05中考数学试卷
宁德地区2023年中考数学试卷

1、若一个正多边形的每个内角都是150°,则这个正多边形是A. 正三角形B. 正方形C. 正六边形D. 正十二边形(答案:C。
解析:正多边形的内角和外角互补,外角为180°-150°=30°,正多边形边数等于360°除以一个外角的度数,即360°/30°=12,但考虑到内角为150°,实际应为正六边形,每个内角通过(n-2)×180°/n计算得出,n=6时内角正好为150°。
)2、下列选项中,能构成直角三角形的是A. 三边长为3, 4, 5的三角形B. 三边长为5, 12, 13的三角形C. 三边长为1, √2, 3的三角形D. 三边长为2, 3, 4的三角形(答案:A。
解析:根据勾股定理,若三角形三边满足a²+b²=c²,则为直角三角形。
只有选项A满足3²+4²=5²。
)3、若关于x的方程x²+2x-k=0有两个相等的实数根,则k的值为A. -1B. 0C. 1D. 2(答案:C。
解析:方程有两个相等的实数根,意味着判别式Δ=b²-4ac=0,代入a=1, b=2, c=-k,得2²-4×1×(-k)=0,解得k=1。
)4、下列运算中,正确的是A. 3a+2b=5abB. (a+b)²=a²+b²C. a⁶÷a³=a³D. (2a)²=2a²(答案:C。
解析:A项中3a和2b不是同类项,不能合并;B项展开应为a²+2ab+b²;C 项根据指数法则,同底数幂相除,底数不变,指数相减,正确;D项应为4a²。
)5、下列图形中,既是轴对称图形又是中心对称图形的是A. 等边三角形B. 平行四边形C. 正方形D. 梯形(答案:C。
中考数学试卷讲评课评课稿

尊敬的各位领导、老师,大家好!今天,我非常荣幸能为大家评课。
本次评课的对象是刚刚结束的中考数学试卷讲评课。
在这节课中,教师通过深入剖析试卷,帮助学生查漏补缺,提高解题能力。
以下是我对这节课的几点评价和思考。
一、教学目标明确,重难点突出本次讲评课的教学目标非常明确,即帮助学生分析中考数学试卷的命题特点,掌握解题技巧,提高解题速度和准确率。
教师通过对试卷中常见题型和重难点的分析,使学生能够针对性地进行复习和训练。
二、教学方法灵活多样,注重互动在课堂教学中,教师采用了多种教学方法,如讲解、示范、小组讨论等,充分调动了学生的学习积极性。
在讲解过程中,教师注重与学生的互动,鼓励学生提问、发表自己的看法,使课堂氛围活跃,学生参与度高。
三、试卷分析深入透彻,针对性强教师对试卷的每一道题都进行了详细的分析,从命题思路、解题方法、易错点等方面进行了讲解。
特别是对试卷中的重难点题目,教师不仅给出了标准答案,还结合例题进行了深入剖析,使学生对这些题目有了更深刻的理解。
四、课堂纪律良好,学生认真听讲在本次讲评课中,课堂纪律良好,学生能够认真听讲,积极参与课堂活动。
这得益于教师良好的教学态度和课堂管理能力。
五、改进建议1. 增加课堂练习时间:在讲解过程中,可以适当增加课堂练习时间,让学生在练习中巩固所学知识,提高解题能力。
2. 关注学生个体差异:针对不同层次的学生,教师可以采取分层教学,针对不同层次的学生提出不同的学习要求,使每个学生都能在课堂上有所收获。
3. 加强课后辅导:对于课堂上没有完全理解的学生,教师可以在课后进行个别辅导,帮助学生解决学习中的困惑。
4. 丰富教学资源:教师可以尝试使用多媒体教学手段,如PPT、视频等,使课堂内容更加生动有趣,提高学生的学习兴趣。
总之,本次中考数学试卷讲评课是一节成功的课堂。
教师的教学态度认真,教学方法灵活多样,课堂效果良好。
我相信,通过这次讲评课,学生们对中考数学有了更深入的了解,为今后的学习打下了坚实的基础。
2023年内蒙古赤峰市初中学业水平考试中考数学真题试卷

2023年内蒙古赤峰市初中学业水平考试中考数学真题试卷一、选择题(每小题只有一个选项符合题意,请将该选项的序号按要求在答题卡上的指定位置涂黑.每小题3分,共42分)1.化简﹣(﹣20)的结果是()A.﹣B.20C.D.﹣202.剪纸艺术是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.以下剪纸图案中,是中心对称图形的是()A.B.C.D.3.2023年5月19日是第13个“中国旅游日”,文化和旅游部公布的数据显示,今年“五一”假期国内旅游出游合计274000000人次,同比增长70.83%.将数字274000000用科学记数法表示为()A.0.274×107B.2.74×108C.27.4×107D.274×1084.