电子齐纳二极管轨到轨运算放大器设计

电子齐纳二极管轨到轨运算放大器设计
电子齐纳二极管轨到轨运算放大器设计

电子齐纳二极管

轨到轨运算放大器设计报告

姓名:

学号:

指导教师:

一 摘要

本次设计采用SMIC 0.18工艺,本文档分析了电子齐纳二极管Rail to Rail 运放工作原理。根据设计指标完成了电路所有参数的设计,最后给出了电路的前仿结果,版图信息和后方结果。

二、电路结构

MD 1

MD 2MD 3

MD 4

MD 5

MD 6

MD 7

MD 8

MD 9

MD 10

MD 11

MD 12

MD 13

MD 14

MD 15

MD 16ME 1

ME2

ME3

ME4

ME5

ME6

ME7

ME8

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

M16

图1 齐纳二极管轨到轨运放电路拓扑结构

(1)输入级结构分析

M2M3M4

M5M6

M7

M8

M9

M10

M11

M12

M14

M15

M16

VIN-M13

Vbias

图2 电子齐纳管轨到轨输入级

由于齐纳二极管一旦被击穿,尽管反向电流急剧增大,但PN 结两端的电压Vz 几乎可以维持不变。一个MOST 无法实现与之同样的尖锐的拐角,但是增加

一些MOST 可以在一定程度上使拐角尖锐些,称为电子齐纳二极管。

如图所示,当共模电平在电源轨或者地轨时,差分互补输入管只有NMOS (或PMOS )工作,只要通过偏置使上下尾电流保持一致,通过设定管子的宽长比,可以使两种情况下增益相等。当共模电平变化到使两个输入差分对管都同时导通时,要使轨到轨输入级在共模电平变化时跨导恒定,即

12p n

n ngst p pgst n p

gm gm ct

W W K V K V ct

L L +=+=

若通过设置N 管和P 管宽长比使

p n

n p

n p

W W K K L L =

则 +n g s t p g s t

V V

c t

=

由于Vtn 与Vtp 基本保持不变 则:

g s n g s p V V c t

+=

所以引入M9~M14组成电子齐纳二极管。M9与M10为两个互补的二极管链接的MOS 管,决定了齐纳电压Vz ,他们的宽长比分别于输入晶体管的宽长比相同,M15的宽长比是M14的8倍。M11流过了了一部分尾电流,所以流过M11的电流等于流过M19的电流,因为M15和M17有同样的矿场比,流过二极管链接管的电流就是一个常数。所以,落在这两个二极管上的压降就保持了恒定。M13的作用限制M14的漏电压。若输入共模电平很大,M14的漏电压超过一个特定的值时,被特定电压偏置的M13就会导通然后传输M14的电流到NMOS 输入对的尾电流。若没有M13,当共模电平接近一个电源轨时,则M14的漏电压就会很接近电源电压。这时M4会增加尾电流中的电流,会导致输入管的跨导变化很大。

(2)输出级分析

输出级根据项目要求采用AB 类输出级,其电路拓扑结构如下:

MD 1

MD 2MD 3MD 4

MD 5

MD 6

MD 7MD 8

MD 9

MD 10

MD 11

MD 12

MD 13

MD 14

MD 15

MD 16ME 1

ME2

ME3

ME4

ME5

ME6

ME7

ME8

图3 采用AB 类结构的输出级电路

对于NMOS 管,电路中蓝线部分(MC12,M2,MC15和MC16)构成跨导线性环路;

满足如下关系式:

G S ,M E 4G S ,M E 5G S ,M D 12G S ,M E 2

V V V V +=+

对于PMOS 管,电路中红线部分(MC11,M1,M14和M13)也构成跨导线性环路;

满足如下关系式:

G S ,M E 7G S ,M E 8G S ,M D 11G S ,M E 1

V V V V +=+

这两个环路为保证AB 类的输出提供了稳定的偏置。

三.设计指标

设计指标 带宽最大化

工艺

0.18 um 或0.13um 工艺 负载电容 = 10 pF 共模输入电压 [VSS,VDD]

输出动态范围 [0.1(VDD-VSS),0.9(VDD-VSS)] 静态功耗 2mW 开环直流增益

80 dB

单位增益带宽 Maximize 相位裕量 60 degree 转换速率 30 V/us 共模抑制比 60dB 负电源抑制比 80dB

四.原理分析 1.直流分析

(1)总功耗

该电路的总功耗为各个支路电流之和。主要的电流部分消耗在第一级差分输入,两个Cascode 支路及输出级的支路上。

(2)共模输入电压范围

由于采用了并联的NMOS 及PMOS 输入差分对,输入共模电压范围可达到轨到轨,即:

