完成任务每辆奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?【解答】解:(1)+5+(﹣2)+(﹣4)=5+(﹣6)=﹣1,150×3+(﹣1)=450﹣1=449(辆),∴前三天共生产449辆;(2)观察可知,星期六生产最多,星期五生产最少,+16﹣(﹣10)=16+10=26(辆),∴产量最多的一天比产量最少的一天多生产26辆;(3)+5+(﹣2)+(﹣4)+(+13)+(﹣10)+(+16)+(﹣9),=5﹣2﹣4+13﹣10+16﹣9,=5+13+16﹣2﹣4﹣10﹣9,=34﹣25,=9,∴工人这一周的工资总额是:(1050+9)×50+9×10=52950+90=53040(元).21.(7分)已知A=3b2﹣2a2+5ab,B=4ab﹣2b2﹣a2.(1)化简:3A﹣4B.(2)当a=1,b=﹣1时,求3A﹣4B的值.【解答】解:(1)∵A=3b2﹣2a2+5ab,B=4ab﹣2b2﹣a2,∴3A﹣4B=3(3b2﹣2a2+5ab)﹣4(4ab﹣2b2﹣a2)=9b2﹣6a2+15ab﹣16ab+8b2+4a2=﹣2a2+17b2﹣ab;(2)当a=1,b=﹣1时,原式=﹣2+17+1=16.22.(8分)有理数a,b,c在数轴上的位置如图所示,请化简:﹣|a|+|a+b|+|c﹣a|﹣|b+c|.【解答】解:根据数轴上点的位置得:a<b<0<c,且|a|>|c|>|b|,∴a+b<0,c﹣a>0,b+c>0,则原式=a﹣a﹣b+c﹣a﹣b﹣c=﹣a﹣2b.23.(8分)如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【解答】解:(1)若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:===2.4(小时);(2)从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时).24.(9分)阅读:|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.探索:(1)|5﹣(﹣2)|= 7 .(2)利用数轴,找出所有符合条件的整数,使所表示的点到5和﹣2的距离之和为7(3)由以上探索猜想,对于任何有理数,|﹣2|+|+3|是否有最小值?如果有,写出最小值;如果没有,说明理由.【解答】解:(1)原式=|5+2|=7,故答案为:7;(2)如图所示:由图可知,符合条件的整数点有:﹣2,﹣1,0,1,2,3,4,5;(3)由(1)(2)可知,对于任何有理数,|﹣2|+|+3|有最小值,最小值=2+3=5.25.(12分)某开发公司生产的960件新产品需要精加工后才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲厂单独加工这批产品比乙工厂单独加工完这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工数量的,公司需付甲工厂加工费用每天80元,需付乙工厂加工费用每天120元.(1)甲、乙两个工厂每天各能加工多少个新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成,在加工过程中,公司派一名工程师到厂进行技术指导,并负担每天10元的午餐补助费,请你帮助公司选择一种既省时又省钱的加工方案,并说明理由.【解答】解:(1)设乙每天加工新产品件,则甲每天加工新产品件.根据题意得﹣=20,解得=24,经检验,=24符合题意,则=24×=16,所以甲、乙两个工厂每天各能加工16个、24个新产品;(2)甲单独加工完成需要960÷16=60天,费用为:60×(80+10)=5400元,乙单独加工完成需要960÷24=40天,费用为:40×(120+10)=5200元;甲、乙合作完成需要960÷(16+24)=24天,费用为:24×(120+80+20)=5280元.所以既省时又省钱的加工方案是甲、乙合作.。
2017中考数学真题湖北鄂州数学(含答案)

鄂州市2017年初中毕业生学业考试数学试题一、选择题(每小题3分,共30分)1.下列实数是无理数的是()A. 23B. 3C.0 D.-1.0101012.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. 2015年开工,预计2017年完工.请将2.3亿用科学记数法表示为()A.2.3⨯108B.0.23⨯109C.23⨯107D.2.3⨯1093.下列运算正确的是()A. 5x -3x =2B. (x -1)2= x2 -1C. (-2x2)3= -6x6D. x6÷x2= x44.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()(第4题图) A. B. C. D.5.对于不等式组1561,333(1)5 1.x xx x⎧--⎪⎨⎪-<-⎩≤下列说法正确的是()A. 此不等式组的正整数解为1,2,3B. 此不等式组的解集为-1<x≤7 6C. 此不等式组有5个整数解D. 此不等式组无解6.如图AB∥CD,E为CD上一点,射线EF经过点A,EC=EA,若∠CAE =30°,则∠BAF =( )A. 30°B. 40°C. 50°D. 60°(第6题图)7.已知二次函数y = (x+m)2 - n的图象如图所示,则一次函数y =mx + n与反比例函数mnyx=的图象可能是()(第7题图) A. B. C. D.8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校.小东始终以100m/min 的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:(1)打电话时,小东和妈妈距离是1400m;(2)小东与妈妈相遇后,妈妈回家速度是50m/min;(3)小东打完电话后,经过27min到达学校;(4)小东家离学校的距离为2900m.其中正确的个数是()A.1个B.2个C.3个D.4个9.如图抛物线2y ax bx c=++的图象交x轴于A (2,0)和点B,交y轴负半轴于点C,且OB =OC.下列结论:①22b c-=;②12a=;③1ac b=-;④0a bc+>.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB =BC+AD,∠DAC =45°,E为CD上一点,且∠BAE =45°,若CD =4,则△ABE的面积为()A. 127B.247C.487D.507(第8题图)(第9题图)(第10题图)(第15题图)二、填空题(每小题3分,共18分)11.分解因式:ab2 -9a = .12.若11622y x x=-+--则xy = .13.一个样本为1,3,2,2,a,b,c .已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=23,点D为AC与反比例函数kyx=的图象的交点,若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线2(1)y x=+向下平移m个单位(m> 0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值:233(1)11x x x xx x---+÷++其中x的值从不等式组23,241xx-⎧⎨-<⎩≤的整数解中选取.18.(本题满分8分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E.(1)求证:△AFE ≌ △CDE ;(2)若AB =4,BC =8,求图中阴影部分的面积.(第18题图)19.(本题满分8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:(第19题图)根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为 ;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有 人,并补全条形统计图;(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列课外体育锻炼情况扇形统计图 经常参加课外体育锻炼的学生最喜欢的一种项目条形统计图表或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率. 20.(本题满分8分)关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根. (1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2 ,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.21.(本题满分9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(本题满分9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点. ⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且P A =PD,AD的延长线交⊙O于点E.(1)求证:BE= CE;(2)若ED、EA的长是一元二次方程x2-5x+5=0的两根,求BE的长;(3)若MA =62,1sin3AMF∠=, 求AB的长.23.(本题满分10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(本题满分12分)已知,抛物线23y ax bx=++(a< 0 )与x轴交于A(3,0)、B两点,与y轴交于点C. 抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE =1 2 .(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使12ACP ACDS S∆∆=,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.(第24题图)鄂州市2017年初中毕业生学业考试数学试题答案及评分标准一、选择题(每小题3分,共30分)1.B2. A3. D4. D5. A6. D7. C8. D9. C 10. D二、填空题(每小题3分,共18分)11. 12. 13. 214. 15. 16. 2≤≤8三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)解:原式= 或………………………………… 3分解不等式①得-1 ………………………………… 4分解不等式②得………………………………… 5分不等式组的解集为又∵∴当时,原式= ………………………………… 8分18.(本题满分8分)(1)证明:由翻折性质知:AF =AB, ∠F =∠B =90°,∵四边形ABCD为矩形∴AB =CD∠B =∠D=90°∴AF =CD∠F =∠D=90°在△AFE 和△CDE∠F =∠B∠F =∠BAF =CD∴△AFE ≌△CDE (AAS)………………………………… 4分(2)解:∵△AFE ≌△CDE∴AE =CE设AE =CE =,则DE = 在Rt△CDE中,即解得∴AE =5∴………………………………… 8分19.(本题满分8分)(1)144° 1 补全条形统计图略………………………………… 3分(2)1200 ………………………………… 5分(3)P= ………………………………… 8分20.(本题满分8分)解:(1)依题意有△=解不等式得………………………………… 3分(2)方程两边同时平方得,由一元二次方程根与系数的关系知:∵∴∴∴即………………………………… 6分∴∵∴满足题设条件 . ………………………………… 8分21.(本题满分9分)解:(1)设CD =, 在Rt△CDE中,ED =CD,∴ED=又∵FD =AB =2. ∴EF =ED-FD =在Rt△AFE中,AF =EF,而∴AF =在Rt△ABC中,BC =AB,而∠BAC =90°-∠ACB =60°∴BC =又AF =BC +CD,∴∴∴DE =. …………………………………4分∴树高6米. …………………………………5分(2)延长NM交直线BD于点G,∵∠NDG=45°∴NG =GD =MA +BC +CD∴MN =3+ ………………………………… 8分∴食堂高度为()米. ………………………………… 9分22.(本题满分9分)(1)证明:连结OA、OE,∵OA =OE∴∠OAE =∠OEA∵MA是⊙O的切线∴∠MAO =∠MAD +∠OAD =90°∵PA =PD∴∠PAD =∠PDA∵∠EDC =∠ADB∴∠EDC +∠AEO =90°∴OE⊥BC∴⌒BE=⌒CE………………………………………………………… 3分(2)由(1)知∠CBE =∠BAE∵∠BED =∠AE B ∴△EBD ∽△EAB∴∴∵ED、EA的长是一元二次方程的两根∴∴………………………………………………………… 6分(3)在Rt△AMF中AO=MO∴MO =3AO∵∴AO=3过点B作BN∥MA交OA于点N,则∠NBO=∠M∵MA⊥OA∴BN⊥OA∴ON =OB=3 ∴NB=,AN=2∴AB= ………………………………………………………… 9分(此题证△AMB∽△FMA,用AB表示AF,在Rt△ABF中用勾股定理求AB亦可)23.(本题满分10分)解:(1)………………………………………………………… 2分(2)∵-10<0且为偶数∴当或时,有最大值为5280.此时销售单价为80-6=74或80-8=72.………………………………………………………… 5分即当销售单价为72元或74元时,每周销售利润最大,最大为5280元.………………………………………………………… 6分(3)依题意有解得由二次函数图象知.设进货成本为P元,则有P=50,∵500>0,一次函数P随的增大而增大,∴当时,P有最小值为10000 ………………………………… 9分即该个体商户至少要准备10000元进货成本. ……………………………10分24.(本题满分12分)(1)∵抛物线的对称轴是直线 =1,点A(3,0)根据抛物线的对称性知点B的坐标为(-1,0)将(3,0)(-1,0)带入抛物线解析式中得∴即为所求. ………………………………… 2分当 =1时,∴顶点D(1,4). ………………………………… 3分(2)当 =0时,∴点C的坐标为(0,3)∴∴∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径∵点E在轴C点的上方,且CE = .∴E(0,)∴∴∴△AED为直角三角形,∠ADE =90°.∴AD⊥DE又∵AD为△ACD外接圆的直径∴DE是△ACD外接圆的切线………………………………… 6分(此问中用相似证∠ADE =90°亦可)(3)解法一:先求直线AC的解析式,再求CD的中点坐标N(,),过点N作NP∥AC,可求直线NP的解析式为,联立,解得解法二:过直线AC上方抛物线的点P作PM⊥轴交AC于点F,交轴于点M,设M()则先求直线AC的解析式,F(),P()∴∴∴∴∴……………………… 9分(4)………………………………… 12分。
七年级上册数学期中考试卷及答案

