第七章 图像分割技术
第七章 图像分割_PPT课件

– 鲁棒局部特征,抗变形能力强,适用于匹配
• 7.3 阈值法 —— 全局阈值法
• 思路
– 将分割问题视为面向每一个像素的分类问题,通常使用简单的阈 值不等式判断像素的类别。
• 条件
– 待分割区域与背景区域在像素级特征上存在明显的差异,而两个 区域内部像素在统计上各自具有较强的相似性。从特征直方图上 看,具有明显的双峰分布的图像比较适合使用阈值法进行分割
• 自然图像理解
• 7.2 图像特征概述
•亮度 •直方图 •变换系数 •边缘 •纹理 •关键点
• 7.2 图像特征概述
•亮度
– 空间连续性,稠密性,直观,敏感性
•直方图
– 统计特征,抗线性几何变换
•变换系数
– 频域统计特征,提供一种完全不同的视角
•边缘
– 符合视觉习惯,是形状信息的基础
•纹理
– 局部不连续性和全局相似性的统一
• 7.3 阈值法 —— 全局阈值法
• 如何确定阈值T?
–迭代法 –大津法 (OTSU) –最优阈值法 –最大熵法 –众数法 –矩不变法 ……
• 7.3 阈值法 —— 全局阈值法
• 迭代阈值法
1)选取一个的初始估计值T; 2)用T分割图像。这样便会生成两组像素集合:G1由所有灰度值大 于T的像素组成,而G2由所有灰度值小于或等于T的像素组成。 3)对G1和G2中所有像素计算平均灰度值u1和u2。 4)计算新的阈值:T=1/2(u1 + u2)。 重复步骤(2)到(4),直到T值更新后产生的偏差小于一个事先定 义的参数T0。
• 从优化的角度看,迭代阈值法的目标函数:
• 7.3 阈值法 —— 全局阈值法
• 大津法(OTSU) – 寻找使类间离散度最大化的阈值T – 类间离散度的数学定义
医学影像中的图像分割技术研究

医学影像中的图像分割技术研究一、背景介绍随着医学成像技术不断的发展,医学影像在临床医疗领域已经成为了不可或缺的一部分。
然而,海量的医学影像数据对临床医生和医学研究工作者的影像学分析提出了新的挑战。
一项重要的任务是医学影像中的图像分割,即将一张医学影像图像分为若干不同的区域以帮助临床医生和研究人员更好地理解该区域的构造和特性。
基于这一任务,许多图像分割技术得到了广泛的研究和应用。
二、医学影像中的图像分割技术1. 基于阈值的图像分割技术基于阈值的图像分割技术是一种快速、简单的图像分割方法,广泛应用于医学影像中。
基本原理是将像素值高于或低于预先定义的阈值的像素分为两个部分,从而实现图像的分割。
但此方法在面对医学影像中复杂结构的图像时,分割效果很可能出现错误。
2. 基于边缘检测的图像分割技术基于边缘检测的图像分割技术是利用边缘信息对图像进行分割的方法,主要分两步进行。
首先,对图像进行边缘检测,提取边缘信息。
然后,利用这些边缘信息将图像分割为不同的部分。
但这种方法对图像中噪声的敏感度很高,同时对于一些形状较为复杂的结构分割效果也较差。
3. 基于区域生长的图像分割技术基于区域生长的图像分割技术是一种运用种子点的方法将图像分为不同的区域。
基本原理是从种子点开始,对相邻像素点的灰度值进行比较,将符合条件的像素点归为同一区域,直到所有符合条件的像素点都被归为同一区域。
该方法能够有效处理复杂的图像结构,并且对噪声的抗干扰能力较强。
4. 基于图论的图像分割技术基于图论的图像分割技术将像素看作图中的节点,在节点之间建立连接关系。
在分割过程中,将节点之间的连线权值看作像素之间的相似性,将图像分为不同的区域。
该方法可以很好的解决医学影像中复杂结构分割问题,但其计算复杂度较大,分割速度比较慢。
三、总结医学影像中的图像分割技术在临床医学中具有重要的应用价值。
但由于医学影像的复杂性,不同的图像分割方法都存在自己的优缺点。
因此,在实际应用过程中,需要结合具体的医学影像特点选择合适的图像分割方法,并进行不断地优化和改进,以达到更好的分割效果。
图像分割技术在遥感图像处理中的应用技巧探讨

