聚类分析法

合集下载

聚类分析方法

聚类分析方法

聚类分析方法聚类分析是一种常见的数据分析方法,它可以帮助我们将数据集中的对象按照它们的相似性分成不同的组,从而更好地理解数据的结构和特征。

在实际应用中,聚类分析方法被广泛应用于市场分割、社交网络分析、生物信息学、图像处理等领域。

本文将介绍几种常见的聚类分析方法,包括K均值聚类、层次聚类和密度聚类,并对它们的原理和应用进行简要阐述。

K均值聚类是一种基于距离的聚类方法,它将数据集分成K个簇,每个簇包含距离最近的K个中心点。

K均值聚类的原理是通过迭代计算每个样本点到中心点的距离,然后将样本点分配到距离最近的中心点所在的簇中。

这个过程一直迭代进行,直到簇的分配不再改变为止。

K均值聚类的优点是简单易懂,计算速度快,但是它对初始中心点的选择敏感,容易陷入局部最优解。

层次聚类是一种基于树形结构的聚类方法,它通过不断地将最相似的样本点或簇合并在一起,从而构建出一个层次化的聚类结构。

层次聚类可以分为凝聚型和分裂型两种方法。

凝聚型层次聚类是从下往上构建聚类结构,它首先将每个样本点看作一个独立的簇,然后根据它们的相似性逐步合并成更大的簇,直到所有样本点合并成一个簇为止。

分裂型层次聚类则是从上往下构建聚类结构,它首先将所有样本点看作一个簇,然后根据它们的差异逐步分裂成更小的簇,直到每个样本点都成为一个簇为止。

层次聚类的优点是不需要预先确定簇的个数,但是它的计算复杂度较高,不适合处理大规模数据集。

密度聚类是一种基于样本点密度的聚类方法,它将高密度的样本点划分为一个簇,并且可以发现任意形状的簇。

密度聚类的核心思想是通过计算每个样本点周围的密度来确定核心点,然后将核心点连接在一起形成簇。

密度聚类的优点是对噪声和离群点具有较好的鲁棒性,但是它对参数的选择比较敏感,需要合适的密度阈值来确定核心点。

总的来说,聚类分析方法是一种强大的数据分析工具,它可以帮助我们发现数据中的潜在结构和规律。

不同的聚类方法适用于不同类型的数据和应用场景,选择合适的聚类方法需要根据具体问题的特点来进行。

聚类分析法

聚类分析法

聚类分析法聚类分析法(ClusterAnalysis)是一种基于模式识别及统计学理论的数据挖掘技术,它通过让数据集中的项以有联系的方式归入不同的簇(Cluster)来呈现其特征,以此发掘出隐藏在数据背后的所谓的“模式”和知识。

聚类分析法主要应用于定性分析(Qualitative Analysis)、模式识别、决策分析(Decision Analysis)、图象处理(Image Processing)、系统自动推理(System Inference)等领域,其主要性质属于非监督式学习。

基本流程聚类分析法的基本流程包括:数据准备(Data Preparation)、预处理(Pre-processing)、聚类(Clustering)、结果评估(Result Evaluation)等步骤。

在数据准备阶段,需要完成原始数据的清洗、转换、结构化以及标准化等操作。

而预处理步骤同样很重要,在此步骤中,可以得到样本的特征数据,并用于聚类模型的建立。

接下来,便是聚类的核心步骤了,完成聚类需要确定聚类的具体方法,例如层次聚类(Hierarchical Clustering)、基于密度的聚类(Density-Based Clustering)、均值聚类(K-means Clustering)等。

最后便是评估结果,在这一步中,会根据聚类的执行情况以及聚类的结果,采用相应的评估指标,对聚类结果做出评价,确定聚类模型的合理性。

工作原理聚类分析法的工作原理,主要是利用距离函数(Distance Function)来度量数据项之间的距离,从而将数据项归入不同的簇。

常用的距离函数有欧氏距离(Euclidean Distance)、曼哈顿距离(Manhattan Distance)、闵可夫斯基距离(Minkowski Distance)、切比雪夫距离(Chebyshev Distance)等。

