江苏省十三大市中考数学试卷及答案

合集下载

2024年江苏省苏州市中考数学真题卷及答案解析

2024年江苏省苏州市中考数学真题卷及答案解析

2024年苏州市初中学业水平考试试卷数学注意事项:1.本试卷共27小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相....对应的位置上.......1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3- B.1C.2D.32.下列图案中,是轴对称图形的是()A.B. C. D.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯ B.1024710⨯ C.122.4710⨯ D.1224710⨯4.若1a b >-,则下列结论一定正确的是()A.1a b+< B.1a b-< C.a b> D.1a b+>5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为()A.45︒B.55︒C.60︒D.65︒6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁B.乙、戊C.丙、丁D.丙、戊7.如图,点A 为反比例函数()10y x x=-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AOBO的值为()A.12B.14C.3D.138.如图,矩形ABCD 中,AB =,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为()A.3B.32C.2D.1二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡...相对应的位置上........9.计算:32x x ⋅=___________.10.若2a b =+,则()2b a -=______.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是______.12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠=______.13.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是______.14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若3AB =,则花窗的周长(图中实线部分的长度)=______.(结果保留π)15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则mn的值为______.16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,5AE AD =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD =______.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置.........上.,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17.计算:()0429-+-.18.解方程组:27233x y x y +=⎧⎨-=⎩.19.先化简,再求值:2212124x x xx x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)22.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A (羽毛球),B (乒乓球),C (篮球),D (排球),E (足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E 对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B (乒乓球)的人数.23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩...支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0ky k x x=≠>的图象与AB 交于点(),1D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0ky k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.25.如图,ABC 中,AB =,D 为AB 中点,BAC BCD ∠=∠,2cos 4ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.26.某条城际铁路线共有A ,B ,C 三个车站,每日上午均有两班次列车从A 站驶往C 站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表车次A 站B 站C 站发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下....的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.2024年苏州市初中学业水平考试试卷数学注意事项:1.本试卷共27小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相....对应的位置上.......1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3-B.1C.2D.3【答案】B 【解析】【分析】本题考查了绝对值的定义,一个数的绝对值就是表示这个数的点到原点的距离.