图像分割技术在遥感图像处理中的应用技巧探讨引言:遥感图像处理是遥感技术的重要组成部分,通过对遥感图像进行分析和处理,可以获取地表的空间信息,用于地理信息系统、环境监测、城市规划等领域。
图像分割技术是遥感图像处理的一项关键技术,它可以将图像按照特定的规则划分成若干个区域,用于环境监测、土地分类、植被分析等任务。
本文将探讨图像分割技术在遥感图像处理中的应用技巧。
一、图像分割技术概述图像分割是将图像划分为不同的区域的过程。
在遥感图像处理中,图像分割可以分为基于区域的分割和基于边缘的分割。
基于区域的分割主要通过计算相邻像素的相似度来划分区域,而基于边缘的分割则着重于提取图像中的边缘特征。
二、基于区域的图像分割技术1. 阈值分割阈值分割是图像处理中最简单、最常用的方法之一。
它通过设定一个或多个阈值来将图像中的像素分成不同的区域。
在遥感图像处理中,可以根据像素的亮度或颜色来设定阈值,对不同的地物进行分割。
2. 区域生长区域生长是一种基于邻域相似性的图像分割方法。
它从一个或多个种子点开始,通过判断邻域像素与种子点像素的相似性来不断扩展区域。
在遥感图像处理中,可以选择特定的地物作为种子点,通过不断生长来分割图像。
3. 参数化聚类参数化聚类是一种将图像转化为特征空间中的聚类问题的方法。
它通过将图像中的像素转化为特征向量,并在特征空间中应用聚类算法来实现图像的分割。
在遥感图像处理中,可以选择适当的特征向量来表示地物的特征,然后应用聚类算法对图像进行分割。
三、基于边缘的图像分割技术1. 边缘检测边缘检测是图像处理中常用的一种方法,它可以提取出图像中的边缘特征。
在遥感图像处理中,可以通过边缘检测算法来提取地物的边界,从而实现图像的分割。
2. 基于图论的分割基于图论的分割方法将图像看作由节点和边构成的图,通过在图上定义能量函数,并通过最小化能量函数来实现图像的分割。
在遥感图像处理中,可以将地物像素看作图的节点,将边缘信息看作图的边,从而实现图像的分割。
图像分割与特征提取 ppt课件

ppt课件
5
7.1 图像分割的概念
2. 图像分割的依据和方法
◆图像分割的依据是各区域具有不同的特性,这些 特性可以是灰度、颜色、纹理等。而灰度图像分割的 依据是基于相邻像素灰度值的不连续性和相似性。也 即,子区域内部的像素一般具有灰度相似性,而在区 域之间的边界上一般具有灰度不连续性。
◆灰度图像分割是图像分割研究中最主要的内容,其 本质是按照图像中不同区域的特性,将图像划分成不 同的区域。
7.2.1 图像边缘
图像
剖面
一阶导数
二阶导数
上升阶跃边缘 (a)
下降阶跃边缘 (b)
脉冲状边缘 (c)
屋顶边缘 (d)
图7.1 图像边缘及其导数曲线规律示例
ppt课件
11
7.2 基于边缘检测的图像分割
7.2.1 图像边缘
综上所述,图像中的边缘可以通过对它们求导数 来确定,而导数可利用微分算子来计算。对于数字图 像来说,通常是利用差分来近似微分。
方向:
f (x, y) = arctan(Gx / Gy )
(7.5)
ppt课件
14
7.2.2 梯度边缘检测
(1) Roberts算子
是一个交叉算子,其在点(i,j)的梯度幅值表示为:
G(i, j) = f (i, j) f (i 1, j 1) f (i 1, j) f (i, j 1) (7.6)
ppt课件
2
7.1 图像分割的概念
◆目标或前景 ◆背景 ◆目标一般对应于图像中特定的、具有独特性质的 区域。
ppt课件
3
7.1 图像分割的概念
1. 图像分割
图像分割就是依据图像的灰度、颜色、纹理、边 缘等特征,把图像分成各自满足某种相似性准则或具 有某种同质特征的连通区域的集合的过程。
图像分割技术研究综述

图像分割技术研究综述随着科技的快速发展,图像分割技术作为计算机视觉领域的重要分支,已经在众多应用领域中发挥着越来越重要的作用。
本文将对图像分割技术的研究进行综述,包括其发展历程、应用领域、研究成果以及未来研究方向。