其中欧氏距离被广泛应用,由于它比较容易实现,可以很好地表现出数据项之间的相似性。

聚类分析方法

聚类分析方法

聚类分析方法聚类分析是一种常用的数据分析方法,它可以将数据集中的对象按照其相似性进行分组,形成若干个簇。

通过聚类分析,我们可以发现数据中的内在结构,帮助我们更好地理解数据集的特点和规律。

在实际应用中,聚类分析被广泛应用于市场分割、社交网络分析、图像处理等领域。

本文将介绍聚类分析的基本原理、常用方法和应用场景,希望能够帮助读者更好地理解和应用聚类分析。

聚类分析的基本原理是将数据集中的对象划分为若干个簇,使得同一簇内的对象相似度较高,不同簇之间的对象相似度较低。

在进行聚类分析时,我们需要选择合适的相似性度量方法和聚类算法。

常用的相似性度量方法包括欧氏距离、曼哈顿距离、余弦相似度等,而常用的聚类算法包括K均值聚类、层次聚类、DBSCAN等。

不同的相似性度量方法和聚类算法适用于不同的数据类型和应用场景,选择合适的方法对于聚类分析的效果至关重要。

K均值聚类是一种常用的聚类算法,它通过不断迭代更新簇中心的方式,将数据集中的对象划分为K个簇。

K均值聚类的优点是简单、易于理解和实现,但是它对初始簇中心的选择较为敏感,容易收敛到局部最优解。

层次聚类是另一种常用的聚类算法,它通过逐步合并或分裂簇的方式,构建一棵层次化的聚类树。

层次聚类的优点是不需要事先确定簇的个数,但是它对大数据集的处理效率较低。

DBSCAN是一种基于密度的聚类算法,它能够发现任意形状的簇,并且对噪声数据具有较强的鲁棒性。

不同的聚类算法适用于不同的数据特点和应用场景,我们需要根据具体情况选择合适的算法进行聚类分析。

聚类分析在实际应用中有着广泛的应用场景。

在市场分割中,我们可以利用聚类分析将顾客分为不同的群体,从而制定针对性的营销策略。

在社交网络分析中,我们可以利用聚类分析发现社交网络中的社区结构,从而发现潜在的影响力人物。

在图像处理中,我们可以利用聚类分析对图像进行分割和特征提取,从而实现图像内容的理解和识别。

聚类分析在各个领域都有着重要的应用,它为我们理解和利用数据提供了有力的工具。

聚类分析方法

聚类分析方法

聚类分析方法方法介绍聚类分析 (Clauster Analysis)数值分类法的一种,在社会应用中称类型学。

Robert Tryon于1939年提出的一种心理学研究方法。

目的:用数量关系对事物进行分类。

对于可以用某些数量描述的事物,采用样本间的距离来将性质接近的事物归为一类,从而达到对事物的分析和评价。

聚类分析作分类时各类群乃至类群数事先未知,而是根据数据的特征确定的,又称为无师可循的分类。

一般分为逐步聚类、系统聚类和其它方法。

16种饮料的热量、咖啡因、钠及价格四种变量数据示例聚类分析(cluster analysis)对于一个数据,人们既可以对变量(指标)进行分类(相当于对数据中的列分类),也可以对观测值(事件、样品)来分类(相当于对数据中的行分类)。

