数值计算方法教案数值积分25355
数值计算方法教学大纲(精选五篇)

数值计算方法教学大纲(精选五篇)第一篇:数值计算方法教学大纲《数值计算方法》课程教学大纲课程编码:0405034 课程性质:专业选修课学时:52 学分:3 适用专业:数学与应用数学一、课程性质、目的和要求本课程为数学系数学与应用数学专业的专业必修课。
通过本课程的学习,要求学生了解数值计算的基本概念、基本方法及其原理,培养应用计算机从事科学与工程计算的能力。
本课程主要介绍数值计算的基本方法以及数值计算研究中的一些较新的成果。
以数学分析、线性代数、高级语言程序设计为先行课,包含解线性方程组的直接法、解线性方程组的迭代法、解非线性方程的迭代法、矩阵特征值与特征向量的计算、数据拟合、多项式插值、数值积分与数值微分等基本内容,为微分方程数值解、最优化方法、数学实验等后继课程作好准备。
通过实验使学生掌握各种常用数值算法的构造原理,提高算法设计和理论分析能力,为在计算机上解决科学计算问题打好基础。
二、教学内容、要点和课时安排第一章误差(4学时)教学目的:学习误差的相关概念,了解残生误差的原因,在函数中误差的传播规律,并且掌握实际运算中可以减小误差的方法。
教学难点:误差的传播规律,公式的推导。
第一节误差的来源第二节绝对误差、相对误差与有效数字一、绝对误差与绝对误差限二、相对误差与相对误差限三、有效数字与有效数字位数第三节数值计算中误差传播规律简析第四节数值运算中应注意的几个原则思考题:1、什么是绝对误差与绝对误差限?2、什么是相对误差与相对误差限?3、在数值计算的过程中函数的自变量的误差与函数值的误差只有什么样的关系?4、在数值计算的过程中我们应该注意那些原则来使得误差尽量的小?第二章非线性方程求根(14学时)教学目的:学习非线性方程求根的方法,主要介绍二分法、简单迭代法、牛顿迭代法与弦割法,要求掌握每一种方法的理论思想,会用学习的方法求解非线性方程的根。
教学难点:分法、简单迭代法、牛顿迭代法与弦割法的计算过程的理解,记忆,尤其是迭代法收敛性的判定。
数值计算方法教案数值积分(有添加哦

数值积分教案教案内容:一、教学目标1. 使学生理解数值积分的概念和意义。
2. 培养学生掌握数值积分的基本方法和技巧。
3. 训练学生运用数值积分解决实际问题。
二、教学内容1. 数值积分的概念和意义。
2. 牛顿-莱布尼茨公式及其应用。
3. 数值积分的方法:梯形法、辛普森法、柯特斯法等。
4. 数值积分的误差分析。
5. 数值积分在实际问题中的应用。
三、教学重点与难点1. 教学重点:数值积分的基本方法及其应用。
2. 教学难点:数值积分的误差分析及改进方法。
四、教学方法与手段1. 采用讲授与讨论相结合的方式,让学生深入理解数值积分的原理和应用。
2. 使用多媒体课件,直观展示数值积分的计算过程和应用实例。
3. 布置课后习题,巩固所学知识。
五、教学安排1. 第1-2课时:介绍数值积分的概念和意义,讲解牛顿-莱布尼茨公式。
2. 第3-4课时:讲解数值积分的基本方法(梯形法、辛普森法、柯特斯法等)。
3. 第5-6课时:介绍数值积分的误差分析,讨论改进方法。
4. 第7-8课时:举例讲解数值积分在实际问题中的应用。
5. 第9-10课时:布置课后习题,进行知识巩固。
六、教学活动1. 课堂讲解:通过讲解数值积分的概念和意义,让学生理解数值积分的基本原理。
2. 案例分析:通过分析实际问题,让学生学会将数值积分应用于解决实际问题。
3. 小组讨论:分组让学生讨论数值积分的误差分析和改进方法,促进学生思考和交流。
七、教学评价1. 课后习题:布置相关的课后习题,检验学生对数值积分的理解和掌握程度。
2. 小组项目:让学生分组完成一个数值积分相关的项目,培养学生的实际应用能力。
3. 课堂表现:评价学生在课堂上的参与程度和表现,包括提问、讨论等。
八、教学资源1. 教材:选用合适的数值积分教材,为学生提供系统的学习资料。
2. 多媒体课件:制作精美的多媒体课件,直观展示数值积分的计算过程和应用实例。
3. 网络资源:提供相关的网络资源,如学术论文、教学视频等,供学生自主学习和深入研究。
数值计算方法教案

数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。
计算方法-数值积分市公开课获奖课件省名师示范课获奖课件

-辛1 普森求积公式旳几何意义是用一条过三点旳抛物线(如上 图中三点)近似替代被积函数旳曲线,从而用一种二次抛物线 -1所.5 围成旳轻易计算旳曲边梯形面积(图中阴影部分)来近似替 代原来旳曲边梯形旳面积.