图像分割技术是指将图像按照像素或区域进行划分,从而提取出感兴趣的目标或背景的过程。
图像分割技术在信号处理、计算机视觉、机器学习等领域具有重要的应用价值。
例如,在智能交通中,图像分割技术可以用于车辆检测和跟踪;在医学图像分析中,图像分割技术可以用于病灶区域提取和诊断。
根据图像分割技术所采用的方法,可以将其大致分为以下几类:基于阈值的分割、基于区域的分割、基于边缘的分割、基于模型的分割以及基于深度学习的分割。
1、基于阈值的分割是一种简单而又常用的图像分割方法,其基本原理是通过设定一个阈值,将图像的像素值进行分类,从而将图像分割为不同的区域。
基于阈值的分割方法实现简单、运算效率高,但在处理复杂图像时,往往难以选择合适的阈值,导致分割效果不理想。
2、基于区域的分割方法是根据图像像素的灰度或颜色特征,将图像分割为不同的区域。
这类方法通常适用于均匀背景和简单目标的图像,但对于复杂背景和遮挡情况的处理效果较差。
3、基于边缘的分割方法是通过检测图像中的边缘信息,将不同区域之间的边界提取出来,从而实现图像分割。
这类方法对噪声和光照变化较为敏感,需要结合其他方法进行优化。
4、基于模型的分割方法通常是利用数学模型对图像进行拟合,从而将图像中的目标或背景分离出来。
常用的模型包括参数化模型和非参数化模型两类。
这类方法能够处理复杂的图像特征,但对模型的选择和参数调整要求较高。
5、基于深度学习的分割方法是通过训练深度神经网络,实现对图像的自动分割。
这类方法具有强大的特征学习和自适应能力,能够处理各种复杂的图像特征,但在计算复杂度和训练成本方面较高。
近年来,随着人工智能和机器学习技术的快速发展,基于深度学习的图像分割技术在学术研究和实际应用中取得了显著的成果。
基于机器学习的图像分割技术

基于机器学习的图像分割技术在当今大数据时代,机器学习技术被广泛应用于各个领域,如自然语言处理、计算机视觉、医疗诊断等。
其中,计算机视觉是机器学习中的一个重要应用领域。
在计算机视觉中,图像分割技术是其中的一个重要研究领域。
本文将介绍基于机器学习的图像分割技术,并对其技术原理及应用场景进行探讨。
一、图像分割技术简介图像分割技术是计算机视觉领域中的一项重要研究,其主要是将输入的一张复杂图像分解为多个小的部分或者区域,使得每个部分或者区域都有一定的语义信息。
从而方便计算机对于这张图像的理解和分析。
图像分割技术还可以应用于图像的处理、分析、识别、重建等方面。
其中,基于机器学习的图像分割技术是近几年来的一个研究热点。
二、基于机器学习的图像分割技术原理基于机器学习的图像分割技术的原理主要是采用一些统计学习算法,通过对大量的样本进行训练,得到一个能够自动将图像分割的模型。
这个模型可以自动将图像中相似的像素聚集到一起,从而形成不同的区域,方便计算机对于图像的理解和分析。
在基于机器学习的图像分割技术中,主要有两种方法:监督学习和无监督学习。
监督学习需要提前准备好标注好的数据,训练模型的时候需要使用这些标注的数据进行训练。
而无监督学习则不需要任何标注的数据,只需要让模型自动学习图像的语义信息,从而进行图像的分割。
基于机器学习的图像分割技术需要进行两个重要的步骤:训练和测试。
在训练阶段,需要采用一些有效的优化算法,如梯度下降法、牛顿法、共轭梯度法等。
这些算法将通过反向传播的方式来计算每个参数的梯度,从而不断优化参数,使得模型的损失函数逐渐变小。
在测试阶段,需要输入一张待分割的图像,然后将其送入模型中进行处理,从而得到一张分割后的图像。
如果模型的分割效果不好,则需要重新调整模型的参数,进行不断地优化。
三、基于机器学习的图像分割技术的应用场景基于机器学习的图像分割技术在许多领域都有广泛的应用,如医疗领域的肿瘤图像分割、交通领域的车辆识别、自然语言处理领域的文本分词等。
医学图像分割技术的算法原理与优化方法