到原点距离最远的点,即绝对值最大的点,首先求出各个数的绝对值,即可作出判断.【详解】解:∵33-=,11=,22=,33=,123<<,∴与原点距离最近的是1,故选:B .2.下列图案中,是轴对称图形的是()A. B. C. D.【答案】A 【解析】【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A 、是轴对称图形,故此选项正确;B 、不是轴对称图形,故此选项错误;C 、不是轴对称图形,故此选项错误;D 、不是轴对称图形,故此选项错误.故选:A .3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯ B.1024710⨯ C.122.4710⨯ D.1224710⨯【答案】C 【解析】【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10n a ⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是()A.1a b+< B.1a b-< C.a b> D.1a b+>【答案】D 【解析】【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为()A.45︒B.55︒C.60︒D.65︒【答案】B【解析】【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∵165∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B 6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁B.乙、戊C.丙、丁D.丙、戊【答案】C【解析】【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO 的值为()A.12 B.14 C.33 D.13【答案】A【解析】【分析】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k 的几何意义,三角形相似的判定和性质,数形结合是解题的关键.过A 作AC x ⊥轴于C ,过B 作BD x ⊥轴于D ,证明AOC OBD △∽△,利用相似三角形的面积比等于相似比的平方求解即可.【详解】解:过A 作AC x ⊥轴于C ,过B 作BD x ⊥轴于D ,∴11122ACO S =⨯-= ,1422BDO S =⨯= ,90ACO ODB ∠=∠=︒,∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,∴2ACO BDO S OA S OB ⎛⎫= ⎪⎝⎭ ,即2122OA OB ⎛⎫= ⎪⎝⎭,∴12OA OB =(负值舍去),故选:A .8.如图,矩形ABCD 中,3AB =,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为()A.3 B.32 C.2 D.1【答案】D【解析】【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.【详解】解:连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,如图所示:∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB CD ,∴在Rt ABC △中,()2222312AC AB BC =+=+,∴112OA OC AC ===,∵AB CD ,EAO FCO ∴∠=∠,在AOE △与COF 中,AE CF EAO FCO OA OC =⎧⎪∠=∠⎨⎪=⎩(SAS)AOE COF ∴△≌△,AOE COF ∴∠=∠,E ∴,O ,F 共线,AG EF ⊥ ,H 是OB 中点,∴在Rt AGO △中,1122GH AO ==,G ∴的轨迹为以H 为圆心,12为半径即AO 为直径的圆弧.∴AG 的最大值为AO 的长,即max 1AG AO ==.故选:D .【点睛】本题主要考查了矩形的性质、动点轨迹、与圆有关的位置关系等知识,根据矩形的性质以及直角三角形斜边中线的性质确定G 的轨迹是本题解题的关键.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡...相对应的位置上........9.计算:32x x ⋅=___________.【答案】5x 【解析】【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -=______.【答案】4【解析】【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是______.【答案】38【解析】【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A ),然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.【详解】解:∵转盘被分成八个面积相等的三角形,其中阴影部分占3份,∴指针落在阴影区域的概率为38,故答案为:38.12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠=______.【答案】62︒##62度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,连接OC ,利用等腰三角形的性质,三角形内角和定理求出BOC ∠的度数,然后利用圆周角定理求解即可.【详解】解:连接OC ,∵OB OC =,28OBC ∠=︒,∴28OCB OBC ∠=∠=︒,∴281041OC OC O B B BC ∠=∠=︒∠=︒-,∴1622A BOC =∠=︒∠,故答案为:62︒.13.