如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S5.下列运算正确的是()A.(a2b3)2=a4b6B.3ab﹣2ab=1C.(﹣a)3•a=a4D.(a+b)2=a2+b26.2023年5月30日,神舟十六号载人飞船成功发射,成为我国航天事业的里程碑.某校对全校1500名学生进行了“航空航天知识”了解情况的调查,调查结果分为A,B,C,D四个等级(A:非常了解;B:比较了解;C:了解;D:不了解).随机抽取了部分学生的调查结果,绘制成两幅不完整的统计图.根据统计图信息,下列结论不正确的是()A.样本容量是200B.样本中C等级所占百分比是10%C.D等级所在扇形的圆心角为15°D.估计全校学生A等级大约有900人7.已知2a2﹣a﹣3=0,则(2a+3)(2a﹣3)+(2a﹣1)2的值是()A.6B.﹣5C.﹣3D.48.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.点F是AB中点,连接CF,把线段CF沿射线BC方向平移到DE,点D在AC上.则线段CF在平移过程中扫过区域形成的四边形CFDE的周长和面积分别是()A.16,6B.18,18C.16,12D.12,169.化简+x﹣2的结果是()A.1B.C.D.10.如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC=2∠COD.则∠CBD的度数是()A.25°B.30°C.35°D.40°11.某校在劳动课上,设置了植树、种花、除草三个劳动项目.九年一班和九年二班都通过抽签的方式从这三个项目中随机抽取一个项目,则这两个班级恰好都抽到种花的概率是()A.B.C.D.12.用配方法解方程x2﹣4x﹣1=0时,配方后正确的是()A.(x+2)2=3B.(x+2)2=17C.(x﹣2)2=5D.(x﹣2)2=17 13.某班学生表演课本剧,要制作一顶圆锥形的小丑帽.如图,这个圆锥的底面圆周长为20πcm,母线AB长为30cm.为了使帽子更美观,要粘贴彩带进行装饰,其中需要粘贴一条从点A处开始,绕侧面一周又回到点A的彩带(彩带宽度忽略不计),这条彩带的最短长度是()A.30cm B.30cm C.60cm D.20πcm14.如图,把一个边长为5的菱形ABCD沿着直线DE折叠,使点C与AB延长线上的点Q 重合,DE交BC于点F,交AB延长线于点E,DQ交BC于点P,DM⊥AB于点M,AM =4,则下列结论:①DQ=EQ,②BQ=3,③BP=,④BD∥FQ.正确的是()A.①②③B.②④C.①③④D.①②③④二、填空题(请把答案填写在答题卡的相应横线上,每小题3分,共12分)15.分解因式:x3﹣9x=.16.方程+=1的解为.17.为发展城乡经济,建设美丽乡村,某乡对A地和B地之间的一处垃圾填埋场进行改造,把原来A地去往B地需要绕行到C地的路线,改造成可以直线通行的公路AB.如图,经勘测,AC=6千米,∠CAB=60°,∠CBA=37°,则改造后公路AB的长是千米(精确到0.1千米;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73).18.如图,抛物线y=x2﹣6x+5与x轴交于点A,B,与y轴交于点C,点D(2,m)在抛物线上,点E在直线BC上,若∠DEB=2∠DCB,则点E的坐标是.三、解答题(在答题卡上解答,答在本试卷上无效;解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.(1)计算:(3.14﹣π)0﹣()﹣2+2cos60°﹣|1﹣|+;(2)解不等式组:.20.已知:如图,点M在∠AOB的边OA上.求作:射线MN,使MN∥OB,且点N在∠AOB的平分线上.作法:①以点O为圆心,适当长为半径画弧,分别交射线OA,OB于点C,D.②分别以点C,D 为圆心,大于CD长为半径画弧,两弧在∠AOB的内部相交于点P.③画射线OP.④以点M为圆心,OM长为半径画弧,交射线OP于点N.⑤画射线MN.射线MN即为所求.(1)用尺规作图,依作法补全图形(保留作图痕迹);(2)根据以上作图过程,完成下面的证明.证明:∵OP平分∠AOB,∴∠AON=.∵OM=MN.∴∠AON=().(括号内填写推理依据)∴∠BON=∠ONM.∴MN∥OB().(填写推理依据)21.