医学图像分割技术的算法原理与优化方法医学图像分割技术是医学影像处理领域中的一项重要研究内容,它可以将医学图像中的不同组织和结构进行有效的分割,为医生提供准确的诊断和治疗方案。
本文将介绍医学图像分割技术的算法原理和优化方法。
一、算法原理医学图像分割技术的算法原理主要包括基于阈值的分割方法、基于边缘的分割方法和基于区域的分割方法。
1. 基于阈值的分割方法:该方法通过设定一个或多个阈值来将图像中的像素分为不同的类别。
常见的阈值分割方法有全局阈值法、自适应阈值法和多阈值法。
全局阈值法适用于图像中目标和背景的灰度分布明显不同的情况,而自适应阈值法则可以处理灰度分布不均匀的图像。
多阈值法可以将图像分割为多个类别,适用于复杂的图像分割任务。
2. 基于边缘的分割方法:该方法通过检测图像中的边缘信息进行分割。
常见的边缘检测算法有Sobel算子、Canny算子和拉普拉斯算子。
这些算子可以提取图像中的边缘信息,并将其转化为二值图像。
然后可以使用形态学操作对二值图像进行进一步处理,得到最终的分割结果。
3. 基于区域的分割方法:该方法通过将图像分割为不同的区域来实现分割。
常见的基于区域的分割方法有区域生长法、分水岭算法和聚类算法。
区域生长法通过选择种子点,将与种子点相邻的像素进行合并,直到满足预设的停止准则。
分水岭算法基于图像的梯度信息将图像分割为不同的区域。
聚类算法通过将像素聚类到不同的类别,将图像分割为不同的区域。
二、优化方法医学图像分割技术的优化方法主要包括特征选择、图像预处理和模型优化。
1. 特征选择:在医学图像分割任务中,选择合适的特征对于算法的准确性和鲁棒性至关重要。
常见的特征包括灰度特征、纹理特征和形状特征。
通过选择合适的特征,可以提高分割算法的性能。
2. 图像预处理:医学图像通常受到噪声、伪影和低对比度等问题的影响,因此在进行分割之前,需要对图像进行预处理。
常见的预处理方法包括滤波、增强和标准化。
滤波可以降低图像中的噪声,增强可以提高图像的对比度,标准化可以使图像的灰度分布均匀。
图像分割技术的原理及方法
浅析图像分割的原理及方法一.研究背景及意义研究背景:随着人工智能的发展,机器人技术不断地应用到各个领域。
信息技术的加入是智能机器人出现的必要前提。
信息技术泛指包括通信技术、电子技术、信号处理技术等相关信息化技术的一大类技术。
它的应用使得人们今天的生活发生了巨大变化。
从手机到高清电视等家用电器设备出现使我们的生活越来越丰富多彩。
在一些军用及民用领域近几年出现了一些诸如:图像制导、无人飞机、无人巡逻车、人脸识别、指纹识别、语音识别、车辆牌照识别、汉字识别、医学图像识别等高新技术。
实现它们的核心就是图像处理、机器视觉、模式识别、智能控制、及机器人学等相关知识。
其中图像处理具有重要地位。
而图像分割技术是图像分析环节的关键技术。
研究图像分割技术的意义:人类感知外部世界的两大途径是听觉和视觉,尤其是视觉,同时视觉信息是人类从自然界中获得信息的主要来源,约占人类获得外部世界信息量的80%以上。
图像以视觉为基础通过观测系统直接获得客观世界的状态,它直接或间接地作用于人眼,反映的信息与人眼获得的信息一致,这决定了它和客观外界都是人类最主要的信息来源,图像处理也因此成为了人们研究的热点之一。
人眼获得的信息是连续的图像,在实际应用中,为便于计算机等对图像进行处理,人们对连续图像进行采样和量化等处理,得到了计算机能够识别的数字图像。
数字图像具有信息量大、精度高、内容丰富、可进行复杂的非线性处理等优点,成为计算机视觉和图像处理的重要研究对象。
在一幅图像中,人们往往只对其中的某些区域感兴趣,称之为前景,这些区域内的某些空间信息特性(如灰度、颜色、轮廓、纹理等)通常与周围背景之间存在差别。
图像分割就是根据这些差异把图像分成若干个特定的、具有独特性质的区域并提取感兴趣目标的技术和过程。
在数字图像处理中,图像分割作为早期处理是一个非常重要的步骤。
为便于研究图像分割,使其在实际的图像处理中得到有效的应用,严格定义图像分割的概念是十分必要的。