-2
-2.5
辛普森积分法
❖ 经过对n个区间按上述公式累加,可得区间[x0,x1]上 旳积分形式为
算法特色
❖ 成果输出清楚,且精度高,能保存到小数点后13位(中值法)
算法特色
将各措施旳误差一次性输出,能直观旳看出各积分措施旳误差大 小并进行比较
总结
经过本章旳学习,我们更深刻旳了解了数值积分 旳原理及实现措施,而且在小组讨论中,学习到了怎 样实当代码旳简洁、降低变量旳定义以及怎样实当代 码时间与空间旳优化等,大家都有所收益
❖ 对大多数f(x)而言,找原函 数困难,虽然存在原函数也 不能用初等函数表达
ex2 , sin x , 1 x3 ...... x
❖ 原函数体现式过于复杂
x2 2x2 3 3
❖ 被积函数由表格给出,没有 解析形式,也无法使用 Newton-Leibniz公式来求 积分
数值积分
❖ 为了防止上述积分过程中存在旳问题,我们能够采用 数值积分旳措施来求解,这么就防止了原函数旳求解 过程,同步对于由测量或计算得到旳数据表表达旳 f(x)也能够求解
进行泰勒展开,可得区间
[x0,x0+2x ]上旳积分形式如下所
2
示: 2.5
3
3.5
x0-12x
x0-1.5
f
(x)dx
x 3
(
f
(x0)
4f
(x0
x)
f
(x0
2x))
O(x5)
(完整版)数值计算方法教案

《计算方法》教案课程名称:计算方法适用专业:医学信息技术适用年级:二年级任课教师:***编写时间:2011年 8月新疆医科大学工程学院张利萍教案目录《计算方法》教学大纲 (4)一、课程的性质与任务 (4)二、课程的教学内容、基本要求及学时分配 (4)三、课程改革与特色 (5)四、推荐教材及参考书 (5)《计算方法》教学日历..................................... 错误!未定义书签。
第一章绪论 .. (6)第1讲绪论有效数字 (6)第2讲误差………………………………………………………………………………第二章线性方程组的直接法 (14)第3讲直接法、高斯消去法 (14)第4讲高斯列主元消去法 (22)第5讲平方根法、追赶法 (29)第三章插值法与最小二乘法 (31)第6讲机械求积、插值型求积公式 (32)第7讲牛顿柯特斯公式、复化求积公式 (37)第8讲高斯公式、数值微分 (42)第9讲第10讲第12讲第四章数值积分与数值微分 (48)第11讲欧拉公式、改进的欧拉公式 (48)第12讲龙格库塔方法、亚当姆斯方法 (52)第13讲收敛性与稳定性、方程组与高阶方程 (56)第14讲第15讲第五章微分常微分方程的差分方法 (59)第16讲迭代收敛性与迭代加速 (60)第17讲牛顿法、弦截法 (64)第18讲第19讲第20讲第六章线性方程组的迭代法 (67)第21讲迭代公式的建立 (68)第22讲第23讲第24讲向量范数、迭代收敛性 (71)第25讲《计算方法》教学大纲课程名称:计算方法/Computer Numerical Analysis B学时/学分:54/4先修课程:高等数学、线性代数、高级语言程序设计(如:Matlab语言)适用专业:计算机科学与技术、信息管理与信息系统开课学院(部)、系(教研室):医学工程技术学院、医学信息技术专业一、课程的性质与任务计算方法是一门专业必修课。
《数值计算方法》课件1绪论

x
y
(
f
(
x,
y))
|
f
(x, x
y)
|
(x)
|
f
(x, y
y)
|
(
y)
r
(
f
(x,
y))
( f (x, y)) f (x, y)
(1 6)
x
1.2 误差分析
1.2.2 绝对误差与相对误差
误差分析---- 数值计算的的误差
(a b) (a) (b)
r
(a
b)
(a) a
b
(b)
(ab) b (a) a (b)
两个例子 模型误差 方法误差
h 1 gt 2 2
sin x x x3 x5 x7 3! 5! 7!