七年级上册数学期中考试卷及答案七年级上册数学期中考试卷及答案马上就到2017年七年级数学期中考试了,愿你用坚强的心,微笑的情开拓自己的精彩未来!以下是店铺为你整理的七年级上册数学期中考试卷,希望对大家有帮助!2017年七年级上册数学期中考试卷一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的平方根是( )A.4B.﹣4C.±4D.±22.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是( )A.(﹣4,5)B.(﹣4,﹣5)C.(﹣5,4)D.(﹣5,﹣4)3.下列命题中,真命题的个数是( )①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个4.用代入法解方程组时,代入正确的是( )A.x﹣2﹣x=4B.x﹣2﹣2x=4C.x﹣2+2x=4D.x﹣2+x=45.估计的值在哪两个整数之间( )A.75和77B.6和7C.7和8D.8和96.已知不等式组,其解集在数轴上表示正确的是( )A. B. C. D.7.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为( )A.20°B.80°C.160°D.20°或160°8.如,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD 的条件为( )A.①②③④B.①②④C.①③④D.①②③9.已知方程组和有相同的解,则a,b的值为( )A. B. C. D.10.某校书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如不完整的统计,已知甲类书有30本,则丙类书的本数是( )A.90B.144C.200D.8011.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为( )A.14B.13C.12D.1112.已知方程组:的解是:,则方程组:的解是( )A. B. C. D.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.已知点P(a+1,a﹣1)在第四象限,则a的取值范围是.14.在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、,无理数的个数是.15.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有人.16.已知是二元一次方程ax+by=2的一组解,则4﹣2a+b= .17.已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是.18.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是.19.如,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于.20.对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是.三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2) .22.计算(1)解方程组:(2)解不等式组: .23.已知:如,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为;B′的坐标为;C′的坐标为;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.24.①表示的是某综合商场今年1~5月的商品各月销售总额的情况,②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察①、②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将①中的统计补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.25.根据中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?26.在“老人节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加,旅行前,旅行社承诺每车保证有且只有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为350元每辆,乙种客车租金为280元每辆,旅行社按照哪种方案租车最省钱?此时租金是多少?27.已知:如,直线a∥b,直线c与直线a、b分别相交于C、D 两点,直线d与直线a、b分别相交于A、B两点.(1)如1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为;(3)如3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为.2017年七年级上册数学期中考试卷答案与解析一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的平方根是( )A.4B.﹣4C.±4D.±2【考点】平方根.【分析】根据平方根定义求出即可.【解答】解:16的平方根是±4,故选C.2.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是( )A.(﹣4,5)B.(﹣4,﹣5)C.(﹣5,4)D.(﹣5,﹣4)【考点】点的坐标.【分析】根据P到x轴的距离可得P的纵坐标的绝对值,根据P 到y轴的距离可得P的横坐标的绝对值,根据第二象限的点的符号特点可得点P的坐标.【解答】解:∵点P到x轴的距离是4,到y轴的距离是5,∴P的纵坐标的绝对值为4,横坐标的绝对值为5,∵点P在第二象限内,∴横坐标的符号为负,纵坐标的符号为正,∴P的坐标为(﹣5,4).故选C.3.下列命题中,真命题的个数是( )①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①同位角相等,是假命题;②a,b,c是三条直线,若a⊥b,b⊥c,则a∥c,是假命题.③a,b,c是三条直线,若a∥b,b∥c,则a∥c,是真命题;④过直线外一点有且只有一条直线与已知直线平行,是假命题,故选A4.用代入法解方程组时,代入正确的是( )A.x﹣2﹣x=4B.x﹣2﹣2x=4C.x﹣2+2x=4D.x﹣2+x=4【考点】解二元一次方程组.【分析】将①代入②整理即可得出答案.【解答】解:,把①代入②得,x﹣2(1﹣x)=4,去括号得,x﹣2+2x=4.故选C.5.估计的值在哪两个整数之间( )A.75和77B.6和7C.7和8D.8和9【考点】估算无理数的大小.【分析】先对进行估算,再确定是在哪两个相邻的整数之间.【解答】解:∵ < < ,∴8<<9,∴ 在两个相邻整数8和9之间.故选:D.6.已知不等式组,其解集在数轴上表示正确的是( )A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:∵解不等式①得:x>3,解不等式②得:x≥﹣1,∴不等式组的解集为:x>3,在数轴上表示不等式组的解集为:故选:B.7.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为( )A.20°B.80°C.160°D.20°或160°【考点】平行线的性质.【分析】首先根据题意画出形,由∠A的两边与∠B的两边互相平行,根据平行线的性质,即可求得∠B的度数.【解答】解:如1:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠B=∠1,∵∠A=20°,∴∠B=∠A=20°;如2:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠1+∠B=180°,∴∠B=180°﹣∠A=160°.故选D.8.如,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD 的条件为( )A.①②③④B.①②④C.①③④D.①②③【考点】平行线的判定.【分析】根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.9.已知方程组和有相同的解,则a,b的值为( )A. B. C. D.【考点】二元一次方程组的解.【分析】因为方程组和有相同的解,所以把5x+y=3和x﹣2y=5联立解之求出x、y,再代入其他两个方程即可得到关于a、b的方程组,解方程组即可求解.【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选D.10.某校书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如不完整的统计,已知甲类书有30本,则丙类书的本数是( )A.90B.144C.200D.80【考点】扇形统计.【分析】根据甲类书籍有30本,占总数的15%即可求得总书籍数,丙类所占的比例是1﹣15%﹣45%,所占的比例乘以总数即可求得丙类书的本数.【解答】解:总数是:30÷15%=200(本),丙类书的本数是:200×(1﹣15%﹣45%)=200×40%=80(本)故选D.11.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为( )A.14B.13C.12D.11【考点】一元一次不等式的应用.【分析】本题可设钢笔数为x,则笔记本有30﹣x件,根据小明用100元钱购得笔记本和钢笔共30件,就是已知不等关系:买笔记本用的钱数+买钢笔用的'钱数≤100元.根据这个不等关系就可以得到一个不等式.求出钢笔数的范围.【解答】解:设钢笔数为x,则笔记本有30﹣x件,则有:2(30﹣x)+5x≤10060﹣2x+5x≤100即3x≤40x≤13 因此小明最多能买13只钢笔.故选B.12.已知方程组:的解是:,则方程组:的解是( )A. B. C. D.【考点】二元一次方程组的解.【分析】在此题中,两个方程组除未知数不同外其余都相同,所以可用换元法进行解答.【解答】解:在方程组中,设x+2=a,y﹣1=b,则变形为方程组,由题知,所以x+2=8.3,y﹣1=1.2,即 .故选C.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.已知点P(a+1,a﹣1)在第四象限,则a的取值范围是﹣1【考点】点的坐标;解一元一次不等式组.【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(a+1,a﹣1)在第四象限,∴ ,由①得:a>﹣1,由②得:a<1,所以,a的取值范围是﹣1故答案为:﹣114.在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、,无理数的个数是 3 .【考点】无理数.【分析】无理数就是无限不循环小数,依据定义即可作出判断.【解答】解:在3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、中,0.2060060006(相邻的两个6之间依次多一个0)、3.1415、0、、是有理数,﹣π、、这3个数是无理数,故答案为3.15.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有114000 人.【考点】用样本估计总体.【分析】根据题意计算出身体素质达标的人数所占百分比,然后再计算出该市12万名七年级学生身体素质达标的人数.【解答】解:120000× =114000,故答案为:114000.16.已知是二元一次方程ax+by=2的一组解,则4﹣2a+b= 2 .【考点】二元一次方程的解.【分析】将方程的解代入方程可得到关于a、b的方程,最后应用整体代入法求解即可.【解答】解:将代入ax+by=2得:2a﹣b=2.原式4﹣(2a﹣b)=4﹣2=2.故答案为:2.17.已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是(6,6)或(3,﹣3) .【考点】点的坐标.【分析】分点的横坐标与纵坐标相等和互为相反数两种情况讨论求解.【解答】解:∵点P(a+2,3a﹣6)到两坐标轴的距离相等,∴a+2=3a﹣6或a+2+3a﹣6=0,解得a=4或a=1,当a=4时,a+2=4+2=6,此时,点P(6,6),当a=1时,a+2=3,此时,点P(3,﹣3),综上所述,点P(6,6)或(3,﹣3).故答案为:(6,6)或(3,﹣3).18.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是6≤a<9.【考点】一元一次不等式的整数解.【分析】解不等式得x≤ ,由于只有两个正整数解,即1,2,故可判断的取值范围,求出a的取值范围.【解答】解:原不等式解得x≤ ,∵解集中只有两个正整数解,则这两个正整数解是1,2,∴2≤<3,解得6≤a<9.故答案为:6≤a<9.19.如,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于10 .【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.20.对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是﹣7 .【考点】解二元一次方程组;有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题意得:,①+②得:a=﹣1,b=1,则原式=2a﹣5b=﹣2﹣5=﹣7.故答案为:﹣7三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2) .【考点】实数的运算.【分析】(1)原式利用二次根式性质,乘方的意义,以及立方根定义计算即可得到结果;(2)原式利用二次根式乘法法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=4﹣1﹣3=0;(2)原式=2+2 ﹣2+ =3 .22.计算(1)解方程组:(2)解不等式组: .【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)先把①变形为x﹣y=5的形式,再用代入消元法求解即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)解方程组:由①得,x﹣y=5③,把③代入②得,20﹣y=5,解得,y=15.把y=11代入③得,x=20,所以方程组的解为: ;(2) ,由①得,x≥ ,由②得,x> ,故方程组的解为:x≥ .23.已知:如,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为(0,4) ;B′的坐标为(﹣1,1) ;C′的坐标为(3,1) ;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.【考点】作-平移变换.【分析】(1)根据形平移的性质画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)根据同底等高的三角形面积相等即可得出结论.【解答】解:(1)略;(2)由可知,A′(0,4);B′(﹣1,1);C′(3,1);故答案为:(0,4);(﹣1,1);(3,1);(3)设P(0,y),∵△BCP与△ABC同底等高,∴|y+2|=3,即y+2=3或y+2=﹣3,解得y1=1,y2=﹣5,∴P(0,1)或(0,﹣5).24.①表示的是某综合商场今年1~5月的商品各月销售总额的情况,②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察①、②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将①中的统计补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.【考点】条形统计;折线统计.【分析】(1)根据①可得,1235月份的销售总额,再用总的销售总额减去这四个月的即可;(2)由可知用第5月的销售总额乘以16%即可;(3)分别计算出4月和5月的销售额,比较一下即可得出答案.【解答】解:(1)410﹣=410﹣335=75;如:(2)商场服装部5月份的销售额是80万元×16%=12.8万元;(3)4月和5月的销售额分别是75万元和80万元,服装销售额各占当月的17%和16%,则为75×17%=12.75万元,80×16%=12.8万元,故小刚的说法是错误的.25.