图像分割算法的原理及实现
图像分割算法的原理及实现图像分割是一种将图像按照某种特定的准则进行拆分的技术,它被广泛应用于计算机视觉领域中的目标定位、图像识别以及医疗领域的病变检测等领域。
图像分割算法的实现要点包括图像特征提取、分割方法选择、分割效果评估等内容。
本文将从原理和实现两个层面对图像分割算法进行深入讲述。
一、图像分割算法原理的概述1.1 图像分割算法的基本原理图像分割是将图像按照其特征和相似性划分为若干个具有这些特征的部分的过程。
通常情况下,图像分割的基本原理是:首先通过预处理将图像中的噪声去除或减小,再进行特征提取来识别图像中感兴趣的目标或区域;接着根据预先设定的分割方法将图像划分为若干个子目标或子区域。
1.2 图像分割算法基本分类按照分割策略,图像分割算法可分为以下三类。
1.2.1 基于阈值的图像分割算法基于阈值的图像分割算法,是将图像根据像素值的分布情况进行分割。
分割时,选择一个阈值,通过枚举阈值的不同取值,找到最佳分割点,将图像分成两个子区域。
此类方法实现简单,但对于复杂场景和多目标识别效果会比较差。
1.2.2 基于区域的图像分割算法这类方法首先根据图像特征将图像中不同的区域分割出来,再通过分割区域外的连续边界将相邻区域进行合并。
1.2.3 基于边缘处理的图像分割算法这类方法首先对图像中的边缘进行检测,再根据边缘连接将图像区域划分为不同的部分。
此类方法对噪声敏感较小,但对于曲线和空间位置的变化比较大的图像难以处理。
二、图像分割算法实现的方法和技术2.1 图像特征提取在实现图像分割的过程中,需要对图像进行特征提取。
主要有以下两种方法。
2.1.1 基于像素点的特征提取方法这种方法主要是根据像素点的位置、颜色等特征进行分割。
其中,像素点的位置是指在图像中的坐标位置,而像素点的颜色是指在图像中的颜色属性。
2.1.2 基于图像区域的特征提取方法这种方法是根据不同区域的纹理、形状或颜色等进行分割。
该方法常用的特征提取技术包括SIFT、SURF、LBP等。
数字图像处理PPT——第七章 图像分割
p-参数法
针对已知目标物在画面中所占比例的情况。 基本设计思想 选择一个值Th,使前景目标物所占的比例 为p,背景所占比例为1-p。 基本方法 先试探性地给出一个阈值,统计目标物的 像素点数在整幅图中所占的比例是否满足 要求,是则阈值合适;否则,阈值则偏大 或者偏小,再进行调整,直到满足要求。
p-参数法算法步骤
⎧ σ b2 ⎫ η | Th* = max ⎨ 2 ⎬ ⎩σ in ⎭
局部阈值方法
提出的原因 阈值方法对于较为简单的图像(目标 与背景差别大,容易区分的图像)简 单有效,对于较为复杂的图像,分割 效果不稳定。 方法 把图像分成子块,在每个子块上再采 样前述阈值分割方法
灰度-局部灰度均值散布图法
σ 12 =
f ( x , y )∈C 1
∑
( f ( x, y ) − μ1 )2
2 σ2 =
f ( x , y )∈C 22 )2
1 μ1 = N C1
f ( x , y )∈C 1
∑
f ( x, y )
1 μ2 = NC 2
f ( x , y )∈C 2
∑
f ( x, y )
参数空间的一条直线对应xy空间的一 个点
Hough变换提取直线原理
Xy空间一条直线上的n个点,对应kb 空间经过一个公共点的n条直线 Kb空间一条直线上的n点对应于xy空 间中过一公共点的n条直线
Hough变换提取直线算法
假设原图像为二值图像,扫描图中的每一 个像素点: 背景点,不作任何处理 目标点,确定直线: b = − xk + y 参数空间上的对应直线上所有的值累加1 循环扫描所有点 参数空间上累计值为最大的点(k*,b*)为所求 直线参数 按照该参数与原图像同等大小的空白图像 上绘制直线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第35页
? ? ? ?