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是______.【答案】y =【解析】【分析】根据题意可求得1l 与坐标轴的交点A 和点B ,可得45OAB OBA ∠=∠=︒,结合旋转得到60OAC ∠=︒,则30OCA ∠=︒,求得tan OC OC OCA =⨯∠,即有点C ,利用待定系数法即可求得直线2l 的解析式.【详解】解:依题意画出旋转前的函数图象1l 和旋转后的函数图象2l,如图所示∶设1l 与y 轴的交点为点B ,令0x =,得1y =-;令0y =,即1x =,∴()1,0A ,()0,1B -,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒∵直线1l 绕点A 逆时针旋转15︒,得到直线2l ,∴60OAC ∠=︒,30OCA ∠=︒,∴tan OC OC OCA =⨯∠==,则点(0,C ,设直线2l 的解析式为y kx b =+,则0k b b =+⎧⎪⎨=⎪⎩,解得k b ⎧=⎪⎨=⎪⎩那么,直线2l的解析式为y =故答案为:y =【点睛】本题主要考查一次函数与坐标轴的交点、直线的旋转、解直角三角形以及待定系数法求一次函数解析式,解题的关键是找到旋转后对应的直角边长,即可利用待定系数法求得解析式.14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB =,则花窗的周长(图中实线部分的长度)=______.(结果保留π)【答案】8π【解析】【分析】题目主要考查正多边形与圆,解三角形,求弧长,过点C 作CE AB ⊥,根据正多边形的性质得出AOB 为等边三角形,再由内心的性质确定30CAO CAE CBE ∠∠∠===︒,得出120ACB ∠=︒,利用余弦得出2cos30AE AC ==︒,再求弧长即可求解,熟练掌握这些基础知识点是解题关键.【详解】解:如图所示:过点C 作CE AB ⊥,∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA OB ∠=︒=,∴AOB 为等边三角形,∵圆心C 恰好是ABO 的内心,∴30CAO CAE CBE ∠∠∠===︒,∴120ACB ∠=︒,∵AB =∴AE BE ==,∴2cos30AE AC ==︒,∴ AB 的长为:1202π4π1803⨯⨯=,∴花窗的周长为:4π68π3⨯=,故答案为:8π.15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则m n的值为______.【答案】35-##0.6-【解析】【分析】本题考查了待定系数法求二次函数解析式,把A 、B 、D 的坐标代入()20y ax bx c a =++≠,求出a 、b 、c ,然后把C 的坐标代入可得出m 、n 的关系,即可求解.【详解】解:把()0,A m ,()1,B m -,()3,D m -代入()20y ax bx c a =++≠,得93c m a b c m a b c m =⎧⎪++=-⎨⎪++=-⎩,解得2383a m b m c m ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴22833y mx x m =-+,把()2,C n 代入22833y mx mx m =-+,得2282233n m m m =⨯-⨯+,∴53n m =-,∴5533m m m n ==--,故答案为:35-.16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD =______.【答案】103##133【解析】【分析】本题考查了相似三角形的判定与性质、折叠性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形的面积公式等知识,是综合性强的填空压轴题,熟练掌握相关知识的联系与运用是解答的关键.设AD x =,AE =,根据折叠性质得DF AD x ==,ADE FDE ∠=∠,过E 作EH AC ⊥于H ,设EF 与AC 相交于M ,证明AHE ACB ∽得到EH AH AE BC AC AB==,进而得到EH x =,2AH x =,证明Rt EHD 是等腰直角三角形得到45HDE HED ∠=∠=︒,可得90FDM ∠=︒,证明()AAS FDM EHM ≌得到12DM MH x ==,则3102CM AC AD DM x =--=-,根据三角形的面积公式结合已知可得()31022552x x x ⎛⎫-⋅=- ⎪⎝⎭,然后解一元二次方程求解x 值即可.【详解】解:∵AE =,∴设AD x =,AE =,∵ADE V 沿DE 翻折,得到FDE V ,∴DF AD x ==,ADE FDE ∠=∠,过E 作EH AC ⊥于H ,设EF 与AC 相交于M,则90AHE ACB ︒∠=∠=,又A A ∠=∠,∴AHE ACB ∽,∴EH AH AE BC AC AB==,∵5CB =,10CA =,AB ===∴510EH AH ==∴EH x =,2AH x ==,则DH AH AD x EH =-==,∴Rt EHD 是等腰直角三角形,∴45HDE HED ∠=∠=︒,则135ADE EDF ∠=∠=︒,∴1354590FDM ∠=︒-︒=︒,在FDM 和EHM 中,90FDM EHM DMF HME DF EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS FDM EHM ≌,∴12DM MH x ==,3102CM AC AD DM x =--=-,∴111331*********CEF CME CMF S S S CM EH CM DF x x x x ⎛⎫⎛⎫=+=⋅+⋅=-⋅⨯=-⋅ ⎪ ⎪⎝⎭⎝⎭ ,111051025522BEC ABC AEC S S S x x =-=⨯⨯-⨯⋅=- ,∵CEF △的面积是BEC 面积的2倍,∴()31022552x x x ⎛⎫-⋅=- ⎪⎝⎭,则23401000x x -+=,解得1103x =,210x =(舍去),即103AD =,故答案为:103.