某校甲乙两班联合举办了“经典阅读”竞赛,从甲班和乙班各随机抽取10名学生,统计这部分学生的竞赛成绩,并对数据(成绩)进行了收集、整理、分析,下面给出了部分信息.【收集数据】甲班10名学生竞赛成绩:85,78,86,79,72,91,79,71,70,89乙班10名学生竞赛成绩:85,80,77,85,80,73,90,74,75,81【整理数据】班级70≤x<8080≤x<9090≤x<100甲班631乙班451【分析数据】班级平均数中位数众数方差甲班80a b51.4乙班808080,85c【解决问题】根据以上信息,回答下列问题:(1)填空:a=,b=,c=;(2)请你根据【分析数据】中的信息,判断哪个班成绩比较好,简要说明理由;(3)甲班共有学生45人,乙班共有学生40人,按竞赛规定,80分及80分以上的学生可以获奖,估计这两个班可以获奖的总人数是多少?22.某集团有限公司生产甲乙两种电子产品共8万件,准备销往东南亚国家和地区.已知2件甲种电子产品与3件乙种电子产品的销售额相同;3件甲种电子产品比2件乙种电子产品的销售额多1500元.(1)求甲种电子产品与乙种电子产品销售单价各多少元?(2)若使甲乙两种电子产品的销售总收入不低于5400万元,则至少销售甲种电子产品多少件?23.定义:在平面直角坐标系xOy中,当点N在图形M的内部,或在图形M上,且点N 的横坐标和纵坐标相等时,则称点N为图形M的“梦之点”.(1)如图①,矩形ABCD的顶点坐标分别是A(﹣1,2),B(﹣1,﹣1),C(3,﹣1),D(3,2),在点M1(1,1),M2(2,2),M3(3,3)中,是矩形ABCD“梦之点“的是;(2)点G(2,2)是反比例函数y1=图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H的坐标是,直线GH的解析式是y2=,y1>y2时,x 的取值范围是;(3)如图②,已知点A,B是抛物线y=﹣x2+x+上的“梦之点”,点C是抛物线的顶点.连接AC,AB,BC,判断△ABC的形状,并说明理由.24.如图,AB是⊙O的直径,C是⊙O上一点,过点C作CD⊥AB于点E,交⊙O于点D,点F是AB延长线上一点,连接CF,AD,∠FCD=2∠DAF.(1)求证:CF是⊙O切线;(2)若AF=10,sin F=,求CD的长.25.乒乓球被誉为中国国球.2023年的世界乒乓球锦标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度OA为28.75cm的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y(单位:cm),乒乓球运行的水平距离记为x(单位:cm),测得如下数据:水平距离0105090130170230 x/cm28.7533454945330竖直高度y/cm(1)在平面直角坐标系xOy中,描出表格中各组数值所对应的点(x,y),并画出表示乒乓球运行轨迹形状的大致图象;(2)①当乒乓球到达最高点时,与球台之间的距离是cm,当乒乓球落在对面球台上时,到起始点的水平距离是cm;②求满足条件的抛物线解析式;(3)技术分析:如果只上下调整击球高度OA,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出OA的取值范围,以利于有针对性的训练.如图②,乒乓球台长OB为274cm,球网高CD为15.25cm.现在已经计算出乒乓球恰好过网的击球高度OA的值约为1.27cm.请你计算出乒乓球恰好落在对面球台边缘点B处时,击球高度OA的值(乒乓球大小忽略不计).26.数学兴趣小组探究了以下几何图形.如图①,把一个含有45°角的三角尺放在正方形ABCD中,使45°角的顶点始终与正方形的顶点C重合,绕点C旋转三角尺时,45°角的两边CM,CN始终与正方形的边AD,AB所在直线分别相交于点M,N,连接MN,可得△CMN.【探究一】如图②,把△CDM绕点C逆时针旋转90°得到△CBH,同时得到点H在直线AB上.求证:∠CNM=∠CNH;【探究二】在图②中,连接BD,分别交CM,CN于点E,F.求证:△CEF∽△CNM;【探究三】把三角尺旋转到如图③所示位置,直线BD与三角尺45°角两边CM,CN分别交于点E,F,连接AC交BD于点O,求的值.。
四川省绵阳市2021年中考数学试题(pdf版,含答案)

频数 a 20 c 10
频率 m b 03 n
注:90~100表示成绩 x满足:90≤x≤100,下同.