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
第36页
P190 图7.2.3 图7.2.4
第37页
7.2 边缘检测
MatLab函数 函数
– J=edge(I, type)
» Type取’roberts’、’sobel’、’log’等 取 、 、 等
– 例子: 例子:
0 0 0 − 1 1 0 0 0 0
第18页
7.2 边缘检测
微分方法 横向微分运算
– 相减的结果反映了原图像亮度变化率的大小 ∆y f( x, y) = f( x, y) - f (x, y-1) – 图像水平边缘得到增强 – 模板(卷积核) 模板(卷积核)
0 − 1 0 0 1 0 0 0 0
第5页
第6页
主要内容: 主要内容:
分割定义和方法分类 边缘检测 哈夫变换 阈值分割 区域生长
第7页
7.1分割定义和方法分类 7.1分割定义和方法分类
地位
图像 预处理 图像1分割定义和方法分类 7.1分割定义和方法分类
图像分割定义
– 按照一定的规则将一幅图像分成各具特性的区域, 并提取 按照一定的规则将一幅图像分成各具特性的区域, 出感兴趣目标的技术和过程 – 其它名称: 其它名称:
第14页
7.2 边缘检测
边缘导数
阶跃型
凸缘型
房顶型
在数字图像中应用差分代替导数运算。 在数字图像中应用差分代替导数运算。 差分代替导数运算
第15页
7.2 边缘检测
导数
– 二维连续函数 二维连续函数f(x, y) 偏导数
f x' = ∂f ( x, y ) / ∂x
f y' = ∂f ( x, y ) / ∂y
– 图像:二维离散函数f(x, y) 图像:二维离散函数 » 导数转换为微分 ∆ x f ( x, y ) = f ( x, y ) − f ( x − 1, y ) ∆ y f ( x, y ) = f ( x, y ) − f ( x, y − 1)
第16页
7.2 边缘检测
例
0 1 f ( x, y ) = 0 1 0 1 255 255 255 255 1 1 254 253 254 254 0 0 255 255 253 253 1 0 254 254 254 254
第10页
7.1分割定义和方法分类 7.1分割定义和方法分类
分类—连续性与处理策略 分类 连续性与处理策略
连续性: 连续性:
不连续性: 不连续性:边界 相似性: 相似性:区域
处理策略: 处理策略:早期处理结果是否影响后面的处理
并行:不 并行: 串行: 串行:结果被其后的处理利用
四种方法
并行边界;串行边界;串行区域; 并行边界;串行边界;串行区域;并行区域
第27页
7.2 边缘检测
锐化方法
(4)由梯度二值化图像 )
La G ( x, y ) = Lb G ( f ( x, y )) ≥ T 其它
可以令L , 可以令 a=0,Lb=255
第28页
7.2 边缘检测
常用梯度算子
Roberts Prewitt Sobel 高斯拉普拉斯算子
第29页
1
2
1
-1
-2
1
第32页
梯度算子作用于图像中所得的结果( 用Sobel梯度算子作用于图像中所得的结果(设范数为 ) 梯度算子作用于图像中所得的结果 设范数为1)
1 2 2 1 3 1 1 1 3
第33页
7.2 边缘检测
3、拉普拉斯( Laplacian )算子 、拉普拉斯(
–二阶微分算子 二阶微分算子 –表示 表示
» 目标轮廓技术(object delineation ) 目标轮廓技术( » 目标检测(target detection) 目标检测( ) » 阈值化技术(thresholding) ) 阈值化技术(
– 图像处理到图像分析的关键步骤
第9页
7.1分割定义和方法分类 7.1分割定义和方法分类
形式化定义
1 0 0 −1
0 1 − 1 0
第30页
7.2 边缘检测
2)Prewitt算子 Prewitt算子
-1 -1 -1
0 0 0
1 1 1
1 0 -1
1 0 -1
1 0 -1
第31页
7.2 边缘检测
3)Sobel梯度算子 ) 梯度算子
-1 -2 -1
1 2 1
第26页
7.2 边缘检测
锐化方法
(3)赋边缘点特定的灰度级 )
La G ( x, y ) = f ( x, y )
G ( f ( x, y )) ≥ T 其它