i n ,c o m

V S SV V D D ≤≤

(3)输出动态范围

考虑到输出级的PMOS 及NMOS 管可以工作在线性区(极端情况下),且负载为电容,故输出动态范围为轨到轨,即

o u t ,c o m

V S S V V D D ≤≤

2.交流分析

(1)开环直流电压增益

参照图1及图3,可知,整体电路的第一级为folded cascade 结构,其小信号电压增益为

V 1m ,i n o u t 1

A g R =,其中m ,in g 为输入管的跨导,o u t1R 为第一级的输出

阻抗,其大小为o u t 1m c 3o c 3o ,i n o c 1

(||)R gr r r =。第二级为共源放大电路,其小信号电

压增益为

V 2m 2o u t 2A g R =,其中o u t 2o 1o 2||R r r =。

故电路的总增益为

V m ,i n m c 3o c 3o ,i n o c 1m 2o 1o 2

(||)||A g g rr rg r r =。

(2)单位增益带宽

由于是两级放大电路,并且输入级采用了cascode 结构,故补偿方式为

cascode 密勒补偿。单位增益带宽为

m,in 1,2

2g GBW C =

π。

(3)相位裕度

显然,该电路的次级点为

m2

nd

L

2

g

f

C

=

π。为满足相位裕度的要求,应将次级点

设计在2GBW以外。

(4)转换速率

分析两级运放电路,可知限制电路转换速率的因素包括电路内部节点和外部

节点。其中内部转换速率为

DS,C1

int

C

I

SR

C

=

,外部转换速率为

D S1D S,C1

e x t

L

I I

S R

C

-

=

故整个电路的转换速率为:

D S,C1D S1D S,C1

C L

m i n,

I I I

S R

C C

?-?

?

=??

??

?

五、电路设计及仿真

本次设计采用SMIC 0.18um工艺实现,电源电压1.8V。利用Candence的Virtuoso软件编辑原理图及版图,下面给出电路图及testbench电路及仿真结果。

直流特性

(1)静态功耗:

通过dc仿真得到电路的静态电流为1.1mA。满足设计要求。

(2)第一级Gm和,对输入对管gm之和通过参数扫描得到以下图形:

跨导之和平均值为1.06mS。归一化gmtot误差为9%。

交流特性

(1)直流开环电压增益,GBW及相位裕度

对输入共模电平扫描,得到的仿真结果如下:

GBW的变化范围为15Mhz~17Mhz。

由图可得,相位裕度的变化范围为67~78deg。(2)共模抑制比

对输入共模电平扫描,得到的仿真结果如下:

可以看出,共模抑制比的变化范围为90 dB@1KHz~126 dB@1KHz。

(3)负电源抑制比

对输入共模电平扫描,得到的仿真结果如下:

可以看出,负电源抑制比的变化范围为86 dB@DC~95dB@DC。

在不同输入共模电平下的交流特性见下表

VCM (V) Gain(dB) GBW(Mhz) PM(deg) PSRR(dB) CMRR(dB)

0 93.9 16.4 77.4 94.9 115.1

0.2 94.5 16.4 77.6 93.4 105.7

0.4 95.8 17.0 76.3 89.7 95.5

0.6 94.3 16.7 72.9 85.8 89.8

0.8 92.6 16.4 72.5 91.8 110.5

1.0 9

2.2 16.1 72.5 92.1 109.8

1.2 91.2 15.8 71.0 91.5 121.5

1.4 9

2.3 15.6 67.0 9

3.6 103.4

1.6 9

2.6 15.3 68.7 94.1 106.8

1.8 9

2.7 15.3 79.1 94.45 126.8

3.瞬态大信号特性

(1)转换速率

上升沿仿真结果如下

可以看出,上升SR为34V/us。

下降沿仿真结果如下:

下降沿SR为47V/us

五.版图参数提取及后仿

画版图时,电流偏置和输入对管由于需要匹配都采用了叉指中心对称的画法,其余部分采用一般画法。

最终的版图布局如下:

利用Assure工具参数提取后,进行版图后仿,结果如下:

(1)直流开环电压增益,GBW和相位裕度

直流开环电压增益的变化范围为89.1dB~93dB,与前仿基本一致。

GBW的变化范围为13MHz~15MHz,与前仿相比有所降低。

相位裕度的变化范围为70~79度,与前仿相比略有提高。

(2) 共模抑制比

共模抑制比的变化范围为71.5dB@1KHz~100.3dB@1KHz,与前仿相比有所降低

(3)负电源抑制比

负电源抑制比的变化范围为68 dB@DC~84 dB@DC,比前仿有所降低。

(4)转换速率

上升转换速率为29V/us,下降转换速率为38V/us,与前仿相比有降低。

前仿与后仿指标对比如下:

指标前仿后仿

开环电压增益91~96dB 89.1dB~93dB

单位增益带宽15MHz~17MHz 13MHz~15MHz

相位裕度67~78度70~79度

共模抑制比90 dB~126dB@1KHz 71.5dB~100.3dB@1KHz 负电源抑制比86 dB ~95 dB@DC 68dB ~84dB@DC

转换速率上升34V/us,下降46V/us 上升29V/us,下降38V/us

七.讨论与结论

本次设计采用SMIC 0.18um工艺,实现了轨到轨输入及输出的运算放大器,输入级采用电子齐纳二极管的方法进行跨导均衡,效果良好;输出级采用前馈式classAB,在接10pF容性负载时,有较大的电流驱动能力,瞬态特性良好。开环直流电压增益,单位增益带宽,转换速率等各项指标均达到了预期的要求,整体性能基本符合设计目标。

这次设计中第一级输入跨导均衡功能比较好实现,个人觉得设计的难点在AB类输出中两个线性跨导环的设计,为了是输出管能够在输入共模电平变化时均能较好工作。

参考文献

[1] Willy Sansen, “Rail-to-Rail input and output amplifiers”, Analog PPT, 2006.