x x* x
1.2 误差分析
1.2.2 绝对误差与相对误差
➢设x是某个精确值x*的近似值,则称 x* x 为近似值x的 绝对误差,简称误差。如果能找到绝对误差值的一个上
界 ,使得 x* x ,称 是近似值x的绝对误差界,
f
f
x1 x2
x1 x2
x1 x2
x1 x2
1.2 误差分析
1.2.2 绝对误差与相对误差
➢有效数字
• 若近似值的绝对误差界是某一数位上的半个单位,则称精
确到该位,若从该位到的左起第一位非零数字一共有n位, 则称近似值有n位有效数字。
• 从定义可以看出,通常的“四舍五入”后得到的数字都是
1.2 误差分析
1.2.1 误差的来源
• 通常,解决一个实际问题需经过以下几个步骤。
实际问题
数学模型
数值算法
计算结果
数值计算方法教案
数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与意义介绍数值计算的概念解释数值计算在科学研究与工程应用中的重要性1.2 数值计算方法分类介绍数值逼近、数值积分、数值微分、数值解方程等基本方法分析各种方法的适用范围和特点1.3 误差与稳定性解释误差的概念及来源讨论数值计算中误差的控制与减小方法介绍稳定性的概念及判断方法第二章:插值与逼近2.1 插值法的基本概念介绍插值的概念及意义解释插值函数的性质和条件2.2 常用的插值方法介绍线性插值、二次插值、三次插值等方法分析各种插值方法的优缺点及适用范围2.3 逼近方法介绍切比雪夫逼近、傅里叶逼近等方法解释逼近的基本原理及应用场景第三章:数值积分与数值微分3.1 数值积分的基本概念介绍数值积分的概念及意义解释数值积分的原理和方法3.2 常用的数值积分方法介绍梯形公式、辛普森公式、柯特斯公式等方法分析各种数值积分方法的适用范围和精度3.3 数值微分的基本概念与方法介绍数值微分的概念及意义解释数值微分的原理和方法第四章:线性方程组的数值解法4.1 线性方程组数值解法的基本概念介绍线性方程组数值解法的概念及意义解释线性方程组数值解法的原理和方法4.2 常用的线性方程组数值解法介绍高斯消元法、LU分解法、迭代法等方法分析各种线性方程组数值解法的优缺点及适用范围4.3 稀疏矩阵技术解释稀疏矩阵的概念及意义介绍稀疏矩阵的存储和运算方法第五章:非线性方程和方程组的数值解法5.1 非线性方程数值解法的基本概念介绍非线性方程数值解法的概念及意义解释非线性方程数值解法的原理和方法5.2 常用的非线性方程数值解法介绍迭代法、牛顿法、弦截法等方法分析各种非线性方程数值解法的优缺点及适用范围5.3 非线性方程组数值解法介绍消元法、迭代法等方法讨论非线性方程组数值解法的特点和挑战第六章:常微分方程的数值解法6.1 常微分方程数值解法的基本概念介绍常微分方程数值解法的概念及意义解释常微分方程数值解法的原理和方法6.2 初值问题的数值解法介绍欧拉法、改进的欧拉法、龙格-库塔法等方法分析各种初值问题数值解法的适用范围和精度6.3 边界值问题的数值解法介绍有限差分法、有限元法、谱方法等方法讨论边界值问题数值解法的特点和挑战第七章:偏微分方程的数值解法7.1 偏微分方程数值解法的基本概念介绍偏微分方程数值解法的概念及意义解释偏微分方程数值解法的原理和方法7.2 偏微分方程的有限差分法介绍显式差分法、隐式差分法、交错差分法等方法分析各种有限差分法的适用范围和精度7.3 偏微分方程的有限元法介绍有限元法的原理和步骤讨论有限元法的适用范围和优势第八章:数值模拟与计算可视化8.1 数值模拟的基本概念介绍数值模拟的概念及意义解释数值模拟的原理和方法8.2 计算可视化技术介绍计算可视化的概念及意义解释计算可视化的原理和方法8.3 