四则运算运算定律

合集下载

四则运算与运算定律的复习批注

四则运算与运算定律的复习批注

四则运算与运算定律的复习批注
四则运算是指加、减、乘、除四种基本数学运算。

在进行四则运算时,需要考虑运算的优先级和括号的分配,可以利用运算定律简化计算。

下面是一些常用的运算定律:
1. 加法交换律:a + b = b + a
2. 减法法则:a - b = a + (-b)
3. 乘法交换律:a × b = b × a
4. 除法法则:a ÷ b = a × 1/b (其中b不为0)
5. 加法结合律:(a + b) + c = a + (b + c)
6. 乘法结合律:(a × b) × c = a × (b × c)
在进行四则运算时,需要先进行括号内的计算,然后按照乘法、除法、加法、减法的优先级进行计算。

如果遇到优先级相同的运算,按照左右顺序进行计算。

例如,计算表达式:5 + 2 × 3 ÷ (7 - 4)
首先,计算括号内的运算,得到3;然后按照乘法、除法、加法、减法的优先级依次进行计算,得到:5 + 2 × 3 ÷ 3 = 5 + 2 × 1 = 7。

复习四则运算和运算定律可以帮助我们准确快速地进行数学计算,尤其在解决实际问题时更为重要。

四则运算定律概念及公式

四则运算定律概念及公式
a-b-c=a-c-b
乘法的运算定律
两个数相乘,交换两个因数的位置,积不变,这就叫做乘法交换律。
a×b=b×a
三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这就叫做乘法结合律。
(a×b)×c=a×(b×c)
加法运算定律
两个数相加,交换加数的位置,和不变。这就叫做加法交换律。
a+b+a
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就叫做加法结合律。
(a+b)+c=a+(b+c)
加法运算定律的应用
在在计算加法时,要先观察数字的特点,看看哪些数字可以凑成整十、整百……,灵活运用加法运算定律,可以使计算更简便。
连减的简便运算
在计算连减时,可以把减数加起来,再从被减数里减去它们的和。
a-b-c=a-(b+c)
在计算减法时,要先观察数字的特点,如果减数的和可以凑成整十、整百……的数时,就可以改写成被减数减去两个减数的和的形式。
在连减计算时,任意交换减数的位置,差不变。
(如果被减数减去与它不相邻的数能得到一个整十、整百……的数时,可以先交换减数的位置再计算。)

加减乘除的四则运算定律

加减乘除的四则运算定律

四则运算口诀+常见题型四则运算其实也就是孩子经常遇到的“加减乘除”,看起来知识点很简单,但是涉及的内容非常广。

在小学一年级至六年级,每学期都离不开它。

四则运算是数学的最基本运算法则,在学习基本运算法则时,还会有一些基本的运算关系式。

今天的内容就来总结一下四则运算的那些事!加法一、什么叫加法?把两个或两个以上的数合并到一个数的运算叫做加法。

二、组成加数+加数=和加数=和-另一个加数三、运算定律①加法交换律:a+b=b+a②加法结合律:a+b+c=a+(b+c)例如:12+99+38=(12+38)+99=50+99=149减法一、什么叫减法?已知两个数的和与其中一个加数,求另一个加数的运算。

二、组成被减数-减数=差减数=被减数-差被减数=减数+差三、运算定律减法的性质a-b-c=a-(b+c)例如:756-193-207=756-(193+207)=756-400=356乘法一、什么是乘法?求几个相同加数的和的简便运算。

二、组成因数×因数=积因数=积÷另一个因数三、运算定律乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)=(a×b)×c乘法分配律:a×(b+c)=a×b+a×ca×(b-c)=a×b-a×c例如:4×(25+50)=4×25+4×50=100+200=300除法一、什么是除法?已知两个因数的积与其中一个因数,求另一个因数的运算。

二、组成被除数÷除数=商······余数被除数=除数×商+余数除数=(被除数-余数)÷商三、易错点①余数不能比除数大②0不能做除数四、运算定律除法的性质a÷b÷c=a÷(b×c)例如:4800÷25÷4=4800÷(25×4)=4800÷100=48错中求解加法1.晴姐姐在做一道加法时,把一个加数47看作成69,结果计算的和为93。