[2]Compact CMOS Constant-gm Rail-to-Rail Input Stage with gm-Control by an Electronic Zener Diode ,Ron Hogervorst,1996

[3]A Compact Power-Efficient 3V CMOS Rail-to-Rail Input/Output Operational Amplifier for VLSI Cell Libraries,1994

运算放大器的工作原理

运算放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回

齐纳二极管和肖特基二极管

齐纳二极管和肖特基二极管 肖特基二极管(Schottky)SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 SBD的结构及特点使其适合于在低压、大电流输出场合用作高频整流,在非常高的频率下(如X波段、C波段、S波段和Ku波段)用于检波和混频,在高速逻辑电路中用作箝位。在IC中也常使用SBD,像SBD TTL集成电路早已成为TTL 电路的主流,在高速计算机中被广泛采用。 反向恢复时间 现代脉冲电路中大量使用晶体管或二极管作为开关, 或者使用主要是由它们构成的逻辑集成电路。而作为开关应用的二极管主要是利用了它的通(电阻很小)、断(电阻很大) 特性, 即二极管对正向及反向电流表现出的开关作用。二极管和一般开关的不同在于,“开”与“关”由所加电压的极性决定, 而且“开”态有微小的压降V f,“关”态有微小的电流I 0。当电压由正向变为反向时, 电流并不立刻成为(- I 0) , 而是在一段时间ts 内, 反向电流始终很大, 二极管并不关断。经过ts后, 反向电流才逐渐变小, 再经过tf 时间, 二极管的电流才成为(- I 0) , 如图1 示。ts 称为储存时间, tf 称为下降时间。tr= ts+ tf 称为反向恢复时间, 以上过程称为反向恢复过程。 这实际上是由电荷存储效应引起的, 反向恢复时间就是存储电荷耗尽所需要的时间。该过程使二极管不能在快速连续脉冲下当做开关使用。如果反向脉冲的持续时间比tr 短, 则二极管在正、反向都可导通, 起不到开关作用。因此了解二极管反向恢复时间对正确选取管子和合理设计电路至关重要。 齐纳二极管 齐纳二极管zener diodes(又叫稳压二极管它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 齐纳二极管不同于锗二极管的是:如果反向电压,有时简称为“偏压”增加到某个特殊值,对于一个微小偏压的变化,就会使电流产生一个可观的增加。引起这种效应的电压称为“击穿”电压或“齐纳”电压。2DW7型管的击穿电压在5.8-6.5V之间,极大电流是30mA。

一个简单功放设计制作与电路图分析

一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客 默认分类 2009-11-09 19:01 阅读32 评论0 字号:大中小 一个简单功放设计制作与电路图分析|电路图 电子资料 2009-11-06 11:15 功放电路图 一个简单功放设计制作与电路图分析 我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程. 1.设计 我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了 2.调试 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平 比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被 调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声

运算放大器组成的各种实用电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 (原文件名:1.jpg)

运算放大器构造及原理

万联芯城销售TI,ADI,ST等原装品牌运算放大器IC。全现货库存,提供一站式配套服务,万联芯城,三十年电子元器件销售经验,是您的BOM配单专家,为您节省采购成本。点击进入万联芯城 点击进入万联芯城

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等

齐纳二极管

齐纳二极管 齐纳二极管(又叫稳压二极管),此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 齐纳二极管不同于锗二极管的是:如果反向电压,有时简称为“偏压”增加到某个特殊值,对于一个微小偏压的变化,就会使电流产生一个可观的增加。引起这种效应的电压称为“击穿”电压或“齐纳”电压。2DW7型管的击穿电压在5.8-6.5V之间,极大电流是30mA。 肖特基二极管 肖特基(Schottky)二极管又称肖特基势垒二极管(简称SBD),它属一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等肖特基(Schottky)二极管又称肖特基势垒二极管(简称SBD),它属一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电

路中作整流二极管、小信号检波二极管使用。在通讯电源、变频器等中比较常见。供参考。电路中作整流二极管、小信号检波二极管使用。在通讯电源、变频器等中比较常见。供参考。 我知道的一个应用是在BJT的开关电路里面, 通过在BJT上连接Shockley二极管来箝位,使得晶体管在导通状态时其实处于很接近截至状态.从而提高晶体管的开关速度.这种方法是74LS,74ALS, 74AS等典型数字IC TTL内部电路中使用的技术. 稳压二极管是应用在反向击穿区的特殊的面接触型硅晶体二极管。稳压二极管的伏安特性曲线与硅二极管的伏安特性曲线完全一样,稳压二极管伏安特性曲线的反向区、符号和典型应用电路如图1所示。稳压二极管的特性曲线与普通二极管基本相似,只是稳压二极管的反向特性曲线比较陡。稳压二极管的正常工作范围,是在伏安特性曲线上的反向电流开始突然上升的部分。这一段的电流,对于常用的小功率稳压管来讲,一般为几毫安至几十毫安。 (a)符号(b)伏安特性(c)应用电路图1 稳压二极管的伏安特性