比如学生成绩数据就可以对学生按照理科或文科成绩(或者综合考虑各科成绩)分类。

当然,并不一定事先假定有多少类,完全可以按照数据本身的规律来分类。

如何度量远近,如果想要对100个学生进行分类,如果仅仅知道他们的数学成绩,则只好按照数学成绩来分类;这些成绩在直线上形成100个点。

这样就可以把接近的点放到一类。

如果还知道他们的物理成绩,这样数学和物理成绩就形成二维平面上的100 个点,也可以按照距离远近来分类。

三维或者更高维的情况也是类似;只不过三维以上的图形无法直观地画出来而已。

在饮料数据中,每种饮料都有四个变量值。

这就是四维空间点的问题了。

如果以n个数值型变量(n维空间)来描述某一类事物,则一个事物就是n维空间中是一个点。

YXZ1>.........................ABC.在A、B、C三组数据点群中,每组内部的数据点的坐标数值都比较接近。

用几何距离表示就是:由于在同一类中数据点的坐标值比较接近或几何距离比较接近,这类点的总体性质就比较接近。

聚类分析就是通过对变量的测量,将比较接近的个案找出来归为一类,进一步再将比较接近的类合并成为新的类,逐层合并直到最后合并成为一类。

聚类分析法

聚类分析法

聚类分析法聚类分析法是一种常用的数据挖掘技术。

它是一种一般数据挖掘流程的主要组成部分,主要用于对海量数据进行分类,以便更好地理解数据之间的关系。

它能有助于各种研究者、商业企业、政府等对海量数据进行分析。

聚类分析法的主要思想是将各个数据分组归类,使同类的数据在一起,而不同的数据分布在不同的组别中。

它利用某种规则,将不同的数据样本分类,认为它们具有距离接近的特征。

因此,它能够根据数据特征之间的差异性将数据分类,以更好地了解这些数据的内部结构。

聚类分析法通常分为聚类分析和层次聚类分析。

聚类分析的操作过程是:先将原始数据分成若干类,然后用某种距离或相似度度量两个数据样本点之间的距离,得到数据样本的相似度,然后将原始数据的每一组点重新分组,以使得每个类内样本点之间的距离大于每个类中不同类之间的距离。

而层次聚类分析着重于根据数据特征之间的相似度进行分类,使用层次聚类算法能够实现数据的优化分类,有利于更好地理解数据的内部结构。

聚类分析法的实现过程非常复杂,一般分为数据预处理、距离/相似度度量、聚类决策和结果评估几个步骤,其中最为关键的是距离/相似度度量。

由于距离/相似度度量是聚类分析法的核心步骤,其结果将会影响到聚类分析结果的准确性。

聚类分析法在数据挖掘领域具有重要的应用价值,在客户关系管理、市场细分、碎片化信息处理、文本分析、文档聚类等方面都可以运用聚类分析法。

通过聚类分析法可以有效地探索隐藏在数据中的潜在关系,为企业提供有用的决策信息,有助于企业更好地运用数据资源,实现更好更有效的决策。

聚类分析法在数据挖掘领域具有重要的应用价值,但它存在一定的局限性,比如聚类决策的准确性取决于选择的距离/相似度度量方法,而且在处理大规模数据时,它的计算速度比较慢,也无法完全给出准确的聚类结果。

另外,聚类分析法的结果可能会受到环境变化的影响。

总之,聚类分析法是一种常用的数据挖掘技术,具有很高的应用价值,可以有效地探索数据之间的关系,为企业提供有用的决策信息,帮助企业更好地管理数据和实现更好更有效的决策。

聚类分析法

聚类分析法

2020/7/31
30
2.模糊聚类分析步骤 第二步:建立模糊相似矩阵。
2020/7/31
31
2.模糊聚类分析步骤 第三步:获得模糊分类关系。
2020/7/31
3糊相似矩阵 进行聚类处理。将 类逐渐合并,最后得到聚类谱系图,从而进行合理的分类。
2020/7/31
6
xij
1.1 聚类与聚类分析
1.1.2聚类分析的原理
▪中心化变换
对于一个样本数据,观测p各指标,n个样品的数据资料
阵为
x11 x12
X
x21
x22
x1 p
x2
p
xn1 xn2
xnp
2020/7/31
7
xij
1.1 聚类与聚类分析
1.1.2聚类分析的原理 ▪标准化变换
②动态聚类分析法。是将n个样品初步分类,然后根据分类函数尽可能小的 原则,对初步分类进行调整优化,直到分类合理为止。这种分类方法一般称为 动态聚类法,也称调优法。
③模糊聚类分析法。是利用模糊数学中模糊集理论来处理分类问题的方法, 他对经济领域中具有模糊特征的两态数据或多态数据具有明显的分类效果。
④图论聚类分析法。是利用图论中最小支撑树(MST)的概念来处理分类问 题,是一种独具风格的方法。
1.2 聚类分析的种类
1.2.1 系统聚类分析法
1.2.2 动态聚类分析法
1.2.3 模糊聚类分析法
1.2.4 图论聚类分析法
2020/7/31
13
1.2.1 系统聚类分析法
1.基本思想和分析步骤
(1)基本思想 系统聚类分析的基本思想是,把n个样品看成p维(p个 指标)空间的点,而把每个变量看成p维空间的坐标轴,根据