根据中给出的信息,解答下列问题:(1)放入一个小球水面升高 2 cm,放入一个大球水面升高 3 cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?【考点】二元一次方程组的应用;一元一次方程的应用.【分析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据象提供的数据建立方程求解即可;(2)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.【解答】解:(1)设一个小球使水面升高x厘米,由意,得3x=32﹣26,解得x=2;设一个大球使水面升高y厘米,由意,得2y=32﹣26,解得:y=3.所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)设应放入大球m个,小球n个.由题意,得解得:,答:如果要使水面上升到50cm,应放入大球4个,小球6个.26.在“老人节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加,旅行前,旅行社承诺每车保证有且只有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为350元每辆,乙种客车租金为280元每辆,旅行社按照哪种方案租车最省钱?此时租金是多少?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)设租甲种客车x辆,则租乙种客车(7﹣x)辆,依题意关系式为:40x+30(7﹣x)≥253+7,(2)分别算出各个方案的租金,比较即可.【解答】解:(1)设租甲种客车x辆,则租乙种客车(7﹣x)辆,依题意,得40x+30(7﹣x)≥253+7,解得x≥5,又x≤7,即5≤x≤7,x=5,6,7,有三种租车方案:租甲种客车5辆,则租乙种客车2辆,租甲种客车6辆,则租乙种客车1辆,租甲种客车7辆,则租乙种客车0辆;(2)∵5×350+2×280=2310元,6×350+1×280=2380元,7×350=2450元,∴租甲种客车5辆;租乙种客车2辆,所需付费最少为2310(元).27.已知:如,直线a∥b,直线c与直线a、b分别相交于C、D 两点,直线d与直线a、b分别相交于A、B两点.(1)如1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠1=∠2+∠3;(3)如3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠2=∠1+∠3.【考点】平行线的性质.【分析】(1)过点P作a的平行线,根据平行线的性质进行解题;(2)过点P作b的平行线PE,由平行线的性质可得出a∥b∥PE,由此即可得出结论;(3)设直线AC与DP交于点F,由三角形外角的性质可得出∠1+∠3=∠PFA,再由平行线的性质即可得出结论.【解答】解:(1)如1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2;(2)如2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠3+∠EPD,即∠1=∠2+∠3.故答案为:∠1=∠2+∠3;(3)如3,设直线AC与DP交于点F,∵∠PFA是△PCF的外角,∴∠PFA=∠1+∠3,∵a∥b,∴∠2=∠PFA,即∠2=∠1+∠3.故答案为:∠2=∠1+∠3.【七年级上册数学期中考试卷及答案】。
湖北省鄂州市 七年级(上)期中数学试卷

七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作()A. +7步B. −7步C. +12步D. −2步2.下列两个数互为相反数的是()A. −13和−0.3B. 3和−4C. −2.25和214D. 8和−(−8)3.下列去括号正确的是()A. a−2(−b+c)=a−2b−2cB. a−2(−b+c)=a+2b−2cC. a+2(b−c)=a+2b−cD. a+2(b−c)=a+2b+2c4.在-(-8),(-1)2007,-32,0,-|-1|,−25中,负数的个数有()A. 2个B. 3个C. 4个D. 5个5.2018年3月5日,李克强总理在政府工作报告中指出,过去五年农村贫困人口脱贫6800万,脱贫攻坚取得阶段性胜利,6800万用科学记数法表示为()A. 6800×104B. 6.8×104C. 6.8×107D. 0.68×1086.下列式子:①abc;②x2−2xy+1y;③1a;④x2+2x+1x−2;⑤−23x+y;⑥5π;⑦x+12.中单项式的个数()A. 2B. 3C. 4D. 57.若2a3b m与-13a n b2是同类项,则(-m)n的值为()A. 8B. −8C. 9D. −68.下列说法①0是最小的有理数;②一个有理数不是正数就是负数;③分数不是有理数;④没有最大的负数;⑤2πR+πR2是三次二项式;⑥6x2-3x+1的项是6x2,-3x,1;⑦12a2与2a2是同类项.其中正确说法的个数是()A. 2个B. 3个C. 5个D. 6个9.已知M=x2+2xy,N=5x2-4xy,若M+N=4x2+P,则整式P为()A. 2x2−2xyB. 6x2−2xyC. 3x2+xyD. 2x2+xy10.阅读材料:求值:1+2+22+23+24++22013.解:设S=1+2+22+23+24+…+22013.将等式两边同时乘以2,得2S=2+22+23+24+…+22013+22014将下式减去上式,得2S-S=22014-1.即S=1+2+22+23+24++22013=22014-1.请你仿照此法计算1+3+32+33+34+…+32018的值是()A. 32018−1B. 32018−12C. 32019−1D. 32019−12二、填空题(本大题共6小题,共18.0分)11.绝对值等于2的数是______,|-3|的相反数是______.12.-212和它的相反数之间的整数有______个.13.如图,数轴上点A、B、C所对应的数分别为a、b、c,化简|a|+|c-b|-|a+b-c|=______.14.我们平常的数都是十进制数,如2639=2×103+6×102+3×10+9,表示十进制的数要用10个数的数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的是二进制,只要两个数码0和1,如二进制中101=1×22+0×21+1等于十进制的数5,又如二进制数10111=1×24+0×23+1×22+1×2+1,故二进制的10111等于十进制的数23,那么二进制中的1101等于十进制的数______.15.按下面的程序计算:如果输入x的值是正整数,输出结果是150,那么满足条件的x的值有______个.16.观察表格中按规律排列的两行数据,若用x,y表示表格中间一列的两个数,则x,三、计算题(本大题共4小题,共34.0分)17.计算:(1)(-36)×(-49+56-712);(2)-42×1(−4)2+|-2|3×(-12)3.18.先化简,后求值.2(a2b+ab2)-(2ab2-1+a2b)-2,其中(2b-1)2+|a+2|=0.19.已知|a+3|+|b-5|=0,x,y互为相反数,c与d互为倒数.求:3(x+y)-a-2b+(3cd)的值.(cd表示c乘d)20.李先生购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:米),解答下列问题:(1)用含x的式子表示客厅的面积;(2)用含x的式子表示地面总面积;(3)已知客厅面积比厨房面积多12平方米,若铺1平方米地砖的平均费用为100元,那么铺地砖的总费用为多少元?四、解答题(本大题共4小题,共38.0分)21.“十一”黄金周期间,某市的在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).若9月30日外出旅游人数记为a()请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人.(2)如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?22.小强在计算一个整式减去-3ab+5bc-1时,因为粗心,把减去误作加上,得结果为ab-3bc+6,试问:(1)这是一个怎样的整式?(2)原题的正确结果应是多少?23.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太麻烦,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果:1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×______=______.(1)补全例题解题过程;(2)请猜想:1+2+3+4+5+6+…+(2n-2)+(2n-1)+2n=______.(3)试计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).24.数轴上点A对应的数为a,点B对应的数为b,且多项式x3y-2xy+5的二次项系数为a,常数项为b.(1)直接写出:a=______,b=______;(2)数轴上点A,B之间有一动点P,若点P对应的数为x,试化简|2x+4|+2|x-5|-|6-x|;(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动,同时点N 从点B出发,沿数轴以每秒2个单位长度的速度向左移动,到达点A后立即返回并向右继续移动,速度保持不变.试求出经过多少秒后,M,N两点相距1个单位长度?答案和解析1.【答案】B【解析】解:∵向北走5步记作+5步,∴向南走7步记作-7步.故选:B.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.【答案】C【解析】解:A、-的相反数是,故选项错误;B、3的相反数的是-3,故选项错误;C、-2.25和2互为相反数,故选项正确;D、8的相反数是-8,8=-(-8),故选项错误.故选:C.此题依据相反数的概念作答.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.考查了相反数,此题关键是看两个数是否“只有符号不同”,并注意分数与小数的转化.3.【答案】B【解析】【分析】本题主要考查去括号法则:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.根据去括号法则即可求解,要注意括号前面的符号.【解答】解:A.a-2(-b+c)=a+2b-2c,故A错误;B.a-2(-b+c)=a+2b-2c,正确;C.a+2(b-c)=a+2b-2c,故C错误;D.a+2(b-c)=a+2b-2c,故D错误;故选B.4.【答案】C【解析】【分析】本题考查了正数和负数,判断一个数是正数还是负数,要把它化简成最后形式再判断.负数就是小于0的数,依据定义即可求解.【解答】解:-(-8)=8,(-1)2007=-1,-32=-9,-|-1|=-1,负数有:(-1)2007,-32,-|-1|,-,负数的个数有4个,故选C.5.【答案】C【解析】解:6800万用科学记数法表示为6.8×107.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【答案】A【解析】解:①abc是单项式;②x2-2xy+是多项式;③是分式;④是分式;⑤-x+y是多项式;⑥是单项式;⑦是多项式.故选:A.依据单项式的定义进行判断即可.本题主要考查的是单项式的定义,熟练掌握单项式的定义是解题的关键.7.【答案】B【解析】【分析】本题考查同类项的概念的有关知识,根据同类项的概念即可求出m与n的值,然后代入求值即可.【解答】解:由题意可知:3=n,m=2,∴原式=(-2)3=-8,故选B.8.【答案】B【解析】解:①0是绝对值最小的有理数,错误;②一个有理数不是正数就是负数,还有0,错误;③分数是有理数,错误;④没有最大的负数,正确;⑤2πR+πR2是二次二项式,错误;⑥6x2-3x+1的项是6x2,-3x,1,正确;⑦a2与2a2是同类项,正确.故选:B.根据有理数的分类和定义、多项式、同类项的定义即可作出判断.本题考查了有理数的分类和定义、多项式、同类项的定义,认真掌握正数、负数、整数、分数、正有理数、负有理数的定义与特点、有理数的分类和定义、多项式、同类项的定义是解题的关键.9.【答案】A【解析】解:把M=x2+2xy,N=5x2-4xy代入M+N=4x2+P,得x2+2xy+5x2-4xy=4x2+P,则P=x2+2xy+5x2-4xy-4x2=2x2-2xy.故选:A.把M与N代入M+N=4x2+P,整理后去括号合并即可确定出P.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.10.【答案】D【解析】解:设S=1+3+32+33+34+…+22018.将等式两边同时乘以3,得3S=3+32+33+34+…+32018+32019将下式减去上式,得3S-S=32019-1.即S=1+3+32+33+34++32018=(32019-1).故选:D.利用方程的思想解决问题,设S=1+3+32+33+34+…+22018.将等式两边同时乘以3得3S=3+32+33+34+…+32018+32019,如果把两式相减求出S即可,本题考查了规律型:认真观察、仔细思考,善用联想是解决这类问题的方法.11.【答案】±2 -3【解析】解:绝对值等于2的数是±2,|-3|的相反数是-3,故答案为:±2,-3.根据绝对值和相反数的定义求出即可.本题考查了相反数和绝对值,能熟记相反数和绝对值的定义是解此题的关键,注意:一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值等于0.12.【答案】5【解析】解:-2和它的相反数2之间的整数有-2,-1,0,1,2,故答案为:5.根据相反数的意义,可得答案.本题考查了相反数,利用相反数的意义是解题关键.13.【答案】0【解析】解:根据题意得:a<0<b<c,∴a<0,c-b>0,a+b-c<0,∴|a|+|c-b|-|a+b-c|=-a+(c-b)+(a+b-c)=-a+c-b+a+b-c=0.故答案为0.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.本题考查的是整式的加减及绝对值的性质,熟知整式的加减实质上就是合并同类项是解答此题的关键.14.【答案】13【解析】解:根据题意得:1×23+1×22+1=8+4+1=13.故答案为:13根据二进制与十进制的换算方法计算即可.此题考查了有理数的混合运算,弄清题中的换算方法是解本题的关键.15.【答案】3【解析】解:当4x-2=150时,x=38;当4x-2=38时,x=10;当4x-2=10时,x=3,由于4x-2=3,x不是正整数,不合题意.即当x=3、10、38时,输出的结果都是150.故答案为:3由程序图,可以得到输出结果和x的关系:输出结果=4x-2,当输出结果是150时,可求出x的值.若计算结果与x的值相等且<149时,需重新确定输入新的数值,反复直到x不能满足正整数为止.本题考查了一元一次方程的解法.解答本题的关键就是弄清楚题图给出的计算程序.注意可反复输入.16.【答案】x=2+2y【解析】解:∵第一行第1个数6=2-2×(-2)1,第2个数-6=2-2×(-2)2,第3个数18=2-2×(-2)3,…∴第n个数x=2-2×(-2)n=2+2×(-1)n+1•2n∵第二行第1个数2=(-1)2•21,第2个数-4=(-1)3•22,第3个数8=(-1)4•23,… ∴第n个数y=(-1)n+1•2n,∴x=2+2y,故答案为:x=2+2y.由表可知第一行第n个数x=2-2×(-2)n=2+2×(-1)n+1•2n,第二行第n个数y=(-1)n+1•2n,从而得出x=2+2y.本题主要考查数字变化的规律,根据数列的规律得出第一行第n个数x=2-2×(-2)n=2+2×(-1)n+1•2n,第二行第n个数y=(-1)n+1•2n是解题的关键.17.