音频放大器课程设计

电子课程设计 课程设计名称 : 电子课程设计 课程设计题目 : 音频放大器设计学院名称:工学院 班级:11级通信工程 学号:201101030119 姓名:陶媛 指导教师:朱家兴 2013年 8 月 25

摘要 进入21世纪以后,各种便携式的电子设备成为了电子设备的一种重要的发 展趋势。从作为通信工具的手机,到作为娱乐设备的MP3播放器,已经成为差不 多人人具备的便携式电子设备。在一些电子设备中,常常要求放大电路的输出级 能够带动较重负载,因而要求放大电路具有较高的效率,能够根据负载的要求提 供足够的输出功率。 本系统是基于三极管元件设计而成的一种音频放大器,由前置放大电路、 带通滤波电路、混频电路、电源电路四部分构成。前置放大电路主要由差分放大 电路构成,外加恒流源提供偏置,抑制电路的温漂,提高共模增益比。然后通过 由一个二阶压控电压源高通滤波器和一个二阶压控电压源低通滤波器构成的带 通滤波器,再接入一个混频电路(可加入背景音乐),最后通过电容耦合到功率 放大电路中除去了直流对后级放大电路的影响。混频电路由一个简单的加法器构 成。本次课程设计整个过程涉及到理论计算,电路板布局,焊接技术,电子仪器 的使用等一系列知识要点。 本方案使用MIC驻级体话筒收集人说话的微弱信号,并由话筒变成电信号,经过音频放大电路的多级放大,最后由耳机插座X2输出,输出的信号由外接的耳机 或扬声器发出声音 关键字:电子设备声音信号电信号放大 目录 前言 (1) 一、设计内容及要求 (2) 二、系统组成及工作原理 2.1 系统组成 (3) 2.2 工作原理 (4) 三、功率放大电路设计

齐纳二极管(稳压二极管)工作原理及主要参数

齐纳二极管(稳压二极管)工作原理及主要参数 齐纳二极管也叫稳压二极管.一般二极管处于逆向偏压时,若电压超过PIV(逆向峰值电压)值时二极管将受到破坏,这是因为一般二极管在两端的电位差既高之下又要通过大量的电流,此时所产生的功率所衍生的热量足以使二极管烧毁。 齐纳二极管就是专门被设计在崩溃区操作,是一个具有良好的功率散逸装置,可以当做电压参考或定电压组件。若利用齐纳二极管作为电压调节器,将使附载电压保持在Vz附近且几乎唯一定值,不受附载电流或电源上电压变动影响。一般二极管之崩溃电压,在制作时可以随意加以控制,所以一般齐纳二极管之崩电压(Vz)从数伏特至上百伏特都有。一般齐纳二极管在特性表或电路上除了标住Vz外,均会注明Pz也就是齐纳二极管所能承受之做大功率,也可由Pz=Vz*Iz 换算出奇纳二极管可通过最大电流Iz。dz3w上有个在线计算器,电路设计时可以用来计算稳压二极管的相关参数. 齐纳二极管工作原理 齐纳二极管主要工作于逆向偏压区,在二极管工作于逆向偏压区时,当电压未达崩溃电压以前,二极管上并不会有电流产生,但当逆向电压达到崩溃电压时,每一微小电压的增加就会产生相当大的电流,此时二极管两端的电压就会保持于一个变化量相当微小的电压值(几乎等于崩溃电压),下图为齐纳二极管之电压电流曲线,可由此应证上述说明。 齐纳二极管(又叫稳压二极管)它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 在通常情况下,反向偏置的PN结中只有一个很小的电流。这个漏电流一直