(1) 在统计表中,a=
,b=
,c=
;
(2) 若该年级参加初赛的学生共有 2000人,根据以上统计数据估计该年级成绩在 90
分及以上的学生人数;
(3) 若统计表 A段的男生比女生少 1人,从 A段中任选 2人参加复赛,用列举法求恰
CD=2槡2,斜边 AB的值是
.
三、解答题:本大题共 7个小题 ,共 90分.解答应写出文字说明、证明过程或演算步骤.
19.(本题共 2小题,每小题 8分,共 16分)
(1) 计算:2cos45°+
槡2-槡3
-20210-3 ; 槡3
(2) 先化简,再求值:x2-y-x+xy-x22-xyy2,其中 x=112,y=068.
D.126
11.关于 x的方程 ax2+bx+c=0有两个不相等的实根 x1、x2,若 x2=2x1,则 4b-9ac的最大 值是
A.1
B.槡2
C.槡3
D.2
12.如图,在 △ACD 中,AD=6,BC=5,AC2 =AB(AB+BC), 且 △DAB △DCA, 若
AD=3AP,点 Q是线段 AB上的动点,则 PQ的最小值是
则他 6月 13日购买的花费比在打折前购买节省
元.
17.如图,在菱形ABCD中,∠A=60°,G为 AD中点,点 E在 BC延长线上,F、H分别为
CE、GE中点,∠EHF=∠DGE,CF=槡7,则 AB=
.
18.在直角 △ABC中,∠C=90°, ta1nA+ta1nB= 5 2,∠C的 角 平 分 线 交 AB于 点 D, 且
《中考数学专题讲座》课件

PART 02
代数部分
代数基础知识梳理
代数基础知识
包括代数式、方程、不等 式、函数等基本概念和性 质。
代数式化简
掌握代数式的化简方法, 如合并同类项、提取公因 式等。
方程与不等式解法
理解方程与不等式的解法 ,包括一元一次方程、一 元二次方程、分式方程、 一元一次不等式等。
代数解题方法与技巧
代数恒等变换
中考数学复习计划与时间安排
制定复习计划
根据中考数学的考试大纲和考试时间,制定详细的复习计划,合理 分配时间,把握重点和难点。
注重基础知识
在复习过程中,要注重基础知识的学习和掌握,不要忽视课本上的 例题和练习题,因为这些是最基本的题目,能够帮你理解概念和方 法。
练习历年真题
多做中考数学真题,熟悉考试形式和题型,有助于提高应试能力和自 信心。
考试内容
包括数与式、方程与不等 式、函数、几何、概率与 统计等部分。
考试形式
闭卷、笔试,时间为120 分钟。
中考数学考试形式与试卷结构
试卷结构
满分120分,包括选择题、填空题 和解答题三种题型。
分值分布
选择题40分,填空题30分,解答 题50分。
考试时间分配
选择题每题2分,共20题,用时30 分钟;填空题每题3分,共10题, 用时15分钟;解答题每题8分,共5 题,用时65分钟。
中考数学答题技巧与注意事项
仔细审题
在答题前,要认真审题,理解题意, 避免因误解题目而失分。
表达清晰
在答题时,要思路清晰,表达准确, 注意解题步骤和细节。
检查答案
在答完题后,要仔细检查答案,确保 没有遗漏或错误。
注意时间分配
在考试过程中,要合理分配时间,不 要在某一道题目上花费太多时间而影 响其他题目的完成。
2021中考数学专题05 瓜豆原理中最值问题

专题瓜豆原理中动点轨迹直线型最值问题【专题说明】动点轨迹问题是中考的重要压轴点.受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的一个黑洞.掌握该压轴点的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本文就动点轨迹问题的基本图形作一详述.动点轨迹基本类型为直线型和圆弧型.【知识精讲】动点轨迹为一条直线时,利用“垂线段最短”求最值。
(1)当动点轨迹确定时可直接运用垂线段最短求最值(2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线。
②当某动点到某条直线的距离不变时,该动点的轨迹为直线。
③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线。
如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?P QAB C【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.N C B AQP M【引例】如图,△APQ 是等腰直角三角形,∠P AQ =90°且AP =AQ ,当点P 在直线BC 上运动时,求Q 点轨迹?CB AQ P【分析】当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q 点轨迹线段.Q 2Q 1ABC【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值);主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角) M N ααP QAB CP 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN ) M NααAB C【精典例题】1、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GA B CDE F2、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24πB .22πC .1D .23、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.4、如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______.5、如图,等边三角形ABC 的边长为4,点D 是直线AB 上一点.