聚类分析方法

聚类分析方法

聚类分析方法
聚类分析是一种常用的数据挖掘方法,它可以将相似的数据点分组在一起。

在聚类分析中,数据被分为多个类别,每个类别都包含具有类似特征的数据点。

聚类分析方法有很多种,其中一种是K均值聚类。

K均值聚
类的目标是将数据点分为K个簇,使得每个数据点都属于与
其最近的质心所代表的簇。

首先,在聚类分析中,需要先选择一个初始的簇质心,然后迭代地将每个数据点分配到与其最近的质心所代表的簇中,然后更新簇质心的位置,直到达到收敛。

另一种常见的聚类分析方法是层次聚类。

层次聚类将数据点逐渐合并成一个个的簇,直到所有数据点都属于同一个簇。

层次聚类可以根据不同的相似性度量来合并簇,例如单链接、完全链接或平均链接等。

另外,谱聚类是一种基于图论的聚类方法,它利用数据点之间的相似性构建一个相似度矩阵,并将其转化为一个图。

然后,通过计算图的特征向量来对数据进行聚类分析。

聚类分析方法还有很多其他的变体和扩展,例如密度聚类、模糊聚类和网格聚类等。

这些方法可以根据具体的问题和数据类型来选择和应用。

总的来说,聚类分析方法是一种无监督学习的方法,可以用于发现数据中的内在结构和模式。

它在很多领域都有广泛的应用,
如市场分析、社交网络分析和生物信息学等。

通过应用聚类分析方法,可以帮助我们更好地理解和分析数据。

聚类分析法ppt课件全

聚类分析法ppt课件全

8/21/2024
25
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(3)分类函数
按照修改原则不同,动态聚类方法有按批修改法、逐个修改法、混合法等。 这里主要介绍逐步聚类法中按批修改法。按批修改法分类的原则是,每一步修 改都将使对应的分类函数缩小,趋于合理,并且分类函数最终趋于定值,即计 算过程是收敛的。
8/21/2024
23
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(2)初始分类 有了凝聚点以后接下来就要进行初始分类,同样获得初始分类也有不同的
方法。需要说明的是,初始分类不一定非通过凝聚点确定不可,也可以依据其 他原则分类。
以下是其他几种初始分类方法: ①人为分类,凭经验进行初始分类。 ②选择一批凝聚点后,每个样品按与其距离最近的凝聚点归类。 ③选择一批凝聚点后,每个凝聚点自成一类,将样品依次归入与其距离
8/21/2024
14
1.2 聚类分析的种类
(2)系统聚类分析的一般步骤 ①对数据进行变换处理; ②计算各样品之间的距离,并将距离最近的两个样品合并成一类; ③选择并计算类与类之间的距离,并将距离最ቤተ መጻሕፍቲ ባይዱ的两类合并,如果累的个
数大于1,则继续并类,直至所有样品归为一类为止; ④最后绘制系统聚类谱系图,按不同的分类标准,得出不同的分类结果。
8/21/2024
18
1.2 聚类分析的种类
(7)可变法
1 2 D kr
2 (8)离差平方和法
(D k 2 pD k 2 q)D p 2q
D k 2 rn n ir n n p i D i2 pn n ir n n q iD i2 qn rn in iD p 2 q
8/21/2024
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