运算放大器的工作原理

运算放大s得工作原理 放大器得作用:仁能把输入讯号得电压或功率放人得装置,由电了管或晶体管■电源变压器与其她电器元件组成。用在通讯、广播.需达、电视、自动控制等各种装置中。原理:高频功率放人器用于发射机得末级,作用就是将高频已调波信号进行功率放大,以满足发送功率得炎求,然后经过天线将其辐射到空间,保证在?定区域内得接收机可以接收到满意得信号 电平,并且不干扰相邻信道得通信。高频功率放大器就是通信系统中发送装置得重要组件。 按其工作频带得宽窄划分为窄带简频功率放人器与宽带高频功率放人器两种,窄带周频功率放人器通常以具有选频滤波作用得选频电路作为输出回路,故又称为调谐功率放人器或谐振功率放人器:宽带简频功率放人器得输出电路则就是传输线变圧器或其她宽带匹配电路,W此又称为非调谐功率放大器?高频功率放人能就是?种能量转换器件,它将电源供给得直流能量转换成为高频交流输出在“低频电r 线路噪程中己知倣人器可以按照电流导通角得不同, 运算放人器原理 运算放人器(Op e r atio n a 1 AmpI i Pier-简称OP、OPA、OPAMP)就是?种直 流耦合,差模(差动模式)输入、通常为单端输出(D 1 ffere ntial—in, sing 1 e—ended o utput)得高增益(gain)电压放人器阴为刚开始主耍用于加法,乘法等运算电路中? W而得名??个理想得运算放大器必须具备下列特性:无限人得输入阻抗.等于零得输出阻抗、无限人得开回路 增益、无限大得共模計#斥比得部分.无限人得频宽。最基本得运算放人器如图1-1- 一个运算放人器模组?般包括?个正输入端(OP_P〉、?个负输入端(OP_N〉与?个输出端(0 P_0)。 图1?1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node )连接,形成一负反馈(negative feedback)组态。原因就是运算放人器得电压増益非常大,范 圉从数百至数万倍不等,使用负反馈方可保证电路得稳定运作。但就是这并不代衣运算放人器不能连接成正回馈(positive f e edbac k ),相反地,在很多需要产生震荡讯号得系统中,正回馈组态得运算放大器就是很常见得组成元件。 开环回路

齐纳二极管

齐纳二极管 齐纳二极管的主要作用就是当作一种电压调整器,QLCO-A146提供稳定的参考电压,可应用在电源供应器、电压表与其他的仪器中。齐纳二极管的符号如图3.1所示。齐纳二极管是一种硅pn结元件,它和整流二极管不同,因为它是设计用于反向击穿区。齐纳二极管的击穿电压,可在生产制造时仔细控制掺杂的程度加以设定,其伏安特性曲线如图3.2,一般整流二极管和齐纳二极管的工作区域,是以阴影区域表示。假如齐纳二极管处于正向偏压,它就如同整流二极管一般。 齐纳击穿 齐纳二极管是设计用于反向击穿区。齐纳二极管的反向击穿有两种类型,就是累增击穿和齐纳击穿。齐纳击穿则是齐纳二极管在低反向偏压时发生。如果齐纳二极管经过大量掺杂,就可降低击穿电压。这样可以产生很薄的耗尽区,结果就可在耗尽区产生很强的电场,从而导致隧道效应。当接近反向击穿电压(Vz)时,电场的强度足够将电子拉离价带,因而产生大量的电流。齐纳二极管的击穿电压若约小于5V,就会工作于反向击穿区。而那些高于5V击穿电压的齐纳二极管,则是工作于累增击穿区,两种类型都称为齐纳二极管。 击穿特性

图3.3显示齐纳二极管的特性曲线的反向偏压部分。请注意当反向偏压(VR)增加,反向电流(IR)-直到曲线的膝点之前都仍然维持非常小。此时的反向电流又称为稳定电流。在这一点,击穿效应开始出现,内部的电阻值,也称为动态阻抗(Zz),随着反向电流快速增加而开始降低。从膝点以下,反向击穿电压(vz)基本上维持定值,即使当稳定电流增加也只些微地增加。 这种能够维持两端之间反向电压不变的能力,就是齐纳二极管的关键特性。当齐纳二极管工作在击穿区时就像一个电压调整器,因为它在特定的反向电流范围内,两端的电压几乎维持在固定值。为了调整电压,要让二极管维持在击穿区工作,就必须保持反向电流在最低值。可以从在图3.3中的曲线看出,当反向电流阵低到曲线的膝点以下,电压会急速地下降,因此丧失调整电压的功能。同时,当二极管的电流超过最大值IZM时,二极管可能会因为过量的功率消耗而损毁。所以,基本上当齐纳二极管的反向电流值在IZK~IZM的范围内,它在两端之间会维持接近定值的电压。通常资料表中所指的稳定电压,是指当反向电流为齐纳测试电流时的电压。 齐纳等效电路 图3.4(a)显示齐纳二极管在反向击穿区的理想模型。它拥有等于齐纳电压的定值电压降。这个定值电压降可用一个直流电压源加以表示,事实上虽然齐纳二极管并不会产生一个电动势

音频放大器的设计

四川师范大学成都学院电路与电子技术课程设计数字音频放大器的设计 学生姓名 学号 所在学院通信工程学院 专业名称通信工程 班级 指导教师 成绩 四川师范大学成都学院 二○一四年十二月