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置.........上.,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17.计算:()042-+-.【答案】2【解析】【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【解析】【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-.【答案】2x x +,13【解析】【分析】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的加法法则计算,同时利用因式分解和除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:原式()()()21122222x x x x x x x x -+-⎛⎫=+÷ ⎪--+-⎝⎭()()()2221·221x x x x x x +--=--x 2x+=.当3x =-时,原式32133-+==-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.【答案】(1)见解析(2)BC =【解析】【分析】本题考查了全等三角形的判定与性质,等腰三角形的性质,解直角三角形等知识,解题的关键是:(1)直接利用SSS 证明ABD ACD △≌△即可;(2)利用全等三角形的性质可求出60BDA CDA ∠=∠=︒,利用三线合一性质得出DA BC ⊥,BE CE =,在Rt BDE △中,利用正弦定义求出BE ,即可求解.【小问1详解】证明:由作图知:BD CD =.在ABD △和ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,,.ABD ACD ∴≌△△.【小问2详解】解:ABD ACD ≌,120BDC ∠=︒,60BDA CDA ∴∠=∠=︒.又BD CD = ,DA BC ∴⊥,BE CE =.2BD =,sin 22BE BD BDA ∴=⋅∠=⨯=,2BC BE ∴==21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)【答案】(1)14(2)16【解析】【分析】本题考查了利用画树状图或列表的方法求两次事件的概率,解题的关键是:(1)用标有“夏”书签的张数除以书签的总张数即得结果;(2)利用树状图画出所有出现的结果数,再找出1张为“春”,1张为“秋”的结果数,然后利用概率公式计算即可.【小问1详解】解:∵有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,∴恰好抽到“夏”的概率为14,故答案为:14;【小问2详解】解:用树状图列出所有等可的结果:等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春),(夏,秋),(夏,冬),(秋,春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋).在12个等可能的结果中,抽取的书签1张为“春”,1张为“秋”出现了2次,∴P (抽取的书签价好1张为“春”,张为“秋”)16=.22.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A (羽毛球),B (乒乓球),C (篮球),D (排球),E (足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【解析】【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.【小问1详解】÷=,解:总人数为915%60----=,D组人数为6061891215补图如下:【小问2详解】解:123607260︒⨯=︒,故答案为:72;【小问3详解】解:1880024060⨯=(人).答:本校七年级800名学生中选择项目B (乒乓球)的人数约为240人.23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩...支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).【答案】(1)CD =(2)CD =【解析】【分析】本题考查了解直角三角形的应用,解题的关键是:(1)过点C 作CE AD ⊥,垂足为E ,判断四边形ABCE 为矩形,可求出CE ,DE ,然后在在Rt CED 中,根据勾股定理求出CD 即可;(2)过点D 作DF BC ⊥,交BC 的延长线于点F ,交AD '于点G .判断四边形ABFG 为矩形,得出90AGD =︒△.在Rt AGD 中,利用正切定义求出34DG AG =.利用勾股定理求出54AD AG =,由50AD =,可求出40BF AG ==,10FG AB ==,20CF =,40DF =.在Rt CFD 中,根据勾股定理求出CD 即可.【小问1详解】解:如图,过点C 作CE AD ⊥,垂足为E ,由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.10AB = ,20BC =,20AE ∴=,10CE =.50AD = ,30ED ∴=.∴在Rt CED 中,CD ===.即可伸缩支撑杆CD 的长度为;【小问2详解】解:过点D 作DF BC ⊥,交BC 的延长线于点F ,交AD '于点G .