03 系统聚类法
03
类间距离度量方法
1.最短距离法(nearest neighbor) 2.最长距离法(furthest neighbor) 3.中间距离法(median method)
4.类平均法(average linkage)
5.可变类平均法(flexible-beta method) 6.重心法(centroid method) 7.Ward离差平方和法(Ward's minimum-variance method)
如何衡量这个“相近程度”? 需要使用前文所提到的能够度量样本或变量之间相似程 度的统计量,我们称其为聚类统计量。
02 聚类统计量
如何聚类?
一种方法是将一个样品看作p维空间的一个点,并在空间定义距离,
距离越近的点归为一类,距离较远的点归为不同的类。 另一种方法是使用相似系数,性质越接近的样品,它们的相似系 数的绝对值越接近1,而彼此无关的样品,它们的相似系数的绝对 值越接近于零。比较相似的样品归为一类,不怎么相似的样品归为
不同的类。
02 定比变量的聚类统计量:距离统计量
1. 欧式(Euclidian )距离
x2 x12 ①
x22
x22- x12
x21- x11 x11
② x21 x1
02 定比变量的聚类统计量:距离统计量
2. 明氏(Minkowski )距离
当q=1, 当q=2,即为欧式距离 当q=∞,有 距离
为绝对值距离 , 称为切比雪夫(Chebychev)
03
类间距离度量方法
重心法——Centroid Clustering
类平均法——Between-groups Linkage
03 系统聚类法
03
类间距离度量方法
离差平方和法——Word’s Method
Word’s法的基本思想是来自于方差分析,如果分类正确,同类样品 的离差平方和应当较小,类与类的离差平方和应当较大。
……
01 概述
聚类分析应用领域
生物学领域
推导植物和动物的分类; 对基因分类,获得对种群的认识
数据挖掘领域
作为其他数学算法的预处理步骤,获得数据分布状况,集中对
特定的类做进一步的研究
02
PART TWO
聚类统计量
02 聚类统计量
如何聚类?
聚类分析就是要找出具有相近程度的点或类聚为一类;
G2
G3
G4
G5
0 0.5 0 3.125 1.123 0 18 12.5 6.125 32 24.5 12.125
0 2
0
04
PART FOUR
快速聚类法
04 快速聚类法(K-Means Cluster)
K-Means Cluster原理
首先,选择n个数值型变量参与聚类分析,最后要求的聚类数为k个; 其次,由系统选择k个(聚类的类数)观测量(也可由用户指定)作为聚 类的种子; 第三,按照距离这些类中心的距离最小的原则把所有观测量(样品)分 派到各类重心所在的类中去; 第四,这样每类中可能由若干个样品,计算每个类中各个变量的均值, 以此作为第二次迭代的中心; 第五,然后根据这个中心重复第三、第四步,直到中心的迭代标准达到 要求时,聚类过程结束。
03
04
请批评指正!
3. 马氏(Mahalanobis) 距离
02 定比变量的聚类统计量:距离统计量
4. 兰氏(Lance) 距离
该距离与变量单位无关,对大的异常值不敏感,适用 于较大变异的数据,同样未考虑变量的相关性。
02 定比变量的聚类统计量:距离统计量
5. 配合距离
前几类距离多用于定 距和定比尺度数据,对
于定类和定序变量则可
步骤3:计算新类与当前各类的距离。
重复步骤2、3,直至合并成一类为止,形成谱系图
根据谱系图确定如何分类
03 系统聚类法
03
类间距离算法
正如样品之间的距离可以有不同的定义方法一样,类与类之间的
距离也有各种定义。 例如可以定义类与类之间的距离为两类之间最近样品的距离,或 者定义为两类之间最远样品的距离,也可以定义为两类重心之间 的距离等等。类与类之间用不同的方法定义距离,就产生了不同
聚类分析是根据“物以类聚”的道理,对样本或指标
进行分类的一种多元统计分析方法,它们讨论的对象是大 量的样本,要求能合理地按各自的特性进行合理的分类, 没有任何模式可供参考或依循,即在没有先验知识的情况 下进行的。
01 概述
聚类分析的基本思路
基本思想是认为研究的样本或变量之间存在着程度不同的相似性
(亲疏关系)。根据一批样本的多个观测指标,找出一些能够度量样 本或变量之间相似程度的统计量,以这些统计量作为分类的依据,把 一些相似程度较大的样本(或指标)聚合为一类,把另外一些相似程 度较大的样本(或指标)聚合为一类,直到把所有的样氏距离的缺点