将线段CD 绕点D 顺时针旋转60°得到线段DE ,连结BE .(1)若点D 在AB 边上(不与A ,B 重合)请依题意补全图并证明AD=BE ;(2)连接AE ,当AE 的长最小时,求CD 的长.【精典例题】1、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GA B C DE F【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2G 1E DCB ACG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =, 所以CH =52,因此CG 的最小值为52. F HG 2G 1E DCB A 2、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24B .22C .1D .2【答案】C【详解】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC=BC=222,∠A=∠B=45°,∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ ,在Rt △AOP 和△COQ 中A OCQ AO COAOP COQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △AOP ≌△COQ ,∴AP=CQ ,易得△APE 和△BFQ 都为等腰直角三角形,∴PE=22AP=22CQ ,QF=22BQ , ∴PE+QF=22(CQ+BQ )=22BC=222, ∵M 点为PQ 的中点,∴MH 为梯形PEFQ 的中位线,∴MH=12(PE+QF )=12, 即点M 到AB 的距离为12, 而CO=1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=12AB=1, 故选C .3、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.【答案】213【详解】ABCD 为矩形,AB DC ∴=又=PAB PCD S S∴点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上, 连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +==22224652213AB BC +=+==故答案为:2134、如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______.【答案】62 【详解】解:如图,由题意可知点C 运动的路径为线段AC ′,点E 运动的路径为EE ′,由平移的性质可知AC ′=EE ′,在Rt △ABC ′中,易知AB =BC ′=6,∠ABC ′=90°,∴EE ′=AC 2266+2故答案为:625、如图,等边三角形ABC 的边长为4,点D 是直线AB 上一点.将线段CD 绕点D 顺时针旋转60°得到线段DE ,连结BE .(1)若点D 在AB 边上(不与A ,B 重合)请依题意补全图并证明AD=BE ;(2)连接AE ,当AE 的长最小时,求CD 的长.【答案】(1)见解析;(2)27【详解】解:(1)补全图形如图1所示,AD=BE,理由如下:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE.(2)如图2,过点A作AF⊥EB交EB延长线于点F.∵△ACD≌△BCE,∴∠CBE=∠A=60°,∴点E的运动轨迹是直线BE,根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,∵∠ACB=∠CBE=60°,∴AC∥EF,∵AF⊥BE,∴AF⊥AC,在Rt △ACF 中, ∴CF=22AC AF +=()22423+=27,∴CD=CF=27.专题 瓜豆原理中动点轨迹圆或圆弧型最值问题【专题说明】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。
2019年山东省中考数学真题分类汇编 专题05 四边形 (原卷版)
A.OM=12B.MB=MO((专题05四边形一、选择题1.(2019山东淄博)如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.22D.62.(2019山东临沂)如图,在平行四边形A BCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()AC C.BD⊥AC D.∠AMB=∠CND3.2019山东枣庄)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF 的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4B.25C.6D.264.(2019山东威海)如图,E是ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()A.∠ABD=∠DCE B.DF=CF C.∠AEB=∠BCD D.∠AEC=∠CBD5.2019山东潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为△x,ADP的面积为y,那么y与x之间的函数关系的图象大致是()4四边形NFB =1:8.上述结论中,所有正确结论的序号是A.B.C.D.6.(2019山东菏泽)如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为△xs,APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A.B.C.D.7.