由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,3tan 4DG AG α==,34DG AG ∴=.54AD AG∴==,50AD=,40AG∴=,30DG=.40BF AG∴==,10FG AB==,20CF∴=,40DF=.∴在Rt CFD中,CD===即可伸缩支撑杆CD的长度为.24.如图,ABC中,AC BC=,90ACB∠=︒,()2,0A-,()6,0C,反比例函数()0,0ky k xx=≠>的图象与AB交于点(),1D m,与BC交于点E.(1)求m,k的值;(2)点P为反比例函数()0,0ky k xx=≠>图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM AB∥,交y轴于点M,过点P作PN x∥轴,交BC于点N,连接MN,求PMN面积的最大值,并求出此时点P的坐标.【答案】(1)2m=,8k=(2)PMNS△有最大值92,此时83,3P⎛⎫⎪⎝⎭【解析】【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B的坐标,然后利用待定系数法求出直线AB的函数表达式,把D的坐标代入直线AB 的函数表达式求出m ,再把D 的坐标代入反比例函数表达式求出k 即可;(2)延长NP 交y 轴于点Q ,交AB 于点L .利用等腰三角形的判定与性质可得出QM QP =,设点P 的坐标为8,t t ⎛⎫ ⎪⎝⎭,()26t <<,则可求出()162PMN S t t =⋅-⋅ ,然后利用二次函数的性质求解即可.【小问1详解】解:()2,0A - ,()6,0C ,8AC ∴=.又AC BC = ,8BC ∴=.90ACB ∠=︒ ,∴点()6,8B .设直线AB 的函数表达式为y ax b =+,将()2,0A -,()6,8B 代入y ax b =+,得2068a b a b -+=⎧⎨+=⎩,解得12a b =⎧⎨=⎩,∴直线AB 的函数表达式为2y x =+.将点(),4D m 代入2y x =+,得2m =.()2,4D ∴.将()2,4D 代入ky x =,得8k =.【小问2详解】解:延长NP 交y 轴于点Q ,交AB 于点L .AC BC = ,90BCA ∠=︒,45BAC ∴∠=︒.PN x ∥轴,45BLN BAC ∴∠=∠=︒,90∠=︒NQM .PM AB ∥ ,45MPL BLP ∴∠=∠=︒,45QMP QPM ∴∠=∠=︒,QM QP ∴=.设点P 的坐标为8,t t ⎛⎫⎪⎝⎭,()26t <<,则PQ t =,6PN t =-.MQ PQ t ∴==.()()21119632222PMN S PN MQ t t t ∴=⋅⋅=⋅-⋅=--+ .∴当3t =时,PMN S △有最大值92,此时83,3P ⎛⎫ ⎪⎝⎭.25.如图,ABC 中,42AB =,D 为AB 中点,BAC BCD ∠=∠,2cos 4ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.【答案】(1)4BC =(2)O 的半径为477【解析】【分析】本题考查相似三角形的判定及性质,解直角三角形,圆周角定理.(1)易证BAC BCD ∽,得到BC BA BD BC=,即可解答;(2)过点A 作AE CD ⊥,垂足为E ,连接CO ,并延长交⊙O 于F ,连接AF ,在Rt AED △中,通过解直角三角形得到1DE =,AE =BAC BCD ∽得到AC ABCD BC==.设CD x =,则AC =,1CE x =-,在Rt ACE 中,根据勾股定理构造方程,求得2CD =,AC =,由AFC ADC ∠=∠得到sin sin AFC ADC ∠=∠,根据正弦的定义即可求解.【小问1详解】解:BAC BCD ∠=∠ ,B B ∠=∠,BAC BCD ∴ ∽.BC BA BD BC∴=,即2BC AB BD =⋅AB =,D 为AB 中点,12BD AD AB ∴===,∴216BC AB BD =⋅==4BC ∴=.【小问2详解】解:过点A 作AE CD ⊥,垂足为E ,连接CO ,并延长交⊙O 于F ,连接AF ,。

2021年江苏13市中考数学试卷

2021年江苏13市中考数学试卷

苏州市初中毕业暨升学考试试卷数 学一、选择题:本大题共10小题,每小题3分,共30分。在每小题给出的四个选项中,只有一项是符合题目要求的。请将选择题的答案用2B 铅笔涂在答题卡相应位置上。1.在下列四个实数中,最小的数是A.- 21.3B C.0.D2.某种芯片每个探针单元的面积为20.00000164,0.00000164cm 用科学记数法可表示为5. 1.6410A -⨯6. 1.6410B -⨯7.16.410C -⨯ 5.0.16410D -⨯3.下列运算正确的是236.A a a a ⋅=33.B a a a ÷= 235.()C a a = 2242.()D a b a b =4.如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是5.不等式2x -1≤3的解集在数轴上表示正确的是6.某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):则这10只手表的平均日走时误差(单位:s)是 A.0B.0.6C.0.8D.1.17.如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角∠ACE=α;(2)量得测角仪的高度CD=a;(3)量得测角仪到旗杆的水平距离DB=b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为A. a + btanαB. a 十bsinα.tan bC a α+.sin b D a α+8.