【答案】解:(1)(-36)×(-49+56-712)=(-36)×(-49)+(-36)×56+(-36)×(-712)=16-30+21=7;(2)-42×1(−4)2+|-2|3×(-12)3=-16×116+8×(-18)=-1-1=-2.【解析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.【答案】解:∵(2b-1)2+|a+2|=0,∴b=12,a=-2,原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-2,b=12,原式=(-2)2×12-1=2-1=1.【解析】先利用非负数的性质求出a和b的值,再去括号、合并得到原式=a2b-1,然后把a和b的值代入计算即可.本题考查了整式的加减-化简求值:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19.【答案】解:∵|a+3|+|b-5|=0,x,y互为相反数,c与d互为倒数,∴a=-3,b=5,x+y=0,cd=1,则原式=0+3-10+3=-4.【解析】利用非负数的性质,相反数,倒数的性质求出各自的值,代入原式计算即可求出值.此题考查了有理数的混合运算,以及非负数的性质:绝对值,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)客厅的面积=6x平方米;(2)地面总面积=6x+x(23x+2)+2(6-x)+32×23x=23x2+7x+12(平方米);(3)由题意得,6x-2(6-x)=12,解得,x=3,当x=3时,23x2+7x+12=23×32+7×3+12=39(平方米),则铺地砖的总费用为:39×100=3900元.【解析】(1)根据长方形的面积公式计算;(2)根据长方形的面积公式,结合图形计算;(3)根据题意列方程,解方程即可.本题考查的是列代数式,根据图形的面积列出代数式是解题的关键.21.【答案】解:(1)最多的是10月3日,人数为a+1.6+0.8+0.4=a+2.8(万人).最少的是10月7日,人数为a+1.6+0.8+0.4-0.4-0.8+0.2-1.2=a+0.6(万人).它们相差为a+2.8-a-0.6=2.2万人.(2)如果最多一天有出游人数3万人,即a+2.8=3,a=0.2万人,故9月30日出去旅游的人数有0.2万人.【解析】易得最多的是10月3日,最少的是10月7日.算出的人数相减即可求得相差人数.把10月3日的人数=3即可算出9月30日出去旅游的人数有多少.此题考查正数与负数问题,解决问题的关键是读懂题意,找到所求的量的等量关系,列出代数式.22.【答案】解:(1)设所求整式为A,根据题意得:A+(-3ab+5bc-1)=ab-3bc+6,A=(ab-3bc+6)-(-3ab+5bc-1)=ab-3bc+6+3ab-5bc+1=4ab-8bc+7;(2)A-(-3ab+5bc-1)=4ab-8bc+7+3ab-5bc+1=7ab-13bc+8.【解析】(1)设所求整式为A,根据题意列出方程A+(-3ab+5bc-1)=ab-3bc+6,即可求出A的表达式;(2)把(1)中所求A的表达式代入A-(-3ab+5bc-1),计算得出正确答案.本题考查了整式的加减、去括号法则两个考点.本题重点是根据题意列出方程求解A,然后根据A算出小强应得的正确结果.23.【答案】50 5050 n(2n+1)【解析】解:(1)1+2+3+4+5+ (100)=(1+100)+(2+99)+(3+98)+…+(50+51),=101×50,=5050.故答案为:50;5050.(2)∵1+2n=2+(2n-1)=3+(2n-2)=…=n+n+1=2n+1,∴1+2+3+4+5+6+…+(2n-2)+(2n-1)+2n,=(2n+1)+(2n+1)+…+(2n+1),=n(2n+1).故答案为:n(2n+1).(3)a+(a+b)+(a+2b)+(a+3b)+…+(a+99b),=(a+a+99b)+(a+b+a+98b)+…+(a+49b+a+50b),=(2a+99b)×50,=100a+4950b.(1)根据数的个数可找出总共有50个101,由此即可得出结论;(2)仿照(1)找出规律,由此即可求出结论;(3)仿照(1)找出规律,由此即可求出结论.本题考查了规律型中数字的变化类,观察数列,找出“首尾相加=第二项+倒数第二项=…”是解题的关键.24.【答案】-2 5【解析】解:(1)∵多项式x3y-2xy+5的二次项系数为a,常数项为b,∴a=-2,b=5.故答案为:-2;5.(2)由题意,可知:-2≤x≤5,∴|2x+4|+2|x-5|-|6-x|=2x+4-2(x-5)-(6-x)=x+8.(3)设经过t秒后,M,N两点相距1个单位长度.分两种情况讨论:①当点N从点B向点A移动,即0≤t≤3.5时,点M表示的数为-2+t,点N表示的数为5-2t,由题意得:|-2+t-(5-2t)|=1,解得:t1=2,t2=;②当点N从点A向右移动,即t>3.5时,点M表示的数为-2+t,点N表示的数为-2+2(t-3.5)=2t-9,由题意得:|-2+t-(2t-9)|=1,解得:t3=6,t4=8.综上所述,经过2秒、秒、6秒或8秒后,M,N两点相距1个单位长度.(1)由多项式的定义,可找出a,b的值;(2)由点P在点A,B之间,可得出x的取值范围,再结合绝对值的定义将原式进行化简,即可得出结论;(3)设经过t秒后,M,N两点相距1个单位长度,分0≤t≤3.5及t>3.5两种情况找出关于t的含绝对值符号的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用、数轴、多项式以及绝对值,解题的关键是:(1)根据多项式的定义找出a,b的值;(2)由x的取值范围结合绝对值的定义化简原式;(3)分0≤t≤3.5及t>3.5两种情况找出关于t的含绝对值符号的一元一次方程.。
2017年湖北省鄂州市中考数学试卷(后附答案解析)

2017年湖北省鄂州市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列实数是无理数的是()A.B.C.0 D.﹣1.0101012.(3分)鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥,大桥长1100m,宽27m,鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元,2015年开工,预计2017年完工.请将2.3亿元用科学记数法表示为()A.2.3×108B.0.23×109C.23×107D.2.3×1093.(3分)下列运算正确的是()A.5x﹣3x=2 B.(x﹣1)2=x2﹣1 C.(﹣2x2)3=﹣6x6 D.x6÷x2=x44.(3分)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.5.(3分)对于不等式组,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为﹣1<x≤C.此不等式组有5个整数解D.此不等式组无解6.(3分)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°7.(3分)已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A. B.C.D.8.(3分)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,图中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家的速度为50m/min;③小东打完电话后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A.1个 B.2个 C.3个 D.4个9.(3分)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个 B.2个 C.3个 D.4个10.(3分)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)分解因式:ab2﹣9a=.12.(3分)若y=+﹣6,则xy=.13.(3分)一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.(3分)已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.(3分)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=2,点D为AC与反比例函数y=的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.(3分)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m 的取值范围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(8分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.18.(8分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.19.(8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.20.(8分)关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.21.(9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.23.(10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(12分)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;=S△ACD,求点P的坐标;(3)在直线AC上方的抛物线上找一点P,使S△ACP(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M 的坐标.2017年湖北省鄂州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•鄂州)下列实数是无理数的是()A.B.C.0 D.﹣1.010101【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,0,﹣1.0101是有理数,是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)(2017•鄂州)鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥,大桥长1100m,宽27m,鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元,2015年开工,预计2017年完工.请将2.3亿元用科学记数法表示为()A.2.3×108B.0.23×109C.23×107D.2.3×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2.3亿用科学记数法表示为:2.3×108.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•鄂州)下列运算正确的是()A.5x﹣3x=2 B.(x﹣1)2=x2﹣1 C.(﹣2x2)3=﹣6x6 D.x6÷x2=x4【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2x,不符合题意;B、原式=x2﹣2x+1,不符合题意;C、原式=﹣8x6,不符合题意;D、原式=x4,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2017•鄂州)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.【分析】根据俯视图中每列正方形的个数,再画出从正面,左面看得到的图形即可.【解答】解:该几何体的左视图是:.故选:D.【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图,左视图分别是从物体的正面,左面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.5.(3分)(2017•鄂州)对于不等式组,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为﹣1<x≤C.此不等式组有5个整数解D.此不等式组无解【分析】确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断.【解答】解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的整数解为1,2,3故选A.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.6.(3分)(2017•鄂州)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°【分析】先根据EC=EA.∠CAE=30°得出∠C=30°,再由三角形外角的性质得出∠AED的度数,利用平行线的性质即可得出结论.【解答】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.【点评】本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.7.(3分)(2017•鄂州)已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A. B.C.D.【分析】观察二次函数图象可得出m>0、n<0,再根据一次函数图象与系数的关系结合反比例函数的图象即可得出结论.【解答】解:观察二次函数图象可知:m>0,n<0,∴一次函数y=mx+n的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限.故选C.【点评】本题考查了二次函数图象与系数的关系、一次函数图象与系数的关系以及反比例函数的图象,观察二次函数图象找出m>0、n<0是解题的关键.8.(3分)(2017•鄂州)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,图中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min 小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家的速度为50m/min;③小东打完电话后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【分析】①由当t=0时y=1400,可得出打电话时,小东和妈妈的距离为1400米,结论①正确;②利用速度=路程÷时间结合小东的速度,可求出小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③由t的最大值为27,可得出小东打完电话后,经过27min到达学校,结论③正确;④根据路程=2400+小东步行的速度×(27﹣22),即可得出小东家离学校的距离为2900m,结论④正确.综上即可得出结论.【解答】解:①当t=0时,y=1400,∴打电话时,小东和妈妈的距离为1400米,结论①正确;②2400÷(22﹣6)﹣100=50(m/min),∴小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③∵t的最大值为27,∴小东打完电话后,经过27min到达学校,结论③正确;④2400+(27﹣22)×100=2900(m),∴小东家离学校的距离为2900m,结论④正确.综上所述,正确的结论有:①②③④.故选D.