数值模拟与计算可视化的应用讨论数值模拟与计算可视化在科学研究与工程应用中的重要作用第九章:数值计算软件与应用9.1 数值计算软件的基本概念介绍数值计算软件的概念及意义解释数值计算软件的原理和方法9.2 常用的数值计算软件介绍MATLAB、Mathematica、Python等软件的特点和应用领域9.3 数值计算软件的应用案例分析数值计算软件在科学研究与工程应用中的典型应用案例第十章:数值计算方法的改进与新发展10.1 数值计算方法的改进讨论现有数值计算方法的局限性介绍改进数值计算方法的研究现状和发展趋势10.2 新的数值计算方法介绍近年来发展起来的新型数值计算方法分析新型数值计算方法的优势和应用前景10.3 数值计算方法的未来发展探讨数值计算方法在未来可能的发展方向和挑战重点和难点解析一、数值计算概述难点解析:对数值计算概念的理解,误差来源及控制方法的掌握。
数值计算方法教案数值积分(有添加哦
数值积分教案教学目标:1. 理解数值积分的概念和意义;2. 掌握数值积分的基本方法和原理;3. 能够运用数值积分解决实际问题。
教学内容:1. 数值积分的概念和意义;2. 数值积分的基本方法:梯形法、辛普森法、高斯法等;3. 数值积分的原理:数值积分近似解的误差估计;4. 数值积分的应用:解决实际问题,如物理、工程等领域中的积分计算。
教学方法:1. 讲授法:讲解数值积分的概念、方法和应用;2. 案例分析法:分析实际问题,引导学生运用数值积分解决;3. 练习法:让学生通过练习题巩固所学知识。
教学准备:1. 教案、PPT、教学视频等教学资源;2. 计算器、电脑等教学工具。
教学过程:一、导入(5分钟)1. 引入数值积分的重要性,例如在物理、工程等领域中的应用;2. 引导学生思考如何利用数值方法近似计算积分值。
二、数值积分的概念和意义(10分钟)1. 讲解数值积分的定义;2. 解释数值积分的意义和作用;3. 举例说明数值积分在实际问题中的应用。
三、数值积分的基本方法(10分钟)1. 介绍梯形法、辛普森法和高斯法等基本方法;2. 讲解各种方法的原理和步骤;3. 通过实例演示数值积分的计算过程。
四、数值积分的原理(10分钟)1. 介绍数值积分近似解的误差估计;2. 解释误差估计的原理和意义;3. 引导学生思考如何选择合适的数值积分方法以减小误差。
五、数值积分的应用(10分钟)1. 分析实际问题,引导学生运用数值积分解决;2. 让学生通过练习题巩固所学知识;3. 引导学生思考数值积分在实际工程中的应用和限制。
教学评价:1. 课堂问答:检查学生对数值积分的概念和方法的理解;2. 练习题:评估学生对数值积分的应用能力;3. 课后作业:巩固学生对数值积分的掌握程度。
数值积分教案数值积分(有添加哦)六、梯形法的改进与应用(10分钟)1. 分析梯形法的局限性,如计算量大、精度低等问题;2. 介绍梯形法的改进方法,如自适应梯形法、辛普森法与梯形法的组合等;3. 通过实例讲解改进方法的原理和应用。
(完整版)数值计算方法教案
《计算方法》教案课程名称:计算方法适用专业:医学信息技术适用年级:二年级任课教师:***编写时间:2011年 8月新疆医科大学工程学院张利萍教案目录《计算方法》教学大纲 (4)一、课程的性质与任务 (4)二、课程的教学内容、基本要求及学时分配 (4)三、课程改革与特色 (5)四、推荐教材及参考书 (5)《计算方法》教学日历..................................... 错误!未定义书签。