如图,在扇形OAB 中,已知∠AOB= 90°,OA =过AB 的中点C 作CD ⊥OA ,CE ⊥OB,垂足分别为D 、E,则图中阴影部分的面积为A. π-1.12B π-1.2C π-1.22D π- 9.如图,在△ABC 中,∠BAC=108° ,将△ABC 绕点A 按逆时针方向旋转得到.AB C ''若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为A.18°B.20°C.24°D.28°10. 如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点D(3,2)在对角线OB 上,反比例函数(0,0k y k x x =>>)的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为 8.(4,)3A9.(,3)2B10.(5,)3C2416.(,)55D 二、填空题:本大题共8小题,每小题3分,共24分。把答案直接填在答题卡相应位置上。11.在实数范围内有意义的x 的取值范围是____________. 12.若一次函数y =3x -6的图像与x 轴交于点(m,0),则m=__________.13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上。每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是__________________.14. 如图,已知AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D,连接BD.若∠C=40°,则∠B 的度数是_____________.15.若单项式1222m xy -与单项式2113n x y +是同类项,则m+n=___________.16.如图,在△ABC 中,已知AB=2,AD ⊥BC,垂足为D,BD=2CD.若E 是AD 的中点,则EC=_________.17.如图,在平面直角坐标系中,点A 、B 的坐标分别为(-4,0)、(0,4),点C(3,n)在第一象限内,连接AC 、BC.已知∠BCA=2∠CAO,则n=___________.18. 如图,已知∠MON 是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C,画射线OC.过点A 作AD//ON,交射线OC 于点D,过点D ,作DE ⊥OC,交ON 于点E.设OA= 10,DE=12,则sin ∠MON =____________.三、解答题:本大题共10 小题,共76分。把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明。作图时用2B 铅笔或黑色墨水签字笔。19. (本题满分5分)计算20(2)(3).π---20. (本题满分5分)解方程:21.11 xx x+=--21. (本题满分6分)如图,"开心"农场准备用50m的护栏围成一块靠墙的矩形花园,设矩形花园的长为a(m),宽为b(m)。(1)当a=20时,求b的值;(2)受场地条件的限制,a的取值范围为18≤a≤26,求b的取值范围。22. (本题满分6分)为增强学生垃圾分类意识,推动垃圾分类进校园。某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析。(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析。其中抽取的样本具有代表性的方案是_____.(填“方案一”“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内; ②估计该校1200名学生中达到“优秀”的学生总人数。24. (本题满分8分)如图,在矩形ABCD 中,E 是BC 的中点,DF ⊥AE,垂足为F.(1)求证:△ABE ∽△DFA; (2)若AB=6,BC=4,求DF 的长.25. (本题满分8分)如图,二次函数2y x bx =+的图像与x 轴正半轴交于点A,平行于x 轴的直线l 与该抛物线交于B 、C 两点(点B 位于点C 左侧),与抛物线对称轴交于点D (2,-3)。(1)求b 的值;(2)设P 、Q 是x 轴上的点(点P 位于点Q 左侧),四边形PBCQ 为平行四边形。过点P 、Q 分别作x 轴的垂线,与抛物线交于点1122(,)(,)P x y Q x y ''、.若12||2,y y -=求12x x 、的值。26. (本题满分10分)问题1:如图①,在四边形ABCD中,∠B=∠C=90° ,P是BC上一点,PA=PD,∠APD=90° .求证:AB +CD= BC.问题2:如图②,在四边形ABCD中,∠B =∠C = 45°,P是BC上一点,PA = PD,∠APD=90°.求AB CD BC的值。27. (本题满分10分)某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图像如图中折线所示。请你根据图像及这种水果的相关销售记录提供的信,息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图像中线段BC所在直线对应的函数表达式。28. (本题满分10分)如图,已知∠MON=90° ,OT 是∠MON 的平分线,A 是射线OM 上一点,OA=8cm.动点P 从点A 出发,以lcm/ s 的速度沿AO 水平向左作匀速运动,与此同时,动点Q 从点O 出发,也以1cm/ s 的速度沿ON 竖直向上作匀速运动。连接PQ,交OT 于点B.经过O 、P 、Q 三点作圆,交OT 于点C,连接PC 、QC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ 的值;(2)是否存在实数t,使得线段OB 的长度最大?若存在,求出t 的值;若不存在,说明理由。 (3)求四边形OPCQ 的面积。