课程设计任务书

数字音频放大器的设计 内容摘要:数字音频放大器是将输入音频模拟信号或PCM数字信息变换成PWM 或PDM的脉冲信号用来控制大功率开关电路,经过低通滤波器整形实现数字信号的放大输出。数字音頻放大器也看上去成是一个一比特的功率数模变换器。放大器由由三角波振荡器、前置放大电路、PWM比较器、驱动电路、功率放大电路和 低通滤波器电路组成。 输入信号形成电路分PWM处理器和PDM处理两种,将输入信号的振幅变化变 换成脉冲宽度的变化或脉冲密度的变化。 低通滤波器的作用是将脉冲波形整形成漂亮的模拟波形,即滤除PWM或PDM 信号的载波成分。常采用功率损耗小的LC型滤波器。 本设计介绍了数字音频放大器的组成及原理,然后用QuartusⅡ软件进行仿真和模拟,用以验证实验。 关键词:PWM调制低通滤波数字音频 The design of digital audio amplifier Abstract:Digital audio amplifier is an analog input audio signal or the PCM digital information into a PWM or PDM pulse signal for controlling the power switching circuit, low-pass digital filter shaping to achieve an amplified output signal.Also appears as a digital audio amplifier is a one bit digital to analog converter power. Amplifier by the triangular wave oscillator, preamplifier circuit, PWM comparator, the driving circuit, power amplifier and a low pass filter circuit. Input signal forming circuit of two PWM processor and sub-processor PDM, the amplitude of the input signal is converted into a variation or change in the pulse density of the pulse width changes. Low-pass filter is shaped to the pulse waveform beautiful analog waveform, i.e. the carrier component was filtered PWM or PDM signal. Often with a small power loss LC filter.

运算放大器组成的基本运算电路

实验五运算放大器组成的基本运算电路 一、实验目的 1、了解运算放大器的基本使用方法。 2、应用集成运放构成的基本运算电路 3、学会使用线性组件u A741。 4、掌握加法运算、减法运算电路的基本工作原理及测试方法。 5、学会用运算放大器组成积分电路。 二、实验属性 验证性实验 三、实验仪器设备及器材 1、实验台 2、数字万用表 3、示波器 4、计时表 四、实验内容及步骤 1.调零:按图 7-1 接线,接通电源后,调节调零电位器 RW 使输出 0V。运放调零后, 在后面的实验中均不用调零了。 图7-1 仿真参考电路:

电路如图7-2 所示,根据电路参数计算A V=Vo/V i,并按照表7-1 给定的V i 计算和测量对应的Vo值,并把结果记入表7-1 中。 图7-2 仿真参考电路:

电路如图7-3 所示,根据电路参数计算A V=Vo/V i,并按照表7-2 给定的V i 计算和测量对应的Vo值,并把结果记入表7-2 中。 图7-3 仿真参考电路:

电路如图7-4 所示,按照表7-3 给定的V i1 和V i2 计算和测量对应的Vo 值,并把结果记入表7-3中。 图7-4 仿真参考电路:

电路如图7-5 所示,按照表7-4 给定的V i1 和V i2 计算和测量对应的Vo 值,并把结果记入表7-4中。 图7-5 仿真参考电路:

五、实验报告 1.整理实验数据,填入表中。 答:整理数据如上表中。 2.分析各运算关系。 答: 反相比例运算:U0=-(R f/R1)X(U i) 放大倍数 A uf=-R f/R1 随着电压的不断增加,实际运放也不断变大,误差逐渐减小同相比例运算:U0=(1+(R f/R1))X(U i) 放大倍数 A uf=1+(R f/R1) 随着电压的不断增加,误差逐渐减小,越来越趋近于理论值加法运算:U0=-((R f/R i1))X(U i1)+ (R f/R i2))X(U i2)) 改变任一电路的输入电阻时,对其他路没有任何影响减法运算:U0=(1+(R f/R1))X(R3/(R2+R3))X(U i2)-(R f/R1)X(U i1) 输出与两个输入信号的差值成正比

音响放大器的设计分析

电子技术(综合)课程设计 题目名称:音响放大器的设计 班级:电气1302班 学号: 姓名: 指导教师:吴建国 日期:2015.6.27

音响放大器的设计 1. 设计任务和要求: (1) 具有对话筒与录音机输出信号进行扩音、音调控制、卡拉OK 伴唱等功能。 (2) 主要技术指标:额定功率O W P ≥1(γ<3%);负载阻抗L 8R =Ω;截止频率 L 40f z =H ,H k 10f z =H ;音调控制特性:k 1z H 处增益为0dB ;z H 100处和k 10z H 处有12±dB 的调节范围;VL LH 20A A =≥dB ;话筒放大级输入灵敏度mV 5;录音机的输出信号电压为mV 100;输入阻抗i 20R >>Ω。(为了保证设计内容的多样性,技术指标部分可另取值)。 (3) 主要器件:CC V =+9V ;话筒(低阻20Ω)电子混响模块一个;集成功放LA4102一只;集成运放LM324一只(或μA741 3只);W 8/2Ω负载电阻L R 一只;W 8/4Ω扬声器一只。 题目分析或内容摘要: 这个音响放大器的设计过程为:首先确定整机电路的级数,再根据各级的功能及技术指标要求分配电压增益,然后分别计算各级电路参数,通常从功放级开始向前级逐级计算。只需给定电子混响器电路模块,需要设计的电路为话筒放大器,混合前置放大器,音调控制器及功率放大器。根据题意要求,输入信号为5mV 时输出功率的最大值为lW , 因此电路系统的总电压增益∑u A =L PoP /Ui=566(55dB),由于实际电路中会有损耗,故取∑u A =600(55·6dB),各级增益分配如图4所示。功放级增益4u A 由集成功放块决定,取4u A =100(40dB),音调控制级在fo=lkHz 时,增益应为1(0dB),但实际电路有可能产生衰减,取3u A =0.8 (一2dB)。话放级与混合级一般采用运算放大器,但会受到增益带宽积的限制,各级增益不宜太大,取1u A =7.5(17.5dB),2u A =l(OdB)。 2. 设计方案 甲类放大器作为一种最古老,效率最低,最耗电,最笨重,最耗资,失真最小的放大器 输入音 频信号 前置放大级电路 共射-共基电路 共射-共基电路 恒压源电路 推动级 反馈电路 至末级 功放 沃尔漫电路