距离的大小与个指标的观测单位有关,具有一定的人为性。
例如:对体重和身高进行测量,采用不同单位,其距离测量的 结果不同。以欧氏距离为例。
02 定比变量的聚类统计量:距离统计量
2. 明氏距离的缺点
当长度=cm时:
02 定比变量的聚类统计量:距离统计量
03
类间距离度量方法
最长距离法(furthest neighbor)
G1 G1 G2 G3 G4 G5 0 1 2.5 6 8
G2
G3
G4
G5 G6 G3 G4 G5 0
G6
G3
G4
G5
0 1.5 5 7
0 3.5 5.5
0 2
0 2.5 0 6 3.5 8 3. 5
0 3.5
0
03 系统聚类法
一定额度和期限的免息透支服务! 赠送百盛的贵宾打折卡! 在他或她生日的时候送上一个小蛋糕!
01 概述
聚类分析应用领域
经济领域:
帮助市场分析人员从客户数据库中发现不同的客户群,并且用
购买模式来刻画不同的客户群的特征。
谁喜欢打国际长途,在什么时间,打到那里? 对住宅区进行聚类,确定自动提款机ATM的安放位置 股票市场板块分析,找出最具活力的板块龙头股 企业信用等级分类
01 概述
聚类分析无处不在
挖掘有价值的客户,并制定相应的促销策略:
如,对经常购买酸奶的客户
对累计消费达到12个月的老客户
针对潜在客户派发广告,比在大街上乱发传单命中率更 高,成本更低!
01 概述
聚类分析无处不在
谁是银行信用卡的黄金客户?
利用储蓄额、刷卡消费金额、诚信度等变量对客户分类,找出 “黄金客户”! 这样银行可以…… 制定更具吸引力的服务,留住客户!比如:
2. Pearson相关系数
02 聚类统计量
使用场合
在实际问题中:
对样品分类常用距离;
对指标分类常用相似系数。
03
PART THREE
系统聚类法
03 系统聚类法
01
系统聚类法的基本思想
先将每个研究对象(样品或指标)各自看成一类。 然后根据对象间的相似度量,将h类中最相似的两类合并,组成一个新类,这 样得到h-1类,再在这h-1类中找出最相似的两类合并,得到h-2类,如此下去,
• 如有五个样品:1, 2, 3.5, 7, 9
• 第一步:将五个样品各自分成一类,显然这时的类内 离差平方和S=0;
• 第二步:将一切可能的任意两样品合并,计算所增加 的离差平方和: •如
03 系统聚类法
03
类间距离度量方法
离差平方和法——Word’s Method
G1
G1 G2 G3 G4 G5
直至将所有的对象并成一个大类为止。
当然,真的合并成一个类就失去了聚类的意义,所以上面的聚类过程应该在某 个类水平数(即未合并的类数)停下来,最终的类就取这些未合并的类。决定 聚类个数是一个很复杂的问题。
03 系统聚类法
02
系统聚类法的基本步骤
样本间距 类间距离
步骤1:将n个样品各作为一类,共n类:C1、 C2、…、 Cn。计算各类之间的 距离,构成距离矩阵:dcicj=dij 步骤2:找到距离最近的两类合并为一新类
具体方法:
先将n个样品各自成一类,然后每次缩小一类; 每缩小一类离差平方和就要增大,选择使离差平方和增加最小的两类
合并,直到所有的样品归为一类为止。
03 系统聚类法
03
类间距离度量方法
离差平方和法——Word’s Method
Gt中样品的离差平方和为
03 系统聚类法
03
类间距离度量方法
离差平方和法——Word’s Method
03 系统聚类法
03
类间距离度量方法
最短距离法(single linkage)
G1 G1 G2 G3 G4 G5 0 1 2.5 6 8
G2
G3
G4
G5 G6 G3 G4 G5 0
G6
G3
G4
G5
0 1.5 5 7
0 3.5 5.5
0 2
0 1.5 0 5 3.5 7 3. 5
0 3.5
0
03 系统聚类法
的系统聚类方法。
03 系统聚类法
03
类间距离度量方法
1.最短距离法(single linkage) 2.最长距离法(complete linkage) 3.中间距离法(median method)
4.类平均法(Between-groups Linkage)
5.可变类平均法(flexible-beta method) 6.重心法(Centroid Clustering) 7.Ward离差平方和法(Ward's minimum-variance method)
相关文档
最新文档