第一章绪论 .. (6)第1讲绪论有效数字 (6)第2讲误差………………………………………………………………………………第二章线性方程组的直接法 (14)第3讲直接法、高斯消去法 (14)第4讲高斯列主元消去法 (22)第5讲平方根法、追赶法 (29)第三章插值法与最小二乘法 (31)第6讲机械求积、插值型求积公式 (32)第7讲牛顿柯特斯公式、复化求积公式 (37)第8讲高斯公式、数值微分 (42)第9讲第10讲第12讲第四章数值积分与数值微分 (48)第11讲欧拉公式、改进的欧拉公式 (48)第12讲龙格库塔方法、亚当姆斯方法 (52)第13讲收敛性与稳定性、方程组与高阶方程 (56)第14讲第15讲第五章微分常微分方程的差分方法 (59)第16讲迭代收敛性与迭代加速 (60)第17讲牛顿法、弦截法 (64)第18讲第19讲第20讲第六章线性方程组的迭代法 (67)第21讲迭代公式的建立 (68)第22讲第23讲第24讲向量范数、迭代收敛性 (71)第25讲《计算方法》教学大纲课程名称:计算方法/Computer Numerical Analysis B学时/学分:54/4先修课程:高等数学、线性代数、高级语言程序设计(如:Matlab语言)适用专业:计算机科学与技术、信息管理与信息系统开课学院(部)、系(教研室):医学工程技术学院、医学信息技术专业一、课程的性质与任务计算方法是一门专业必修课。
第十讲数值积分教学课件
(x xn ) dx (xk xn )
Rn[ f ]
b f (n 1)( ) (x)dx
a (n 1)!
通常称公式为插值型求积公式。
8
代数精度的概念
数值求积方法是近似方法,为保证精度,自然希望所提供
求积公式对于“尽可能多”的函数是准确的。
如果机械求积公式对 f x xk k 0,1, , m均能准确成
10
插值型求积公式的代数精度(续2)
反之,如果求积公式至少具有n次代数精 度,则对于插值基函数 lk (x)
(为n次多项式)求积公式准确成立,即
b
n
a lk ( x)dx
Ajlk ( x j )
j0
注意到 lk (x j ) kj ,上式右端实际上等于 Ak
即
Ak
b
a
lk
(
x)dx
求积公式为插值型求积公式。
龙贝格算法例题(续1)
27
龙贝格算法例题(续2)
28
龙贝格算法例题(续3)
把区间再分半,重复步骤(4),可算出 结果:
至此得
,因为计算只用小
数点后五位,故精确度只要求到0.00001因
此积分
1 0
1
4 x2
dx
3.14159
29
高精度的求积公式
不失一般性,设 a 1,b 1,考虑下
列求积公式
第十讲主要知识点
• 求积公式、代数精度的概念 • 牛顿-柯特斯公式、复化求积公式、龙贝格公式、高斯
型求积公式* • 各种求积公式的代数精度
1
引言
依据微积分基本定理, 只要找到被积函数 f x
的原函数 F x,F ' x f x,便有牛顿-莱伯
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 数值积分一.问题提出: (1)针对定积分()baI f x dx =⎰,若()5f x x =,a=0,b=1,即有161500166x I x dx ===⎰,但当()sin xf x x=,()2sin f x x =,……,时,很难找到其原函数。
(2)被积函数并没有具体的解析形式,即()f x 仅为一数表。
二.定积分的几何意义定积分()ba I f x dx =⎰的几何意义为,在平面坐标系中I 的值即为四条曲线所围图形的面积,这四条曲线分别是()y f x =,y=0,x=a ,x=b 。
xy三.机械求积公式 1.中矩形公式()()2ba ab I f x dx b a f +⎛⎫=≈- ⎪⎝⎭⎰; 几何意义:用以下矩形面积替代曲边梯形面积。