运算放大器工作原理、分类及特点介绍

运算放大器工作原理、分类及特点介绍 1.模拟运放的分类及特点 模拟运算放大器从诞生至今,已有40多年的历史了。最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。 经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。这使得初学者选用时不知如何是好。为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。 1.1.根据制造工艺分类 根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。 标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB之间。标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。通过变更标准硅工艺,可以设计出通用运放和高速运放。典型代表是LM324。 在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在1000M欧姆数量级。典型代表是TL084。 在标准硅工艺中加入了MOS场效应管工艺的运算放大器分为三类,一类是是将标准硅工艺的集成模拟运算放大器的输入级改进为MOS场效应管,比结型场效应管大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在10^12欧姆数量级。典型代表是CA3140。 第二类是采用全MOS场效应管工艺的模拟运算放大器,它大大降低了功耗,但是电源电压降低,功耗大大降低,它的典型开环输入阻抗在10^12欧姆数量级。 第三类是采用全MOS场效应管工艺的模拟数字混合运算放大器,采用所谓斩波稳零技术,主要用于改善直流信号的处理精度,输入失调电压可以达到0.01uV,温度漂移指标目前可以达到0.02ppm。在处理直流信号方面接近理想运放特性。它的典型开环输入阻抗在10^12欧姆数量级。典型产品是ICL7650。1.2.按照功能/性能分类 按照功能/性能分类,模拟运算放大器一般可分为通用运放、低功耗运放、精密运放、高输入阻抗运放、高速运放、宽带运放、高压运放,另外还有一些特殊运放,例如程控运放、电流运放、电压跟随器等等。实际上由于为了满足应用需要,运放种类极多。本文以上述简单分类法为准。 需要说明的是,随着技术的进步,上述分类的门槛一直在变化。例如以前的LM108最初是归入精密

稳压二极管工作原理

稳压二极管工作原理 一、稳压二极管原理及特性 一般三极管都是正向导通,反向截止;加在二极管上的反向电压如果超过二极管的承受能力,二极管就要击穿损毁。但是有一种二极管,它的正向特性与普通二极管相同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;只要管子处在击穿状态,尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。这种特殊的二极管叫稳压管。 稳压管的型号有2CW、2DW 等系列,它的电路符号如图5-17所示。 稳压管的稳压特性,可用图5一18所示伏安特性曲线很清楚地表示出来。 稳压管是利用反向击多区的稳压特性进行工作的,因此,稳压管在电路中要反向连接。稳压管的反向击穿电压称为稳定电压,不同类型稳压管的稳定电压也不一

样,某一型号的稳压管的稳压值固定在口定范围。例如:2CW11的稳压值是3.2伏到4.5伏,其中某一只管子的稳压值可能是3.5伏,另一只管子则可能是4,2伏。 在实际应用中,如果选择不到稳压值符合需要的稳压管,可以选用稳压值较低的稳压管,然后串联几只硅二极管“枕垫”,把稳定电压提高到所需数值。这是利用硅二极管的正向压降为0.6~0.7伏的特点来进行稳压的。因此,二极管在电路中必须正向连接,这是与稳压管不同的。 稳压管稳压性能的好坏,可以用它的动态电阻r来表示: 显然,对于同样的电流变化量ΔI,稳压管两端的电压变化量ΔU越小,动态电阻越小,稳压管性能就越好。 稳压管的动态电阻是随工作电流变化的,工作电流越大,动态电阻越小。因此,为使稳压效果好,工作电流要选得合适。工作电流选得大些,可以减小动态电阻,但不能超过管子的最大允许电流(或最大耗散功率)。各种型号管子的工作电流和最大允许电流,可以从手册中查到。 稳压管的稳定性能受温度影响,当温度变化时,它的稳定电压也要发生变化,常用稳定电压的温度系数来表示,这种性能例如2CW19型稳压管的稳定电压Uw= 12伏,温度系数为0.095%℃,说明温度每升高1℃,其稳定电压升高11.4毫伏。为提高电路的稳定性能,往往采用适当的温度补偿措施。在稳定性能要求很高时,需使用具有温度补偿的稳压,如2DW7A、2DW7W、2DW7C 等。 二、稳压二极管稳压电路图 由硅稳压管组成的简单稳压电路如图5- l9(a)所示。硅稳压管DW与负载Rfz,并联,R1为限流电阻。