四则运算运算律

四则运算运算律

四则运算运算律加法运算律应用:两个数相加,交换……;三个数相加,可以先把前两数相加,再和第三个数……复习加法运算律,如下: 54+87+13 39+144+61延伸:减法:a-b-c=a-c-b=a-(b+c) 除法:a ÷b ÷c=a ÷c ÷b=a ÷(b ×c)酌情巧用分配律分配律是指m a b ma mb ()+=+,它可以推广到多个数的情况,例如,m a b c d ma mb mc md ()+++=+++,在进行有理数的乘除运算时,适当运用分配律改变运算顺序,可以大大简化计算过程。

下面举例说明。

一、直接运用分配律 二、逆向运用分配律例1. 计算:36795671834⨯--+() 例2. 计算:324123241332456...⨯+⨯-⨯ 解:原式=⨯-⨯-⨯+⨯36793656367183634 解:原式=⨯+-324121356.()=--+=2830142711=⨯-=32456560.()三、变形后顺向运用分配律 例3. 计算:()()()-⨯-+⨯-351224711189 解:原式=--⨯-++⨯-()()()()351224711189=-⨯-+-⨯-+⨯-+⨯-=+--=()()()()()()3245122479111897210635121312四、变形后逆向运用分配律例4. 计算:2277931383523÷+⨯--() 解:原式=⨯+⨯--2279710383523()=⨯+⨯--=⨯--=-23172387232317871113()()五、综合运用分配律例5. 计算:[()()]()(.)(.)(.)(.)---+⨯-+-⨯-+-⨯-1316291083407540945913407 解:原式=-⨯---⨯-+⨯-+-⨯-+-()()()()()(.)[(.)(.)]131081610829108340954094591 =--+=36182434093403例:24×2425怎样计算简便?运用什么运算律?方法一:原式=(25-1)×2425 方法二:原式=24×(1-125 )=25×2425 -1×2425 =24×1-24×125=24-2425 =24-2425=23125 =23125练习:用分配律计算下面各题:()()()()()11223453023812534125181253531428415168431383522718722151212131624911123524453()()()()()()().-+⨯⨯+⨯+-⨯-⨯-+⨯-⨯-+⨯-⨯-+-⨯+⨯+⨯答案:(1)19;(2)125;(3)10612;(4)-23;(5)-204乘法交换律和结合律练习(25×125)×(8×4)(80+8)×25 35×37+65×37 135×6+65×6 (43+25)×40 8×(125+7) 18×82+18×47+18×712 5×(40-4)16×256-16×56 125×(80+8) 69×45+31×45 38×29+38123×99 +123 125 ×7+125 79×99+79 35×102 47×10125×44 45×201-45 98×37 38×101-38 87×199 25×199+25 25×199 99×201-99 102×83 125×88 124×25-25×24 (80+8)×25 35×37+65×37 135×6+65×6 (43+25)×40 8×(125+7)18×82+18×47+18×7 14×24+26×24 30×2+25×2 (30×25)×4025×4=4×25=125×8=8×125=20×5=2×50=5×12=12×5=4×50=50×4=(15×25)×415×(25×4)(6×12)×56×(12×5)(13×5)×2013×(5×20) 299 ×120+120 38×25×48×17×1254×8×25×12535×2×5=35×(2×__)125×5×8=(__×__)×5 23×3= 70×5= 13×100=25×4= 125×8= 125×16=16×25=25×6×4=25×12=(8×125)×(4×25)8×4×125×25125×8×8(25×4)×6125×32= 125×8×4=64×125=42×125×8=27×4×5= 8×(7×25)= 195×25×4= 110×2+90×2=2×125×8×5 125×489×4 20×17×2×5×2×2 (110+90)×212×10538×62+38×38 75×14—70×14 101×38 12×98 55×99+5555×99 12×29+12 58×199+58 42×79+42 52×8969×101—69 55×21—55 125×(80+8) 125×(80×8) 125×32×2599×99+99 38×7+31×14 25×46+50×27 79×25+22×25—25乘法分配律练习题2一、选择。