(2019山东泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A.2B.4C.2D.228.(2019山东德州)如图,正方形ABCD,点F在边AB上,且AF:FB=1:2,CE⊥DF,垂足为M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=12BC,连接CM.有如下结论:①DE=AF;②AN=2AB;③∠ADF=∠GMF;④△SANF:SC()A.①②B.①③C.①②③D.②③④二、填空题9.(2019山东济宁)如图,该硬币边缘镌刻的正九边形每个内角的度数是.10.(2019山东枣庄)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=度.11.(2019山东威海)如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于点E,连接BE,∠BEC=∠DEC,若AB=6,则CD=.D CEA B12.(2019山东威海)如图,在四边形ABCD中,AB∥CD,连接AC,BD.若∠ACB=90°,AC=BC,AB =BD,则∠ADC=°.13.(2019山东菏泽)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.14.(2019 山东青岛)如图,在正方形纸片 A BCD 中,E 是 CD 的中点,将正方形纸片折叠,点 B 落在线段AE 上的点 G 处,折痕为 AF .若 AD =4cm ,则 CF 的长为cm .15.(2019 山东泰安)如图,矩形 ABCD 中,AB =36 ,BC =12,E 为 AD 中点,F 为 AB 上一点,将△AEF 沿 EF 折叠后,点 A 恰好落到 CF 上的点 G 处,则折痕 EF 的长是 .16.(2019 山东滨州)如图,平行四边形ABCD 的对角线 AC ,BD 交于点 O ,CE 平分∠BCD 交 AB 于点 E ,交 BD 于点 F ,且∠ABC =60°,AB =2BC ,连接 OE .下列结论:①EO ⊥AC ;②S △AOD =4△S OCF ;③AC :BD = 21 :7;④FB 2=OF •DF .其中正确的结论有(填写所有正确结论的序号)DCOFAEB17.(2019 山东潍坊)如图,在矩形 ABCD 中,AD =2.将∠A 向内翻折,点 A 落在 BC 上,记为 A ′,折痕为 DE .若将∠B 沿 EA ′向内翻折,点 B 恰好落在 DE 上,记为 B ′,则 AB = .(18.(2019 山东泰安)在平面直角坐标系中,直线 l :y =x +1 与 y 轴交于点 A 1,如图所示,依次作正方形OA 1B 1C 1,正方形 C 1A 2B 2C 2,正方形 C 2A 3B 3C 3,正方形 C 3A 4B 4C 4,……,点 A 1,A 2,A 3,A 4,……在直线 l 上,点 C 1,C 2,C 3,C 4,……在 x 轴正半轴上,则前 n 个正方形对角线长的和是.三、解答题19.(2019 山东菏泽)如图,四边形 ABCD 是矩形.(1)用尺规作线段 AC 的垂直平分线,交 AB 于点 E ,交 CD 于点 F (不写作法,保留作图痕迹);(2)若 BC =4,∠BAC =30°,求 BE 的长.20.(2019 山东枣庄)如图,BD 是菱形 ABCD 的对角线,∠CBD =75°,(1)请用尺规作图法,作 A B 的垂直平分线 EF ,垂足为 E ,交 AD 于 F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接 BF ,求∠DBF 的度数.21. 2019 山东青岛)如图,在 ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E ,F 分别为 OB ,OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .(△1)求证: ABE ≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.22.(2019山东滨州)如图,矩形A BCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.23.(2019山东聊城)在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(△1)ABF≌△DAE;(2)DE=BF+EF.24.(2019山东泰安)在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.25.(2019山东泰安)如图,四边形A BCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.26.(2019山东潍坊)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH ∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(△1)求证:AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.27.(2019山东临沂)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接△AE,将ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.28.(2019山东威海)如图,在正方形A BCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2,E点的运动时间为x秒.