【点评】本题考查了一次函数的应用,观察图形,逐一分析四条结论的正误是解题的关键.9.(3分)(2017•鄂州)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个 B.2个 C.3个 D.4个【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论.【解答】解:据图象可知a>0,c<0,b>0,∴<0,故④错误;∵OB=OC,∴OB=﹣c,∴点B坐标为(﹣c,0),∴ac2﹣bc+c=0,∴ac﹣b+1=0,∴ac=b﹣1,故③正确;∵A(﹣2,0),B(﹣c,0),抛物线线y=ax2+bx+c与x轴交于A(﹣2,0)和B(﹣c,0)两点,∴2c=,∴2=,∴a=,故②正确;∵ac﹣b+1=0,∴b=ac+1,a=,∴b=c+1∴2b﹣c=2,故①正确;故选:C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10.(3分)(2017•鄂州)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.【分析】如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB 于K.作BT⊥AD于T.由△BCF≌△GDF,推出BC=DG,BF=FG,由△FBC≌△FBH,△FAH≌△FAD,推出BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,可得(x+4)2=42+(4﹣x)2,推出x=1,推出BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,根据AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,可得42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由此求出y即可解决问题.【解答】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK ⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②由①②可得y=,∴S=×5×=,△ABE故选D.【点评】本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题.二、填空题(每小题3分,共18分)11.(3分)(2017•鄂州)分解因式:ab2﹣9a=a(b+3)(b﹣3).【分析】根据提公因式,平方差公式,可得答案.【解答】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.12.(3分)(2017•鄂州)若y=+﹣6,则xy=﹣3.【分析】根据分式有意义的条件即可求出x与y的值.【解答】解:由题意可知:,解得:x=,∴y=0+0﹣6=﹣6,∴xy=﹣3,故答案为:﹣3【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.13.(3分)(2017•鄂州)一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为2.【分析】因为众数为3,表示3的个数最多,因为2出现的次数为二,所以3的个数最少为三个,则可设a,b,c中有两个数值为3.另一个未知数利用平均数定义求得,从而根据中位数的定义求解.【解答】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+2+2+3+3+c)=2,解得c=0,将这组数据按从小到大的顺序排列:0、1、2、2、3、3、3,位于最中间的一个数是2,所以中位数是2,故答案为:2.【点评】本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2017•鄂州)已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为8π.【分析】根据题意可以去的圆锥的母线长,然后根据圆锥的侧面展开图是一个扇形,由扇形的面积公式S=lr即可解答本题.【解答】解:圆锥的主视图如右图所示,直径BC=8,AD=6,∴AC==2,∴圆锥的侧面积是:=8π,故答案为:8π.【点评】本题考查圆锥的计算,解答本题的关键是明确题意,知道圆锥的侧面展开图是扇形和扇形的面积计算公式.15.(3分)(2017•鄂州)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=2,点D为AC与反比例函数y=的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为﹣4或﹣8.【分析】过C作CE⊥AB于E,根据∠ABC=60°,AB=4,BC=2,可求得△ABC的面积,再根据点D将线段AC分成1:2的两部分,分两种情况进行讨论,根据反比例函数系数k的几何意义即可得到k的值.【解答】解:如图所示,过C作CE⊥AB于E,∵∠ABC=60°,BC=2,∴Rt△CBE中,CE=3,又∵AC=4,∴△ABC的面积=AB×CE=×4×3=6,连接BD,OD,∵直线BD将△ABC的面积分成1:2的两部分,∴点D将线段AC分成1:2的两部分,当AD:CD=1:2时,△ABD的面积=×△ABC的面积=2,∵AC∥OB,∴△DOA的面积=△ABD的面积=2,∴|k|=2,即k=±4,又∵k<0,∴k=﹣4;当AD:CD=2:1时,△ABD的面积=×△ABC的面积=4,∵AC∥OB,∴△DOA的面积=△ABD的面积=4,∴|k|=4,即k=±8,又∵k<0,∴k=﹣8,故答案为:﹣4或﹣8.【点评】本题主要考查了反比例函数与一次函数交点问题,以及反比例函数系数k的几何意义的运用.过反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.解题时注意分类思想的运用.16.(3分)(2017•鄂州)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是2≤m≤8.【分析】根据向下平移横坐标不变,分别代入B的横坐标和D的横坐标求得对应的函数值,即可求得m的取值范围.【解答】解:设平移后的解析式为y=y=(x+1)2﹣m,将B点坐标代入,得4﹣m=2,解得m=2,将D点坐标代入,得9﹣m=1,解得m=8,y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m 的取值范围是2≤m≤8,故答案为:2≤m≤8.【点评】本题考查了二次函数图象与几何变换,利用了矩形性质和二次函数图象上点的坐标特征,平移的性质的应用,把B,D的坐标代入是解题关键.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(8分)(2017•鄂州)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.【分析】先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x的值,代入求解可得.【解答】解:原式=(+)÷=•=•=,解不等式组得:﹣1≤x<,∴不等式组的整数解有﹣1、0、1、2,∵不等式有意义时x≠±1、0,∴x=2,则原式=0.【点评】本题主要考查分式的化简求值及解一元一次不等式组的能力,熟练掌握分式的混合运算顺序和法则及解不等式组的能力、分式有意义的条件是解题的关键.18.(8分)(2017•鄂州)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD 于E.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.【分析】(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE ﹣S△AEF=×4×8﹣×4×3=10.【点评】本题考查了翻折变换﹣折叠的性质,全等三角形的判定和性质,矩形的性质,勾股定理,三角形面积的计算,熟练掌握折叠的性质是解题的关键.19.(8分)(2017•鄂州)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为144°;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有1人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.【分析】(1)用“经常参加”所占的百分比乘以360°计算得到“经常参加”所对应的圆心角的度数;先求出“经常参加”的人数,然后减去其它各组人数得出喜欢足球的人数;进而补全条形图;(2)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(3)先利用树状图展示所有12种等可能的结果数,找出选中的两个项目恰好是“乒乓球”、“篮球”所占结果数,然后根据概率公式求解.【解答】解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“经常参加”的人数为:40×40%=16人,喜欢足的学生人数为:16﹣6﹣4﹣3﹣2=1人;补全统计图如图所示:故答案为:144°,1;(2)全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数约为:1200×=180人;(3)设A代表“乒乓球”、B代表“篮球”、C代表“足球”、D代表“羽毛球”,画树状图如下:共有12种等可能的结果数,其中选中的两个项目恰好是“乒乓球”、“篮球”的情况占2种,所以选中“乒乓球”、“篮球”这两个项目的概率是=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了样本估计总体、扇形统计图和条形统计图.20.(8分)(2017•鄂州)关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k的不等式求解可得;(2)由韦达定理知x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,将原式两边平方后把x1+x2、x1x2代入得到关于k的方程,求解可得.【解答】解:(1)∵方程有两个不相等的实数根,∴△=[﹣(2k﹣1)]2﹣4(k2﹣2k+3)=4k﹣11>0,解得:k>;(2)存在,∵x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,∴将|x1|﹣|x2|=两边平方可得x12﹣2x1x2+x22=5,即(x1+x2)2﹣4x1x2=5,代入得:(2k﹣1)2﹣4(k2﹣2k+3)=5,解得:4k﹣11=5,解得:k=4.【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.21.(9分)(2017•鄂州)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.【分析】(1)设DE=x,可得EF=DE﹣DF=x﹣2,从而得AF==(x﹣2),再求出CD==x、BC==2,根据AF=BD可得关于x的方程,解之可得;(2)延长NM交DB延长线于点P,知AM=BP=3,由(1)得CD=x=2、BC=2,根据NP=PD且AB=MP可得答案.【解答】解:(1)如图,设DE=x,∵AB=DF=2,∴EF=DE﹣DF=x﹣2,∵∠EAF=30°,∴AF===(x﹣2),又∵CD===x,BC===2,∴BD=BC+CD=2+x由AF=BD可得(x﹣2)=2+x,解得:x=6,∴树DE的高度为6米;(2)延长NM交DB延长线于点P,则AM=BP=3,由(1)知CD=x=×6=2,BC=2,∴PD=BP+BC+CD=3+2+2=3+4,∵∠NDP=45°,且MP=AB=2,∴NP=PD=3+4,∴NM=NP﹣MP=3+4﹣2=1+4,∴食堂MN的高度为1+4米.【点评】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.22.(9分)(2017•鄂州)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O 的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC 上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.【分析】(1)连接OA、OE交BC于T.想办法证明OE⊥BC即可;(2)由ED、EA的长是一元二次方程x2﹣5x+5=0的两根,可得ED•EA=5,由△BED∽△AEB,可得=,推出BE2=DE•EA=5,即可解决问题;(3)作AH⊥OM于H.求出AH、BH即可解决问题;【解答】(1)证明:连接OA、OE交BC于T.∵AM是切线,∴∠OAM=90°,∴∠PAD+∠OAE=90°,∵PA=PD,∴∠PAD=∠PDA=∠EDT,∵OA=OE,∴∠OAE=∠OEA,∴∠EDT+∠OEA=90°,∴∠DTE=90°,∴OE⊥BC,∴=.(2)∵ED、EA的长是一元二次方程x2﹣5x+5=0的两根,∴ED•EA=5,∵=,∴∠BAE=∠EBD,∵∠BED=∠AEB,∴△BED∽△AEB,∴=,∴BE2=DE•EA=5,∴BE=.(3)作AH⊥OM于H.在Rt△AMO中,∵AM=6,sin∠M==,设OA=m,OM=3m,∴9m2﹣m2=72,∴m=3,∴OA=3,OM=9,易知∠OAH=∠M,∴tan∠OAD==,∴OH=1,AH=2.BH=2,∴AB===2.【点评】本题考查切线的性质、解直角三角形、勾股定理、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.23.(10分)(2017•鄂州)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;(3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答案.【解答】解:(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,因为x为偶数,所以当销售单价定为80﹣6=74元或80﹣8=72时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.【点评】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.24.(12分)(2017•鄂州)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;。
湖北鄂州数学(含答案) 2017年中考数学真题试卷