xy22.梯形公式()()()2ba b aI f x dx f a f b -=≈+⎡⎤⎣⎦⎰ 梯形公式的几何意义:用以下梯形面积替代曲边梯形的面积:xy3.辛普生公式()()()462bab a a b I f x dx f a f f b -⎡+⎤⎛⎫=≈++ ⎪⎢⎥⎝⎭⎣⎦⎰ 辛普生公式的几何意义:阴影部分的面积为抛物线曲边梯形,该抛物线由()(),(),,,,()22a ba b a f a f b f b ⎛++⎫⎛⎫ ⎪⎪⎝⎭⎝⎭三点构成。
xya+b 24.求积公式的一般形式()()0nbkkak f x dx A f x =≈∑⎰,其中称为节点,称为求积系数,或权。
5.求积公式的代数精度(衡量求积公式准确度的一种方法)含义:衡量一个积分公式的好坏,要用具体的函数来衡量,寻找怎样的函数来衡量呢?简单的多项式函数是一个理想的标准。
定义:若某积分公式对于()0,1,,k x k m =均能准确成立,但对于1m x +不能准确成立。
则称该公式具有m 次代数精度。
解释:代数精度只是衡量积分公式好坏的1种标准。
例1.研究中矩形公式()()2b a a b f x dx b a f +⎛⎫≈- ⎪⎝⎭⎰的代数精度及几何意义。
解:当()01f x x ==时,公式左边()1b baaf x dx dx b a ===-⎰⎰,公式右边b a =-,左=右;当()1f x x =时,公式左边()22222bb baaaxb a f x dx x dx -====⎰⎰,公式右边()2222a b b ab a +-⎛⎫=-=⎪⎝⎭,左=右; 当()2f x x =时,公式左边()333233bb baaa xb a f x dx x dx -====⎰⎰,公式右边()22a b b a +⎛⎫=- ⎪⎝⎭,左右;故中矩形公式具有1次代数精度。
从定积分的几何意义可以看出,当被积函数为一条直线时,中矩形公式是严格成立的,中矩形面积与梯形面积相等,如下图所示。
xy2例2.研究梯形公式()()()2ba b aI f x dx f a f b -=≈+⎡⎤⎣⎦⎰的代数精度及几何意义。
解:当()01f x x ==时,公式左边()1bbaaf x dx dx b a ===-⎰⎰,公式右边b a =-,左=右;当()1f x x =时,公式左边()22222bb baaax b a f x dx x dx -====⎰⎰,公式右边()2222b a b a a b --=+=,左=右; 当()2f x x =时,公式左边()333233bb baaa xb a f x dx x dx -====⎰⎰,公式右边()222b a a b -=+,左右。
故梯形公式也具有1次代数精度。
从定积分的几何意义知,当被积函数为一条直线时,其积分值本身就是一个梯形的面积,如下图所示。
xy例3.研究辛普生公式()()()462ba b a a b I f x dx f a f f b -⎡+⎤⎛⎫=≈++ ⎪⎢⎥⎝⎭⎣⎦⎰的代数精度及几何意义。
解:当()01f x x ==时,公式左边()1bbaaf x dx dx b a ===-⎰⎰,公式右边b a =-,左=右;当()1f x x =时,公式左边()22222bb baaax b a f x dx x dx -====⎰⎰,公式右边224622b a a b b aa b -+-⎛⎫=++= ⎪⎝⎭,左=右; 当()2f x x =时,公式左边()333233bb baaa xb a f x dx x dx -====⎰⎰,公式右边()233222242226263b a a b b a b a a b a ab b ⎛⎫-+--⎛⎫=++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭,左=右; 当()3f x x =时,公式左边()444344bbbaaax b a f x dx x dx -====⎰⎰,公式右边344334624b a a b b a a b ⎛⎫-+-⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭,左=右; 当()4f x x =时,左右; 故梯形公式具有3次代数精度。