(1)求证:CE=EF;(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;(△3)求BEF面积的最大值.29.(2019山东潍坊)如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接△EH.当HEB′的周长为2时,求菱形ABCD的周长.30.(2019山东济宁)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠D MN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点△M,使D MN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.31.(2019山东德州)(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请直接写出HD:GC:EB的结果(不必写计算过程)t ((2)将图 1 中的菱形 AEGH 绕点 A 旋转一定角度,如图 2,求 HD :GC :EB ;(3)把图 2 中的菱形都换成矩形,如图 3,且 AD :AB =AH :AE =1:2,此时 HD :GC :EB 的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.32.(2019 山东淄博)如图 1,正方形 ABDE 和 BCFG 的边 AB ,BC 在同一条直线上,且 AB =2BC ,取EF 的中点 M ,连接 MD ,MG ,MB .(1)试证明 DM ⊥MG ,并求MB的值.MG(2)如图 2,将图 1 中的正方形变为菱形,设∠EAB =2α(0<α<90°),其它条件不变,问(1)中 值有变化吗?若有变化,求出该值(用含 α 的式子表示);若无变化,说明理由.MBMG的33.(2019 山东青岛)已知:如图,在四边形 ABCD 中,AB ∥CD ,∠ACB =90°,AB =10cm ,BC =8cm ,OD 垂直平分 AC .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点P 作 PE ⊥AB ,交 BC于点 E ,过点 Q 作 QF ∥AC ,分别交 AD ,OD 于点 F ,G .连接 OP ,EG .设运动时间为 (s ) 0<t <5),解答下列问题:(1)当 t 为何值时,点 E 在∠BAC 的平分线上?(2)设四边形 PEGO 的面积为 S (cm 2),求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出 t 的值;若不存在,请说明理由;(4)连接 OE ,OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出 t 的值;若不存在,请说明理由.。
中考数学总复习 第05讲 二次根式及其运算课件(考点精
考点2 二次根式的运算
【例2】 (1)(2012·黔东南州)下列等式一定成 立的是( B )
A. 9 4 5
B. 5 3 15
C. 9 3
D. 92 9
考点2 二次根式的运算
(2)计算: 24- 23+ 23-2
1 6
解 原式=2 6-12 6+13 6-13 6=32 6.
(3)(2012·南通) 计算: 48÷ 3- 21× 12+ 24 解 原式= 16- 6+2 6=4+ 6.
求值问题“五招”
(1)巧用乘法公式;(2)巧用平方;(3)巧用配方; (4)巧用换元;(5)巧用倒数.
1.(2013·嘉兴)二次根式中 x 3 ,x的取值范围是 x≥3
2.(2011·杭州)下列各式中,正确的是( B )
A. 32 3
B. 32 3
C. 32 3
D. 32 3
3.(2012·金华)一个正方形的面积为15,估计它的边
(2)若几个非负数的和为零,则每一个非负数都等于零;
两个防范
(1)求 a2时,一定要注意确定 a 的大小,应注意利用等式 a2=|a|,当问题中已知条件不能直接判定 a 的大小时就要分 类讨论;
(2)一般情况下,我们解题时,总会习惯地把重点放在探 求思路和计算结果上,而忽视了一些不太重要、不直接影响求 解过程的附加条件.要特别注意,问题中的条件没有主次之分, 都必须认真对待.
请完成考点跟踪突破
(3)(2012·安顺)计算 12 3 3 3 .
考点3 二次根式混合运算
【例 3】 计算:(1)(3 2-1)(1+3 2)-(2 2-1)2; 解 原式=(3 2)2-1-[(2 2)2-4 2+1] =18-1-8+4 2-1=8+4 2.
近三年广州中考数学考点分析
近三年广州中考数学考点分析广州市数学中考比较重视学生对基本方法、基本知识、基本技能的考查,没有偏、怪、难的题目,试题一般有多种解法,大多数题目的解法都能从课本上找到影子。
回归课本,就是要掌握典型例题、习题的通法通则,就是抓纲悟本。
从这三年的中考数学试卷上分析可得到以下结论:1、试卷满分都是150分,考试时间120分钟;2、题型的分布都是总共25道题,其中选择题10道(30分),填空题6道(18分),解答题9道(102分);3、试卷难度不大,基础题占有122分(82%),有难度拔高题占有28分(18%);4、代数部分考查分数大概是90~100分,几何部分考查分数50~60分(37%);5、知识点的考查比较有规律,常规题型的变化不大下面是我对2009~2011年广州市中考数学试卷的分析表,仅供参考:从表中我们可以清楚的意识到,中考对于函数部分的考查比例非常重,考查的对象主要是:一次函数、反比例函数、二次函数。
主要研究函数的解析式,取值范围,数形结合的思想,分类讨论的思想在里面体现得很淋漓尽致。