鄂州市2017年初中毕业生学业考试数学试题一、选择题(每小题3分,共30分)1.下列实数是无理数的是()A. 23B. 3C.0 D.-1.0101012.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. 2015年开工,预计2017年完工.请将2.3亿用科学记数法表示为()A.2.3⨯108B.0.23⨯109C.23⨯107D.2.3⨯1093.下列运算正确的是()A. 5x -3x =2B. (x -1)2= x2 -1C. (-2x2)3= -6x6D. x6÷x2= x44.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()(第4题图) A. B. C. D.5.对于不等式组1561,333(1)5 1.x xx x⎧--⎪⎨⎪-<-⎩≤下列说法正确的是()A. 此不等式组的正整数解为1,2,3B. 此不等式组的解集为-1<x≤7 6C. 此不等式组有5个整数解D. 此不等式组无解6.如图AB∥CD,E为CD上一点,射线EF经过点A,EC=EA,若∠CAE =30°,则∠BAF =( )A. 30°B. 40°C. 50°D. 60°(第6题图)7.已知二次函数y = (x+m)2 - n的图象如图所示,则一次函数y =mx + n与反比例函数mnyx=的图象可能是()(第7题图) A. B. C. D.8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校.小东始终以100m/min 的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:(1)打电话时,小东和妈妈距离是1400m;(2)小东与妈妈相遇后,妈妈回家速度是50m/min;(3)小东打完电话后,经过27min到达学校;(4)小东家离学校的距离为2900m.其中正确的个数是()A.1个B.2个C.3个D.4个9.如图抛物线2y ax bx c=++的图象交x轴于A (2,0)和点B,交y轴负半轴于点C,且OB =OC.下列结论:①22b c-=;②12a=;③1ac b=-;④0a bc+>.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB =BC+AD,∠DAC =45°,E为CD上一点,且∠BAE =45°,若CD =4,则△ABE的面积为()A. 127B.247C.487D.507(第8题图)(第9题图)(第10题图)(第15题图)二、填空题(每小题3分,共18分)11.分解因式:ab2 -9a = .12.若11622y x x=-+--则xy = .13.一个样本为1,3,2,2,a,b,c .已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=23,点D为AC与反比例函数kyx=的图象的交点,若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线2(1)y x=+向下平移m个单位(m> 0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值:233(1)11x x x xx x---+÷++其中x的值从不等式组23,241xx-⎧⎨-<⎩≤的整数解中选取.18.(本题满分8分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E. (1)求证:△AFE ≌ △CDE ;(2)若AB =4,BC =8,求图中阴影部分的面积.(第18题图)19.(本题满分8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:(第19题图)根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为 ;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有 人,并补全条形统计图;(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列课外体育锻炼情况扇形统计图经常参加课外体育锻炼的学生 最喜欢的一种项目条形统计图表或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率. 20.(本题满分8分)关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根. (1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2 ,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.21.(本题满分9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(本题满分9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点. ⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且P A =PD,AD的延长线交⊙O于点E.(1)求证:BE= CE;(2)若ED、EA的长是一元二次方程x2-5x+5=0的两根,求BE的长;(3)若MA =62,1sin3AMF∠=, 求AB的长.23.(本题满分10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(本题满分12分)已知,抛物线23y ax bx=++(a< 0 )与x轴交于A(3,0)、B两点,与y轴交于点C. 抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE =1 2 .(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使12ACP ACDS S∆∆=,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.(第24题图)鄂州市2017年初中毕业生学业考试数学试题答案及评分标准一、选择题(每小题3分,共30分)1.B2. A3. D4. D5. A6. D7. C8. D9. C 10. D二、填空题(每小题3分,共18分)11. 12. 13. 214. 15. 16. 2≤≤8三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)解:原式= 或………………………………… 3分解不等式①得-1 ………………………………… 4分解不等式②得………………………………… 5分不等式组的解集为又∵∴当时,原式= ………………………………… 8分18.(本题满分8分)(1)证明:由翻折性质知:AF =AB, ∠F =∠B =90°,∵四边形ABCD为矩形∴AB =CD∠B =∠D=90°∴AF =CD∠F =∠D=90°在△AFE 和△CDE∠F =∠B∠F =∠BAF =CD∴△AFE ≌△CDE (AAS)………………………………… 4分(2)解:∵△AFE ≌△CDE∴AE =CE设AE =CE =,则DE = 在Rt△CDE中,即解得∴AE =5∴………………………………… 8分19.(本题满分8分)(1)144° 1 补全条形统计图略………………………………… 3分(2)1200 ………………………………… 5分(3)P= ………………………………… 8分20.(本题满分8分)解:(1)依题意有△=解不等式得………………………………… 3分(2)方程两边同时平方得,由一元二次方程根与系数的关系知:∵∴∴∴即………………………………… 6分∴∵∴满足题设条件 . ………………………………… 8分21.(本题满分9分)解:(1)设CD =, 在Rt△CDE中,ED =CD,∴ED=又∵FD =AB =2. ∴EF =ED-FD =在Rt△AFE中,AF =EF,而∴AF =在Rt△ABC中,BC =AB,而∠BAC =90°-∠ACB =60°∴BC =又AF =BC +CD,∴∴∴DE =. …………………………………4分∴树高6米. …………………………………5分(2)延长NM交直线BD于点G,∵∠NDG=45°∴NG =GD =MA +BC +CD∴MN =3+ ………………………………… 8分∴食堂高度为()米. ………………………………… 9分22.(本题满分9分)(1)证明:连结OA、OE,∵OA =OE∴∠OAE =∠OEA∵MA是⊙O的切线∴∠MAO =∠MAD +∠OAD =90°∵PA =PD∴∠PAD =∠PDA∵∠EDC =∠ADB∴∠EDC +∠AEO =90°∴OE⊥BC∴⌒BE=⌒CE………………………………………………………… 3分(2)由(1)知∠CBE =∠BAE∵∠BED =∠AE B ∴△EBD ∽△EAB∴∴∵ED、EA的长是一元二次方程的两根∴∴………………………………………………………… 6分(3)在Rt△AMF中AO=MO∴MO =3AO∵∴AO=3过点B作BN∥MA交OA于点N,则∠NBO=∠M∵MA⊥OA∴BN⊥OA∴ON =OB=3 ∴NB=,AN=2∴AB= ………………………………………………………… 9分(此题证△AMB∽△FMA,用AB表示AF,在Rt△ABF中用勾股定理求AB亦可)23.(本题满分10分)解:(1)………………………………………………………… 2分(2)∵-10<0且为偶数∴当或时,有最大值为5280.此时销售单价为80-6=74或80-8=72.………………………………………………………… 5分即当销售单价为72元或74元时,每周销售利润最大,最大为5280元.………………………………………………………… 6分(3)依题意有解得由二次函数图象知.设进货成本为P元,则有P=50,∵500>0,一次函数P随的增大而增大,∴当时,P有最小值为10000 ………………………………… 9分即该个体商户至少要准备10000元进货成本. ……………………………10分24.(本题满分12分)(1)∵抛物线的对称轴是直线 =1,点A(3,0)根据抛物线的对称性知点B的坐标为(-1,0)将(3,0)(-1,0)带入抛物线解析式中得∴即为所求. ………………………………… 2分当 =1时,∴顶点D(1,4). ………………………………… 3分(2)当 =0时,∴点C的坐标为(0,3)∴∴∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径∵点E在轴C点的上方,且CE = .∴E(0,)∴∴∴△AED为直角三角形,∠ADE =90°.∴AD⊥DE又∵AD为△ACD外接圆的直径∴DE是△ACD外接圆的切线………………………………… 6分(此问中用相似证∠ADE =90°亦可)(3)解法一:先求直线AC 的解析式,再求CD 的中点坐标N (,),过点N 作NP ∥AC ,可求直线NP 的解析式为,联立,解得解法二:过直线AC 上方抛物线的点P 作PM ⊥轴交AC 于点F ,交轴于点M ,设M ()则先求直线AC 的解析式,F (),P ()∴ ∴ ∴ ∴∴ ……………………… 9分(4)………………………………… 12分随州市2017年初中毕业升学考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2-的绝对值是( ) A .2B .2-C .12D .12-2.下列运算正确的是( ) A .336a a a +=B .222()a b a b -=-C .326()a a -= D .1226a a a ÷=3.如图是某几何体的三视图,这个几何体是( )A.圆锥B.长方体C.圆柱D.三棱柱4.一组数据2,3,5,4,4的中位数和平均数分别是()A.4和3.5 B.4和3.6 C.5和3.5 D.5和3.65.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行∠=∠的第一步是以点O为圆心,以任意长为半径画弧①,分别6.如图,用尺规作图作AOC AOB交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A .以点F 为圆心,OE 长为半径画弧B .以点F 为圆心,EF 长为半径画弧C .以点E 为圆心,OE 长为半径画弧D .以点E 为圆心,EF 长为半径画弧7.小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( )A .203011010585x y x y +=⎧⎨+=⎩B .201011030585x y x y +=⎧⎨+=⎩C .205110301085x y x y +=⎧⎨+=⎩D .520110103085x y x y +=⎧⎨+=⎩8.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数()n 和芍药的数量规律,那么当11n =时,芍药的数量为( )A .84株B .88株C .92株D .121株9.对于二次函数223y x mx =--,下列结论错误的是( ) A .它的图象与x 轴有两个交点 B .方程223x mx -=的两根之积为3- C .它的图象的对称轴在y 轴的右侧D .x m <时,y 随x 的增大而减小10.如图,在矩形ABCD 中,AB BC <,E 为CD 边的中点.将ADE ∆绕点E 顺时针旋转180︒,点D 的对应点为C ,点A 的对应点为F ,过点E 作ME AF ⊥交BC 于点M ,连接AM 、BD 交于点N .现有下列结论:①AM AD MC =+;②AM DE BM =+;③2D E A D C M =⋅;④点N为ABM ∆的外心.其中正确结论的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分18分,将答案填在答题纸上)11.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为 .12.“抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个).13.如图,已知AB 是O 的弦,半径OC 垂直AB ,点D 是O 上一点,且点D 与点C 位于弦AB两侧,连接AD 、CD 、OB ,若70BOC ∠=︒,则ADC ∠= 度.14.在ABC ∆中,6AB =,5AC =,点D 在边AB 上,且2AD =,点E 在边AC 上,当AE = 时,以A 、D 、E 为顶点的三角形与ABC ∆相似.15.如图,AOB ∠的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点(3,0)N 是OB 上的一定点,点M 是ON 的中点,30AOB ∠=︒,要使PM PN +最小,则点P 点的坐标为 .16.在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间()t h 之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km ;③乙车出发527h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是 (填写所有正确结论的序号).三、解答题 (本大题共9题,共72.解答应写出文字说明、证明过程或演算步骤.)17.计算:2021()(2017)(3)|2|3π---+---. 18.解分式方程:2311xx x x +=--. 19.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x =的图象于点B ,32AB =.(1)求反比例函数的解析式;(2)若11(,)P x y 、22(,)Q x y 是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.20.风电已成为我国继煤电、水电之后的第三大电源.风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55︒,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45︒.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG 为10米,BG HG ⊥,CH AH ⊥,求塔杆CH 的高.(参考数据:tan 55 1.4︒≈,tan 350.7︒≈,sin 550.8︒≈,sin 350.6︒≈)21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分).A 组:7580x ≤<;B 组:8085x ≤<;C 组:8590x ≤<;D 组:9095x ≤<;E 组:95100x ≤<,并绘制如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有 名,请补全频率分布直方图;(2)扇形统计图中,C 组对应的圆心角是多少度?E 组人数占参赛选手的百分比是多少? (3)学校准备组成8人的代表队参加市级决赛,E 组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.如图,在Rt ABC ∆中,90C ∠=︒,AC BC =,点O 在AB 上,经过点A 的O 与BC 相切于点D ,交AB 于点E .(1)求证:AD 评分BAC ∠;(2)若1CD =,求图中阴影部分的面积(结果保留π).23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (115x ≤<)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点. 下面是两位学生有代表性的证明思路: 思路1:不需作辅助线,直接证三角形全等; 思路2:不证三角形全等,连接BD 交AF 于点H .、 ……请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的条件下,当135ABE ∠=︒时,延长AD 、EF 交于点N ,求AMNE的值;(3)在(2)的条件下,若AF k AB =(k 为大于2的常数),直接用含k 的代数式表示AMMF的值.25.在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++(a 、b 、c 为常数,0a ≠)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线223432333y x x =--+与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将ACM ∆以AM 所在直线为对称轴翻折,点C 的对称点为N ,若AMN ∆为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.。