四年级四则运算定律口诀

四年级四则运算定律口诀

四年级四则运算定律口诀
四年级学生学习了四则运算,但在运算过程中,有时候会忘记一些定律,所以有必要写一个口诀来帮助他们记忆。

以下是四年级四则运算定律口诀:
一、加法交换律:数字顺序随意换。

例:5+2=2+5
二、加法结合律:先算哪组随便选。

例:(3+4)+5=3+(4+5)
三、减法不满足交换律和结合律。

例:7-2≠2-7和(7-2)-1≠7-(2-1)
四、乘法交换律:数字顺序随意换。

例:3×4=4×3
五、乘法结合律:先算哪组随便选。

例:(2×3)×4=2×(3×4)
六、乘法分配律:先乘后加随便换。

例:2×(3+4)=(2×3)+(2×4)
七、除法不满足交换律和结合律。

例:6÷3=3÷6和(9÷3)÷2≠9÷(3÷2)
八、除数不可以为0。

例:9÷0=无解
九、加减乘除按照先计算括号里的运算。

例:5×(6-2)+3÷3=5×4+1=21
以上口诀可以帮助四年级学生记忆四则运算的定律,使他们能够更加准确和熟练地进行数学运算。

四则运算规律总结及其简便运算应用举例

四则运算规律总结及其简便运算应用举例

四则运算规律总结及其简便运算应用举例第一部分规律总结一、四则运算的运算顺序1、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

2、在没有括号的算式里,同时有加、减法和乘、除法,要先算乘除法,再算加减法。

3、算式有括号,先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

二、关于“0”的运算:1、“0”不能做除数;2、一个娄加上0或者减去0,最终还等于原数3、被减数等于减数,差得04、0乘任何数或0除以任何数,都得0三、运算定律与简便运算(一)加法运算定律:1、两个加数交换位置,和不变这叫做加法交换律。

字母公式:a+b=b+a2、先把前两个数相加,或者先把后两个数相加;和不变,这叫做加法结合律。

字母公式:(a+b)+c=a+(b+c)(二)乘法运算定律1、交换两个因数的位置,积不变,这叫做乘法交换律。

字母公式:a x b=b x a2、先乘前两个数,或者先乘后两个数,积不变,这叫乘法结合律。

字母公式:(a x b)x c=a x(b x c)3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这员乘法分配律。

字母公式:(a+b) x c=a x c+b x c 或a x (b+c)=a x b+a x c拓展公式:(a-b)x c=a x c- b x c 或a x(b-c)=a x b-a x c(三)减法简便运算:1、一个数连续减去两个数,可以用这个数减去这两个数的和。

用字母表示:a-b-c=a-(b+c)2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。

用字母表示:a-b-c=a-c-b(四)除法简便运算1、一个数连续除以两个数,可以用这个数除以这两个数的积。

用字母表示:a÷b÷c=a÷(b x c)2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。

用字母表示:a÷b÷c=a÷c÷b第二部分简便算法应用举例一、加法类型一:利用加法交换律、结合律,观察数的末位特征,将数凑成整数进行简算。

四则运算的运算定律

四则运算的运算定律
(一)加法运算定律:
1、两个加数交换位置,和不变,这叫做加法交换律。

字母公式:a+b=b+a
2、先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。

字母公式:(a+b) +c=a+(b+c)
(二)乘法运算定律:
1、交换两个因数的位置,积不变,这叫做乘法交换律。

字母公式:a×b=b×a
2、先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。

字母公式:(a×b)×c=a×(b×c)
3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

用字母公式:(a+b)×c=a×c+b×c或a×(b+c) =a×b+a×c 拓展:(a-b)×c=a×c-b×c或a×(b-c) =a×b-a×c
(三)减法简便运算:
1、一个数连续减去两个数,可以用这个数减去这两个数的和。

用字母表示:a-b-c=a-(b+c)
2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。

用字母表示:a-b-c=a—c-b
(四)除法简便运算:
1、一个数连续除以两个数,可以用这个数除以这两个数的积。

用字母表示:a÷b÷c=a÷(b×c)
2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。

用字母表示:a÷b÷c=a÷c÷b。

四则运算巧算的规律

四则运算巧算的规律小学阶段的数学成绩不理想,主要就是在运算能力上出了问题。

计算能力是小学数学学习的基础,东方学校的老师详细整理了关于四则运算的基础知识及运算过程中常用到的简便方法,帮孩子们查漏补缺,提高计算能力扎实数学基础。

1运算定律1.加法交换律两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

2.加法结合律三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

3.乘法交换律两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

4.乘法结合律三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

5.乘法分配律两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。

6.减法的性质从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。

2运算法则1.整数加法计算法则相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

2. 整数减法计算法则相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

3.整数乘法计算法则先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

4.整数除法计算法则先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。

如果哪一位上不够商1,要补“0”占位。

每次除得的余数要小于除数。

5. 小数乘法法则先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

总复习(四则运算及运算定律)