当被积函数为一条直线或一条抛物线时,过其曲线上3个点构造的抛物线就是其本身曲线,所以积分公式严格成立。
当被积函数为3次多项式时,辛普生公式也严格成立,如下图所示,两个曲边梯形面积刚好相等。
xy6.求积公式的确定 方法一:待定系数法。
例1.构造一个至少具有一次代数精度的积分公式。
分析:构造一次代数精度的公式,即当()1f x =及()f x x =时,公式严格成立,故有2个约束条件,于是可以确定具有2个参数的积分公式。
解:设积分公式为:()()()01ba f x dx A f a A fb ≈+⎰。
针对()1f x =及()f x x =,代入积分公式的左边和右边,有:()01220112b a A A b a A a Ab -=+⎧⎪⎨-=+⎪⎩,解得()012A b a =-,()112A b a =- 于是有积分公式:()()()22bab a b a f x dx f a f b --≈+⎰。
该公式即为梯形求积公式。
例2.构造一个至少具有2次代数精度的求积公式。
解:设积分公式为()()()0122b aa b f x dx A f a A f A f b +⎛⎫≈++ ⎪⎝⎭⎰。
针对()1f x =,()f x x =及()2f x x =,代入积分公式的左边和右边,有:()()0122201223322012122132b a A A A a b b a A a A A b a b b a A a A A b ⎧⎪-=++⎪⎪+-=++⎨⎪⎪+⎛⎫-=++⎪ ⎪⎝⎭⎩,解得:()016A b a =-,()123A b a =-,()216A b a =-积分公式为:()()()462bab a a b I f x dx f a f f b -⎡+⎤⎛⎫=≈++ ⎪⎢⎥⎝⎭⎣⎦⎰ 该公式即为辛普生公式,需要注意的是,该公式的代数精度并不是2次,而是3次的。
方法二,插值法(插值型求积公式),即过函数f(x)的n+1节点x0,x1,……,xn ,作n 次多项式函数()n P x ,根据拉格朗日公式:()()()0nn k k k Px l x f x ==∑,则有 ()()()()()00nn b bb n k k k k aaa k k f x dx P x dx l x dx f x A f x ==⎡⎤≈==⎢⎥⎣⎦∑∑⎰⎰⎰,其中,()bk k a A l x dx =⎰ 代数精度的分析:若被积函数()f x 是次数小于n 的多项式函数,那么由其曲线上的n+1节点构成的n 次多项式函数()n P x 即是被积函数()f x 本身。
则:插值型积分公式具有至少n 次代数精度。
解释:若()f x 是一条直线,那么过其曲线上3个点构造的抛物线()22012P x a a x a x =++,其中必有20a =,即()()2P x f x =;同理,若()f x 是一条抛物线,那么过其曲线上4个点构造的3次多项式函数()2330123P x a a x a x a x =+++,其中必有30a =,即()()3P x f x =。
四.牛顿-柯特斯公式 1.中矩形公式()()2ba ab I f x dx b a f +⎛⎫=≈- ⎪⎝⎭⎰; 几何意义:用以下矩形面积替代曲边梯形面积。