湖北鄂州数学(含答案) 2017年中考数学真题试卷

鄂州市2017年初中毕业生学业考试数学试题一、选择题(每小题3分,共30分)1.下列实数是无理数的是()A. 23B. 3C.0 D.-1.0101012.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. 2015年开工,预计2017年完工.请将2.3亿用科学记数法表示为()A.2.3⨯108B.0.23⨯109C.23⨯107D.2.3⨯1093.下列运算正确的是()A. 5x -3x =2B. (x -1)2= x2 -1C. (-2x2)3= -6x6D. x6÷x2= x44.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()(第4题图) A. B. C. D.5.对于不等式组1561,333(1)5 1.x xx x⎧--⎪⎨⎪-<-⎩≤下列说法正确的是()A. 此不等式组的正整数解为1,2,3B. 此不等式组的解集为-1<x≤7 6C. 此不等式组有5个整数解D. 此不等式组无解6.如图AB∥CD,E为CD上一点,射线EF经过点A,EC=EA,若∠CAE =30°,则∠BAF =( )A. 30°B. 40°C. 50°D. 60°(第6题图)7.已知二次函数y = (x+m)2 - n的图象如图所示,则一次函数y =mx + n与反比例函数mnyx=的图象可能是()(第7题图) A. B. C. D.8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校.小东始终以100m/min 的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:(1)打电话时,小东和妈妈距离是1400m;(2)小东与妈妈相遇后,妈妈回家速度是50m/min;(3)小东打完电话后,经过27min到达学校;(4)小东家离学校的距离为2900m.其中正确的个数是()A.1个B.2个C.3个D.4个9.如图抛物线2y ax bx c=++的图象交x轴于A (2,0)和点B,交y轴负半轴于点C,且OB =OC.下列结论:①22b c-=;②12a=;③1ac b=-;④0a bc+>.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB =BC+AD,∠DAC =45°,E为CD上一点,且∠BAE =45°,若CD =4,则△ABE的面积为()A. 127B.247C.487D.507(第8题图)(第9题图)(第10题图)(第15题图)二、填空题(每小题3分,共18分)11.分解因式:ab2 -9a = .12.若11622y x x=-+--则xy = .13.一个样本为1,3,2,2,a,b,c .已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=23,点D为AC与反比例函数kyx=的图象的交点,若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线2(1)y x=+向下平移m个单位(m> 0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值:233(1)11x x x xx x---+÷++其中x的值从不等式组23,241xx-⎧⎨-<⎩≤的整数解中选取.18.(本题满分8分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E.(1)求证:△AFE ≌ △CDE ;(2)若AB =4,BC =8,求图中阴影部分的面积.(第18题图)19.(本题满分8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:(第19题图)根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为 ;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有 人,并补全条形统计图;(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列课外体育锻炼情况扇形统计图 经常参加课外体育锻炼的学生最喜欢的一种项目条形统计图表或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率. 20.(本题满分8分)关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根. (1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2 ,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.21.(本题满分9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(本题满分9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点. ⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且P A =PD,AD的延长线交⊙O于点E.(1)求证:BE= CE;(2)若ED、EA的长是一元二次方程x2-5x+5=0的两根,求BE的长;(3)若MA =62,1sin3AMF∠=, 求AB的长.23.(本题满分10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(本题满分12分)已知,抛物线23y ax bx=++(a< 0 )与x轴交于A(3,0)、B两点,与y轴交于点C. 抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE =1 2 .(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使12ACP ACDS S∆∆=,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.(第24题图)鄂州市2017年初中毕业生学业考试数学试题答案及评分标准一、选择题(每小题3分,共30分)1.B2. A3. D4. D5. A6. D7. C8. D9. C 10. D二、填空题(每小题3分,共18分)11. 12. 13. 214. 15. 16. 2≤≤8三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)解:原式= 或………………………………… 3分解不等式①得-1 ………………………………… 4分解不等式②得………………………………… 5分不等式组的解集为又∵∴当时,原式= ………………………………… 8分18.(本题满分8分)(1)证明:由翻折性质知:AF =AB, ∠F =∠B =90°,∵四边形ABCD为矩形∴AB =CD∠B =∠D=90°∴AF =CD∠F =∠D=90°在△AFE 和△CDE∠F =∠B∠F =∠BAF =CD∴△AFE ≌△CDE (AAS)………………………………… 4分(2)解:∵△AFE ≌△CDE∴AE =CE设AE =CE =,则DE = 在Rt△CDE中,即解得∴AE =5∴………………………………… 8分19.(本题满分8分)(1)144° 1 补全条形统计图略………………………………… 3分(2)1200 ………………………………… 5分(3)P= ………………………………… 8分20.(本题满分8分)解:(1)依题意有△=解不等式得………………………………… 3分(2)方程两边同时平方得,由一元二次方程根与系数的关系知:∵∴∴∴即………………………………… 6分∴∵∴满足题设条件 . ………………………………… 8分21.(本题满分9分)解:(1)设CD =, 在Rt△CDE中,ED =CD,∴ED=又∵FD =AB =2. ∴EF =ED-FD =在Rt△AFE中,AF =EF,而∴AF =在Rt△ABC中,BC =AB,而∠BAC =90°-∠ACB =60°∴BC =又AF =BC +CD,∴∴∴DE =. …………………………………4分∴树高6米. …………………………………5分(2)延长NM交直线BD于点G,∵∠NDG=45°∴NG =GD =MA +BC +CD∴MN =3+ ………………………………… 8分∴食堂高度为()米. ………………………………… 9分22.(本题满分9分)(1)证明:连结OA、OE,∵OA =OE∴∠OAE =∠OEA∵MA是⊙O的切线∴∠MAO =∠MAD +∠OAD =90°∵PA =PD∴∠PAD =∠PDA∵∠EDC =∠ADB∴∠EDC +∠AEO =90°∴OE⊥BC∴⌒BE=⌒CE………………………………………………………… 3分(2)由(1)知∠CBE =∠BAE∵∠BED =∠AE B ∴△EBD ∽△EAB∴∴∵ED、EA的长是一元二次方程的两根∴∴………………………………………………………… 6分(3)在Rt△AMF中AO=MO∴MO =3AO∵∴AO=3过点B作BN∥MA交OA于点N,则∠NBO=∠M∵MA⊥OA∴BN⊥OA∴ON =OB=3 ∴NB=,AN=2∴AB= ………………………………………………………… 9分(此题证△AMB∽△FMA,用AB表示AF,在Rt△ABF中用勾股定理求AB亦可)23.(本题满分10分)解:(1)………………………………………………………… 2分(2)∵-10<0且为偶数∴当或时,有最大值为5280.此时销售单价为80-6=74或80-8=72.………………………………………………………… 5分即当销售单价为72元或74元时,每周销售利润最大,最大为5280元.………………………………………………………… 6分(3)依题意有解得由二次函数图象知.设进货成本为P元,则有P=50,∵500>0,一次函数P随的增大而增大,∴当时,P有最小值为10000 ………………………………… 9分即该个体商户至少要准备10000元进货成本. ……………………………10分24.(本题满分12分)(1)∵抛物线的对称轴是直线 =1,点A(3,0)根据抛物线的对称性知点B的坐标为(-1,0)将(3,0)(-1,0)带入抛物线解析式中得∴即为所求. ………………………………… 2分当 =1时,∴顶点D(1,4). ………………………………… 3分(2)当 =0时,∴点C的坐标为(0,3)∴∴∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径∵点E在轴C点的上方,且CE = .∴E(0,)∴∴∴△AED为直角三角形,∠ADE =90°.∴AD⊥DE又∵AD为△ACD外接圆的直径∴DE是△ACD外接圆的切线………………………………… 6分(此问中用相似证∠ADE =90°亦可)(3)解法一:先求直线AC 的解析式,再求CD 的中点坐标N (,),过点N 作NP ∥AC ,可求直线NP 的解析式为,联立,解得解法二:过直线AC 上方抛物线的点P 作PM ⊥轴交AC 于点F ,交轴于点M ,设M ()则先求直线AC 的解析式,F (),P ()∴∴∴∴∴ ……………………… 9分(4)………………………………… 12分随州市2017年初中毕业升学考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2-的绝对值是( )A .2B .2-C .12D .12- 2.下列运算正确的是( )A .336a a a +=B .222()a b a b -=- C .326()a a -= D .1226a a a ÷= 3.如图是某几何体的三视图,这个几何体是( )A.圆锥B.长方体C.圆柱D.三棱柱4.一组数据2,3,5,4,4的中位数和平均数分别是()A.4和3.5 B.4和3.6 C.5和3.5 D.5和3.65.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行∠=∠的第一步是以点O为圆心,以任意长为半径画弧①,分别6.如图,用尺规作图作AOC AOB交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A .以点F 为圆心,OE 长为半径画弧B .以点F 为圆心,EF 长为半径画弧C .以点E 为圆心,OE 长为半径画弧D .以点E 为圆心,EF 长为半径画弧7.小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( )A .203011010585x y x y +=⎧⎨+=⎩B .201011030585x y x y +=⎧⎨+=⎩C .205110301085x y x y +=⎧⎨+=⎩D .520110103085x y x y +=⎧⎨+=⎩ 8.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数()n 和芍药的数量规律,那么当11n =时,芍药的数量为( )A .84株B .88株C .92株D .121株 9.对于二次函数223y x mx =--,下列结论错误的是( )A .它的图象与x 轴有两个交点B .方程223x mx -=的两根之积为3- C .它的图象的对称轴在y 轴的右侧 D .x m <时,y 随x 的增大而减小 10.如图,在矩形ABCD 中,AB BC <,E 为CD 边的中点.将ADE ∆绕点E 顺时针旋转180︒,点D 的对应点为C ,点A 的对应点为F ,过点E 作ME AF ⊥交BC 于点M ,连接AM 、BD 交于点N .现有下列结论:①AM AD MC =+;②A M D E B M =+;③2D E A D CM =⋅;④点N为ABM ∆的外心.其中正确结论的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分18分,将答案填在答题纸上)11.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为 .12.“抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个).13.