简易音频功率放大器

闽南师范大学《模拟电子技术》课程设计 设计题目:简易音频功率放大器 姓名:庄伟彬 学号:1205000425 系别:物理与信息工程学院 专业电气工程及其自动化 年级:12级 指导教师:周锦荣老师 2014年 5月 1 日

目录 一系统设计┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 1.设计任务┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 2.设计要求┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 二电路设计原理┄┄┄┄┄┄┄┄┄┄┄┄ 3 1.系统原理┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 2.方案比较┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 3.芯片介绍┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 三PCB布板┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10 四实物安装与调试┄┄┄┄┄┄┄┄┄┄┄┄ 11 1.实物图┄┄┄┄┄┄┄┄┄┄┄┄┄11 2.测试的波形┄┄┄┄┄┄┄┄┄┄┄12 3.实验结果分析及与理论对比┄┄┄┄┄ 15 五附录┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 15 1.设计总结┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 2. 原件清单┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 3.参考文献┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 16

摘要:本方案采用LM358,LM386集成运放芯片,外加电阻、电容等元器件调整、滤波,滑动变阻器实现音量可调,构成简易音频功率放大器,音频功率放大器主要用于推动扬声器发声。 关键词:LM358;LM386;音频放大 一系统设计 1 设计任务 利用集成运算放大器LM358,LM386设计一个简易音频功率放大器。 2 设计要求 设计一个简易的音频功率放大器,要求如下: (1)系统主要由前置放大电路和后级功率放大器电路构成,电路具有音量可调; (2)前置放大电路主要有集成芯片LM358构成;后级功率放大器电路主要由集成芯片LM386音频功率放大芯片构成; (3)要求输入音频信号在10mV/1kHz时,输出功率1 (负载:8Ω),输出音频信号无 Po W 明显失真,输出功率大小可调; (4)系统测试可以由函数信号发生器产生音频信号,系统所需电源可由实验室现有学生电源提供; (5)完成相应的电路原理图设计、硬件电路设计和调试及相关结果测试; (6)完成课程设计报告撰写。

通用四运放的原理LM324

通用四运放的原理与应用(LM324为例) 本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理。 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。下面介绍其应用实例。 LM324作反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值, Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 LM324作同相交流放大器

见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。 LM324作交流信号三分配放大器 此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。而对信号源的影响极小。因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。 R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出。 LM324作有源带通滤波器 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的 多少来指示出信号幅度的大小。这种有源带通滤波器的中心频率,在中心频率fo处的电压增益Ao=B3/2B1,品质因数,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、fo、Ao值,去求出带通滤波器的各元件参数值。R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。上式中,当fo=1KHz时,C取0.01Uf。此电路亦可用于一般的选频放大。

简单音响电路的设计与实验

简单音响电路的设计与实验 一.设计任务 1.音响放大器设计 1)输出小信号进行放大扩音。 2.主要指标要求: 1.最大输出功率 02 P W 2.负载R L=8Ω。 3.频率变化范围f=20HZ-20KHZ 二. 实验目的 1.掌握模拟电路系统设计的基本方法。 2.掌握功率放大器的特性和质量参数的测试方法。 3.通过实验加深互补对称功率放大电路的理解。 4.学习电压放大倍数及最大不失真输出电压幅度的测试方法 三、实验说明 1、音响系统的组成框图 2、音响系统简介 1)功率放大器 功率放大器可采用分立元器件组成,也可以使用集成功率放大器,前者常用于大功率或要求较高的音响系统中,后者常用于小功率或要求不太高的音响系统中,使用集成功率放大器应注意:在任何情况下,集成功率放大器都不能工作在超过极限参数或绝对额定值所规定的工作条件下。 2)前置放大器 前置放大器属于小信号低噪声放大器。可采用分离元件电路,也可采用低

噪声运算放大器。采用分离元件电路时,为了减少噪声,一般静态工作点选取较低。 四、实验仪器 1、实验箱(TPE-A2) 2、.示波器(V212) 3、函数信号发生器(DF1642A ) 4、双通道交流毫伏表(AS2294D ) 5、台式数字万用表(VC8045) 6、扬声器 五、实验原理 1)前置放大器的设计 前置放大器实际就是对一个小信号进行放大的作用。因为功率放大器对输入信号有一定的要求,太弱的功率放大器“不理睬”,所以功率放大器之前需要增加一至数级的放大器。将小信号逐步放大到功率放大器需要的信号幅度。而反相比例放大电路使用比较方便,所以本实验采用了反相比例放大电路。如下图 1 R R U U A f i O uf - == 2)功率放大器的设计 功率放大器任务是将音频放大到足够推动扬声器,不同于前置放大器,功率放大器不仅对信号进行放大,而且放大了电流信号,以满足外接负载的功率要求。功率放大器还应具有频率特性平坦、高信噪比和优良的动态特性等功能。经过对比 采用互补对称功率放大电如上图

相关文档
最新文档