将边缘的灰度值统一化,可以使边缘更加清晰明显。 将边缘的灰度值统一化,可以使边缘更加清晰明显。 该方法基本上不破坏图像的背景, 该方法基本上不破坏图像的背景,又可以根据需要增强 边缘。 边缘。
G ( x, y ) = f x' = f ( x, y ) − f ( x − 1, y )
0 1 0 0 G ( x, y ) = 0 0 0 − 1
254 0 0 253 − 1 1 255 0 − 2 254 0 0
第17页
0 0 0 0
注意: 注意:原图像第 1列像素无微分
7.2 边缘检测
(1)Roberts算子 ) 算子
方法:计算对角方向相邻的两个像素灰度之差。 方法:计算对角方向相邻的两个像素灰度之差。 特点:边缘定位准,但对噪声敏感。 特点:边缘定位准,但对噪声敏感。
G ( x, y ) = f ( x, y ) − f ( x + 1, y + 1) + f ( x + 1, y ) − f ( x, y + 1)
第23页
7.2 边缘检测
梯度
– f( x, y)的梯度定义为 的梯度定义为
∂f ( x, y ) ∂f ( x, y ) G[ f ( x, y )] = + ∂y ∂x – 离散图像 离散图像P73
2 2
G[ f ( x, y )] =
( f ( x, y ) − f ( x − 1, y ) ) + ( f ( x, y) − f ( x, y − 1)
第19页
7.2 边缘检测
微分方法
(3)双向一次微分运算 双向一次微分运算
g ( x, y ) =
( f ( x, y ) − f ( x, y − 1) ) + ( f ( x, y ) − f ( x − 1, y ) )
2
2
0 0 0 模板(卷积核) 模板(卷积核) − 1 1 0 0 0 0
– 图像函数 f ( x , y ) 在点 ( x, y ) 的梯度幅值为
∂f ∂ f + ∂x ∂ y
2
2
各用1个 对Gx和Gy各用 个 和 各用 模板,需要2个模板 模板,需要 个模板 组合起来构成一个梯 度算子。 度算子。
其方向为
∂f ∂y θ = arctg ∂f ∂x
研究层次
–图像分割算法 图像分割算法 –图像分割算法的评价和比较 图像分割算法的评价和比较 –对分割算法的评价方法和评价准则的系统研究 对分割算法的评价方法和评价准则的系统研究
第12页
7.2 边缘检测
第13页
7.2 边缘检测
1、概述 、
–物体的 边缘 是以图像局部特性的不连续性的形式出现的 物体的边缘 物体的 边缘是以图像局部特性的不连续性的形式出现的 从本质上说, , 从本质上说 , 边缘意味着一个区域的终结和另一个区 域的开始。 域的开始。 –图像边缘信息在图像分析和人的视觉中都是十分重要的 图像边缘信息在图像分析和人的视觉中都是十分重要的 是图像识别中提取图像特征的一个重要属性。 ,是图像识别中提取图像特征的一个重要属性。
7.2 边缘检测
微分方法 纵向微分运算
– 相减的结果反映了原图像灰度变化率的大小 ∆x f( x, y) = f( x, y) - f (x-1, y) – 原图像中像素灰度值不变的区域,相减的结果为 原图像中像素灰度值不变的区域,相减的结果为0 – 原图像中像素灰度值变化剧烈的区域,相减的结果值较大 原图像中像素灰度值变化剧烈的区域, – 如果用相减的值的绝对值作为灰度值,则变化小的像素为黑,反之 如果用相减的值的绝对值作为灰度值,则变化小的像素为黑, 为白。 为白。 – 图像垂直边缘得到增强 – 模板(卷积核) 模板(卷积核)
第21页
7.2 边缘检测
实例
f(x,y)
纵向 双向
横向
第22页
7.2 边缘检测
2、梯度算子 、
– 梯度是图像处理中最为常用的一阶微分方法。 梯度是图像处理中最为常用的一阶微分方法。
梯度算子是一阶导数算子
∂f Gx ∂x ∇f ( x , y ) = = G y ∂f ∂y
第11页
7.1分割定义和方法分类 7.1分割定义和方法分类
问题
–不同种类的图像、不同的应用要求所要求提取的区域是不相 不同种类的图像、 不同种类的图像 同的。分割方法也不同,目前没有普遍适用的最优方法。 同的。分割方法也不同,目前没有普遍适用的最优方法。 –人的视觉系统对图像分割是相当有效的,但十分复杂,且分 人的视觉系统对图像分割是相当有效的, 人的视觉系统对图像分割是相当有效的 但十分复杂, 割方法原理和模型都未搞清楚。 割方法原理和模型都未搞清楚。这是一个很值得研究的问题 。