如图,已知AB 是O 的弦,半径OC 垂直AB ,点D 是O 上一点,且点D 与点C 位于弦AB两侧,连接AD 、CD 、OB ,若70BOC ∠=︒,则ADC ∠= 度.14.在ABC ∆中,6AB =,5AC =,点D 在边AB 上,且2AD =,点E 在边AC 上,当AE = 时,以A 、D 、E 为顶点的三角形与ABC ∆相似.15.如图,AOB ∠的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点(3,0)N 是OB 上的一定点,点M 是ON 的中点,30AOB ∠=︒,要使PM PN +最小,则点P 点的坐标为 .16.在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间()t h 之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km ;③乙车出发527h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是 (填写所有正确结论的序号).三、解答题 (本大题共9题,共72.解答应写出文字说明、证明过程或演算步骤.)17.计算:2021()(2017)(3)|2|3π---+---.18.解分式方程:2311x x x x +=--. 19.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x =的图象于点B ,32AB =.(1)求反比例函数的解析式;(2)若11(,)P x y 、22(,)Q x y 是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.20.风电已成为我国继煤电、水电之后的第三大电源.风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55︒,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45︒.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG 为10米,BG HG ⊥,CH AH ⊥,求塔杆CH 的高.(参考数据:tan55 1.4︒≈,tan350.7︒≈,sin550.8︒≈,sin350.6︒≈)21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分).A 组:7580x ≤<;B 组:8085x ≤<;C 组:8590x ≤<;D 组:9095x ≤<;E 组:95100x ≤<,并绘制如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有 名,请补全频率分布直方图;(2)扇形统计图中,C 组对应的圆心角是多少度?E 组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E 组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.如图,在Rt ABC ∆中,90C ∠=︒,AC BC =,点O 在AB 上,经过点A 的O 与BC 相切于点D ,交AB 于点E .(1)求证:AD 评分BAC ∠;(2)若1CD =,求图中阴影部分的面积(结果保留π).23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (115x ≤<)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD 交AF 于点H .、……请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的条件下,当135ABE ∠=︒时,延长AD 、EF 交于点N ,求AM NE的值;(3)在(2)的条件下,若AF k AB =(k 为大于2的常数),直接用含k 的代数式表示AM MF的值.25.在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++(a 、b 、c 为常数,0a ≠)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”. 已知抛物线223432333y x x =--+与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将ACM ∆以AM 所在直线为对称轴翻折,点C 的对称点为N ,若AMN ∆为该抛物线的“梦想三角形”,求点N 的坐标;。
鄂州市七年级上学期数学期中考试试卷

鄂州市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·北海期末) 若a为有理数,且|a|=2,那么a是()A . 2B . ﹣2C . 2或﹣2D . 42. (2分) (2016七上·道真期末) 下列各数中,负数有()A . 2个B . 3个C . 4个D . 5个3. (2分)(2017·日照) 铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A . 4.64×105B . 4.64×106C . 4.64×107D . 4.64×1084. (2分)下面说法中①﹣a一定是负数;②0.5πab是二次单项式;③倒数等于它本身的数是±1;④若|a|=﹣a,则a<0;⑤由﹣2(x﹣4)=2变形为x﹣4=﹣1,其中正确的个数是()A . 1个B . 2个C . 3个D . 4个5. (2分) (2019七上·海淀期中) 已知是关于的一元一次方程,则的值为()A .B . -1C . 1D . 以上答案都不对6. (2分) (2019七上·渭源月考) 在整式5abc,-7x +1,-,21 ,中,单项式共有()A . 1个B . 2个C . 3个D . 4个7. (2分)下列说法:①一个有理数不是整数就是分数;②有理数包括正有理数和负有理数;③分数可分为正分数和负分数;④绝对值最小的有理数是0;⑤存在最大的负整数;⑥不存在最小的正有理数;⑦两个有理数,绝对值大的反而小。
其中正确的个数是()A . 3个B . 4个C . 5个D . 6个8. (2分)下列各式一定成立的是()A . 3(x+8)=3x+8B . ﹣(x﹣6)=﹣x﹣6C . ﹣a+b﹣c+d=﹣a+(b+c﹣d)D . ﹣(a﹣b+c)+d=﹣a+b﹣c+d9. (2分) (2016七上·龙海期末) 下列各组单项式中,不是同类项的是()A . ﹣2与5B . 6a2mb与﹣a2mbC . 2abc3与﹣D . x3y与 xy310. (2分)有一列数a1 , a2 , a3 ,…,an从第二个数开始每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008为()A . 2008B . 2C .D . -1二、填空题 (共8题;共9分)11. (1分)已知方程的解满足,则 ________.12. (1分) (2018八上·兴义期末) 已知a、b都是不为零的常数,如果多项式(x+a)(x+b)的乘积中不含x 项,则a+b=________13. (1分)(2020·随县) 幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方---九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为________.14. (1分) (2020七上·丹东期末) 七年一班要给每人添置一套新桌椅.每行人,排好行后,发现还有人没有新桌椅,请问共需要________套桌椅.15. (1分) (2019七下·定安期中) 当 =________时,关于的方程与方程的解相同.16. (1分) (2017七上·西湖期中) 若,则代数式________.17. (1分) (2018七上·翁牛特旗期末) 小王在静水中划船每小时速度12Km,今往返于某河,逆流时用了10h,顺流时用了6h,求此河的水流速度________18. (2分) (2020七下·中山期末) 如果实数x、y满足方程组,那么(x+2y)2020=________.三、解答题 (共8题;共76分)19. (20分) (2019七上·牡丹江期中) 计算:(1)(2)(3)(4)20. (10分) (2019七下·武汉月考) 解方程:(1) 5﹣2x=9﹣4x(2)21. (5分) (2019七上·东莞期末) 先化简,再求值3(a2b﹣ab2)﹣2(2a2b﹣1)+3ab2﹣1,其中a=﹣2,b=1.22. (10分) (2019七上·滨湖期中) 合并同类项:(1) 5a-4b-3a-b(2) 3( -2x-1) -2(2 -3x)+323. (5分)已知有理数a、b、c在数轴上对应的点的位置如图所示,化简:|a+b|﹣|b|﹣|c﹣a|+3|a﹣b|.24. (5分) (2016九上·海南期中) 目前我省小学和初中在校生共136万人,其中小学在校生人数比初中在校生人数的2倍少2万人.问目前我省小学和初中在校生各有多少万人?25. (15分) (2017七上·宁江期末) 计算:﹣14﹣(﹣2)3× ﹣16×(﹣ + )26. (6分) (2016七上·单县期中) 有两只小蚂蚁在如图所示的数轴上爬行,蚂蚁甲从图中点A的位置沿数轴向右爬了4个单位长度到达点C处,蚂蚁乙从图中点B的位置沿数轴向左爬了8个单位长度到达点D处.(1)在图中描出点C、D的位置;(2)点E到点C与点D的距离相等,在数轴上描出点E的位置,并用“<”把点A、B、C、D、E所表示的数连接起来.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共76分)19-1、19-2、19-3、19-4、20-1、20-2、21-1、22-1、22-2、23-1、24-1、25-1、26-1、26-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26. (14 分) 如图, 已知数轴上点 A 表示的数为 8, B 是数轴上一点, 且 AB=14. 动
第 3 页(共 19 页)
点 P 从点 A 出发, 以每秒 5 个单位长度的速度沿数轴向左匀速运动, 设运动时间 为 t(t>0)秒.
(1)写出数轴上点 B 表示的数 式表示) ;
,点 P 表示的数
18. (3 分)若 A=4x2﹣3x﹣2,B=4x2﹣3x﹣4,则 A,B 的大小关系是
19. (3 分)如图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律, 则摆第 n 个小房子需要 块石子.
20. (3 分)当 x=﹣
时,代数式 ax3﹣bx+2 的值是 9,那么当 x=
第 2 页(共 19 页)
9. (3 分)在长方形 ABCD 中,放入 6 个长度相同的小长方形,所标尺寸如图所 示,设小长方形的宽 AE=xcm,依题意可列方程(
第 1 页(共 19 页)
)
A.6+2x=14﹣3xB.6+2x=x+(14﹣3x) C.6+2x=14﹣x D.14﹣3x=6+2x 10. (3 分)下列说法:①平方等于 4 的数只有 2;②若 a,b 互为相反数,则 = ﹣1;③若|﹣a|=a,则(﹣a)3<0;④若 ab≠0,则 + 的取值在 0,1,2, )
3. (3 分)有理数 a,b 在数轴上的位a﹣b>0 C.ab>0
D . >0 )
4. (3 分)太阳的直径约为 1 390 000 千米,这个数用科学记数法表示为( A.0.139×107 千米 B.1.39×106 千米 C.13.9×105 千米 D.139×104 千米 5. (3 分)代数式 是( A.3 ) B.4 C.5 D.6 ) ,4xy, ,a,2009, ,
中单项式的个数
6. (3 分)若|m﹣3|+(n+2)2=0,则 m+2n 的值为( A.﹣4 B.﹣1 C.0 D.4
7. (3 分)一列数 a1、a2、a3…,其中 则 a3 的值为( A. B. ) C. D.
(n 为不小于 2 的整数) ,
8. (3 分) 观察下列等式: 31=3, 32=9, 33=27, 34=81, 35=243, 36=729, 37=2187, … 解答下列问题:3+32+33+34+…+32016 的末位数字是( A.0 B.1 C.3 D.7 )
﹣2 这 4 个数中,不能得到的是 0,其中正确的个数为( A.0 个 B.1 个 C.2 个 D.3 个
二、填空题(本大题共 10 小题,每小题 3 分,共 30 分) 11. (3 分)若|x|=|﹣3|,则 x= ;若 x2=(﹣3)2,则 x= . .
12. (3 分)绝对值小于 10 的所有整数的和为
时,代数式
ax3﹣bx+2 的值为
.
三、解答题 21. (12 分)计算: (1) (﹣3)2﹣( )3× ﹣6÷|﹣ | (2)﹣32﹣(﹣3)2×(﹣2)﹣|﹣2|2﹣(﹣98)99﹣9899 (3) + + + +…+ .
22. (10 分)先化简,再求值. (1)3x2y﹣[5xy﹣(2xy﹣3)+2x2y],其中 x=﹣1,y=2 (2)已知 xy=﹣2,x+y=3,求代数式(3xy+10y)+[5x﹣(2xy+2y﹣3x)]的值. 23. (8 分)出租车司机小李某天下午运营全是在东西走向的人们大道上进行的, 如果规定向东为正,向西为负,他这天下午行驶里程如下: (单位:千米)+15, ﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18. (1)他将最后一名乘客送到目的地时,距下午出车地点是多少千米? (2)若汽车耗油量为 a 升/千米,这天下午共耗油多少升? 24. (6 分)已知(a﹣3)2+|b﹣2|=0,c 和 d 互为倒数,m 和 n 的绝对值相等, 且 mn<0,y 为最大的负整数.求(y+b)2+m(a+cd)+nb2 的值. 25. (10 分)阅读下列材料: 1×2= (1×2×3﹣0×1×2) , 2×3= (2×3×4﹣1×2×3) , 3×4= (3×4×5﹣2×3×4) , 由以上三个等式相加,可得: 1×2+2×3+3×4= ×3×4×5=20. 读完以上材料,请你计算下列各题: (1)1×2+2×3+3×4+…+10×11(写出过程) ; (2)1×2+2×3+3×4+…+n×(n+1)= (3)1×2×3+2×3×4+3×4×5+…+7×8×9= ; .
(用含 t 的代数
(2)动点 Q 从点 B 出发,以每秒 3 个单位长度的速度沿数轴向左匀速运动,若 点 P、Q 同时出发,问点 P 运动多少秒时追上点 Q? (3)若 M 为 AP 的中点,N 为 PB 的中点.点 P 在运动的过程中,线段 MN 的长 度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段 MN 的长; (4)若点 D 是数轴上一点,点 D 表示的数是 x,请你探索式子|x+6|+|x﹣8|是 否有最小值?如果有,直接写出最小值;如果没有,说明理由.
13. (3 分)若 m,n 互为相反数,m<n,且 m 与 n 在数轴上所对应的点之间的 距离是 5.8,则 m= . .
14. (3 分)若|a|=1,|b|=2,|c|=3,且 a>b>c,则 a+b﹣c=
15. (3 分)张大伯从报社以每份 0.4 元的价格购进了 a 份报纸,以每份 0.5 元的 价格售出了 b 份报纸,剩余的以每份 0.2 元的价格退回报社,则张大伯卖报收入 元. 16. (3 分)已知 x﹣ =1,则代数式(x﹣ )2016+x﹣ ﹣5 的值为 17. (3 分)规定一种运算:a*b= ;计算 2*(﹣3)的值是 . . .
2016-2017 学年湖北省鄂州市鄂城区七年级(上)期中数学试卷
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分) 1. (3 分)电梯上升﹣10 米,实际上就是( A.上升 10 米 B.下降 10 米 C.下降﹣10 米 D.先上升 10 米,再下降 10 米 2. (3 分)﹣2 的倒数的相反数是( A. B. C.2 D.﹣2 ) ) )