交换律定义
交换律是指两个数相加或相乘,交换加数或因数 的位置,和或积不变。
交换律的应用
在加法或乘法中,交换律允许我们改变加数或因 数的顺序,而不改变结果。
交换律的数学表示
a + b = b + a 或 ab = ba。
结合律
结合律定义
结合律是指三个数相加或相乘, 改变加数或因数的组合方式,和
或积不变。
分配律的应用
在乘法和除法中,分配律 允许我们改变乘数或除数 的组合方式,而不改变结 果。
分配律的数学表示
(a + b) × c = a × c + b × c 或 a ÷ (b + c) = a ÷ b - a ÷ c。
03 运算顺序理解
先乘除后加减
乘法和除法在加法和减法之前 进行,这是数学运算的基本顺 序。
有括号先算括号里的
括号内的运算具有最高优先级, 应首先计算括号内的表达式。
例如,在表达式"(2+3)*4"中, 应先计算括号内的加法运算
"2+3=5",然后再与4进行乘法 运算"5*4=20"。
有括号先算括号里的规则确保了 数学表达式的精确计算,避免了
优先级混淆。
04 综合练习与解答
练习题一:基础四则运算
除法
掌握除法的试商方法,能够准确 计算两位数、三位数甚至更多位 数的除法。

练习题二:运算定律应用
总结词
理解并能够应用四则运算中的基本定律, 如加法交换律、乘法交换律等,简化计算 过程。
乘法结合律
掌握乘法结合律的原理,能够在计算中灵 活运用,如$(a×b)×c=a×(b×c)$。
加法交换律

四则运算定律公式

四则运算定律公式四则运算定律公式一、加法定律加法定律是四则运算中最基础的定律之一。

它包括以下几个要点:•任意数与零相加,结果仍为原数;•两个数相加,顺序不影响结果。

二、减法定律减法定律是四则运算中相对较为复杂的一条定律。

它主要涉及以下几点:•任意数减去零,结果仍为原数;•一个数减去自身,结果为零;•减法可以转换为加法运算。

三、乘法定律乘法定律是四则运算中比较重要的一条定律。

它包括以下关键内容:•任意数与零相乘,结果为零;•任意数与一相乘,结果仍为原数;•乘法满足交换律和结合律。

四、除法定律除法定律是四则运算中最复杂的一条定律,需要特别注意以下几个方面:•任意数除以一,结果仍为原数;•非零数除以零是不合法的;•除法可以转换为乘法运算。

五、小结四则运算定律公式是数学中非常重要的基础知识。

通过了解和熟练运用这些定律,我们能更加灵活地进行运算,简化计算过程。

在实际生活和工作中,四则运算定律也有着广泛的应用。

因此,我们应该加强相关知识的学习和理解,以提高我们的计算能力和数学素养。

六、实例应用接下来,我们将以实例的形式来应用和演示四则运算定律公式的使用。

假设有以下数学算式需要求解:1. 3 + 4 * 2 - 5 = ?2. 6 * 7 - (9 - 3) = ?3.8 / 2 + 5 - 1 = ?我们将逐步使用四则运算定律公式来计算结果:例1:1.首先,按照乘法定律,计算4 * 2 = 8;2.然后,按照加法定律,计算3 + 8 = 11;3.最后,按照减法定律,计算11 - 5 = 6。

所以,3 + 4 * 2 - 5 = 6。

例2:1.首先,按照减法定律,计算9 - 3 = 6;2.然后,按照乘法定律,计算6 * 7 = 42;3.最后,按照减法定律,计算42 - 6 = 36。

所以,6 * 7 - (9 - 3) = 36。

例3:1.首先,按照除法定律,计算8 / 2 = 4;2.然后,按照加法定律,计算4 + 5 = 9;3.最后,按照减法定律,计算9 - 1 = 8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档