对于必须掌握的一定要复习到位,比如待定系数法求三种函数的解析式,函数与方程的联系与转换,函数与不等式的关系,函数里的最值问题总结与归纳。
Ps:函数部分是代数部分的重点内容,也是难点内容,考查重点在于以下几点:函数解析式的求法,难度较低,熟悉待定系数法等方法即可;三种函数图像的基本性质的应用,难度中等;函数的实际应用,常出现在试卷难度最大的代数综合题、代几综合题中,分值在25分左右。
不等式与方程的复习,要以基础为主,不要只研究难题,要注重过程以及方法的总结。
从试卷这部分考题来看,难度都不大,关键是我们的同学能否有明确的思路,良好的解题过程,正确答案。
因此我们在复习的时候,一定要特别注意。
加强对以下内容的复习:一元一次方程、二元一次方程组、一元一次不等式、不等式组、一元二次方程。
注意整体思想,换元法的训练。
Ps:方程(组)与不等式(组)部分考查方程和方程组的解法及一元二次方程的根的判断还有方程在应用题中的应用。
中考数学题型训练网格作图
中考题型训练——网格作图1.(07.云南)(6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)作出格点△ABC关于直线DE对称的△A1B1C1; (2)作出△A1B1C1绕点B1顺时针方向旋转90°后的△A2B1C2;(3)求△A2B1C2的周长;(第1题)(第2题)2.(06.云南)(7分)在如图的方格纸中,每个小正方形的边长都是1, △ABC与△A1B1C1构成的图形是中心对称图形. (1)画出此中心对称图形的对称中心O; (2)画出将△A1B1C1沿直线DE方向向上平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(不要求证明)3.(05.云南)(7分)如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(3)将补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,再向上平移一格,画出这个直角梯形(不要求写作法)(第3题)(第4题)4.(07.安徽) △ABC和点S在平面直角坐标系中的位置如图所示:(1)将△ABC向右平移4个单位得到△A1B1C1,则点A1 、B1的坐标分别为和.(2)将△ABC绕点S按顺时针方向旋转90°,画出旋转后的图形.5.(07.江苏)如图,网格中每一个小正方形的边长为1个单位长度.(1)请在所给的网格内画出以线段AB,BC为边的菱形ABCD;(2)填空:菱形ABCD的面积等于 .(第5题)(第6题)6.(07.福州)如图的方格纸中,每个小正方形的边长都为1个单位的正方形,在建立平面直角坐标系后, △ABC的顶点均在格点上,点C的坐标为(4,-1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.7.(07.哈尔滨)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C;(2)将△ABC向下平移3个单位长度,画出平移后的△A2B2C2.(第7题)(第8题)8.(07.辽宁)如图, 在平面直角坐标系中,图○1与图○2关于点P成中心对称.(1)画出对称中心P,并写出点P的坐标;(2)将图形○2向下平移4个单位,画出平移后的图形○3,并判断图形○3与图形○1的位置关系.(直接写出结果)9.(07.安徽)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);(2)求线段BC的对应线段B′C′所在直线的表达式.(第9题)(第10题)10.(07.长沙)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作: (1)作出关于直线AB的轴对称图形;(2)将你画出的部分连同原图形绕点O逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让图案变得更加美丽.11.(07.海南)在如图的方格纸中,△ABC的顶点坐标分别为A(-2,5)、B(-4,1)和C(-1,3).(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A、B、C的对称点A1、B1、C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点A、B、C的对称点A2、B2、C2的坐标;(3)试判断:△A1B1C1与△A2B2C2是否关于y轴对称(只需写出判断结果)(第11题)(第12题)12.(07.青海)如图所示,图○1和图○2中的每个小正方形的边长都为1个单位长度.(1)将图○1中的格点△ABC(顶点都在网格线交点的三角形叫格点三角形)向在平移2个单位长度得到△A1B1C1,请你在图中画出△A1B1C1;(2)在图○2中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.13.(07.广西)如图,在正方形网格中,△ABC的三个顶点A、B、C均在格点上,将△ABC 向右平移5格,得到△A1B1C1,再将△A1B1C1绕点B1按顺时针方向旋转90°,得到△A2B2C2.(1)请在网格中画出△A1B1C1和△A2B2C2(不要求写画法)(2)画出△A1B1C1和△A2B2C2后,填空:∠C1B1C2= 度, ∠A2= 度.(第13题)14.(06.成都)如图,在平面直角坐标系中,点B的坐标为(-1,-1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3.(第14题)15.(06.广东)如图,图中的小正方形是边长为1的正方形,△ABC与是关于O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比为1.5;。