江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.(3分)实数3的相反数是( ) A .3-B .13C .3D .3±2.(3分)下列各式中,计算结果为6m 的是( ) A .23m mB .33m m +C .122m m ÷D .23()m3.(3分)在平面直角坐标系中,点2(2P x +,3)-所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(3分)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是( )A.B.C.D.5.(3分)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤6.(3分)如图,小明从点A出发沿直线前进10米到达点B,向左转45︒后又沿直线前进10米到达点C,再向左转45︒后沿直线前进10米到达点D⋯照这样走下去,小明第一次回到出发点A时所走的路程为( )A.100米B.80米C.60米D.40米7.(3分)如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都在格点上,以AB 为直径的圆经过点C 、D ,则sin ADC ∠的值为( )A B C .23 D .32 8.(3分)小明同学利用计算机软件绘制函数2(()axy a x b =+、b 为常数)的图象如图所示,由学习函数的经验,可以推断常数a 、b 的值满足( )A .0a >,0b >B .0a >,0b <C .0a <,0b >D .0a <,0b <二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为 . 10.(3分)分解因式:322a a a -+= .11.(3在实数范围内有意义,则实数x 的取值范围是 . 12.(3分)方程2(1)9x +=的根是 .13.(3分)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为 .14.(3分)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈10=尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 尺高.15.(3分)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为2cm.16.(3分)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度3b cm=,则螺帽边长a=cm.17.(3分)如图,在ABC∆中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.②分别以点D、E为圆心,大于12DE的同样长为半径作弧,两弧交于点F.③作射线BF交AC于点G.如果8AB=,12BC=,ABG∆的面积为18,则CBG∆的面积为.18.(3分)如图,在ABCD中,60B∠=︒,10AB=,8BC=,点E为边AB上的一个动点,连接ED并延长至点F,使得14DF DE=,以EC、EF为邻边构造EFGC,连接EG,则EG的最小值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(8分)计算或化简: (1)112sin60()2-︒+.(2)2211x x x x x--÷+. 20.(8分)解不等式组50,3121,2x x x +⎧⎪⎨-+⎪⎩并写出它的最大负整数解.21.(8分)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量是 ,扇形统计图中表示A 等级的扇形圆心角为 ︒; (2)补全条形统计图;(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.22.(8分)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A 、B 、C 三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园. (1)小明从A 测温通道通过的概率是 ;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.23.(10分)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.24.(10分)如图,ABCD的对角线AC、BD相交于点O,过点O作EF AC⊥,分别交AB、DC于点E、F,连接AF、CE.(1)若32OE=,求EF的长;(2)判断四边形AECF的形状,并说明理由.25.(10分)如图,ABC∆内接于O,60B∠=︒,点E在直径CD的延长线上,且AE AC=.(1)试判断AE与O的位置关系,并说明理由;(2)若6AC=,求阴影部分的面积.26.(10分)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②2⨯可得7519x y +=.这样的解题思想就是通常所说的“整体思想”. 解决问题:(1)已知二元一次方程组27,28,x y x y +=⎧⎨+=⎩则x y -= ,x y += ;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:*x y ax by c =++,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3*515=,4*728=,那么1*1= .27.(12分)如图1,已知点O 在四边形ABCD 的边AB 上,且2OA OB OC OD ====,OC 平分BOD ∠,与BD 交于点G ,AC 分别与BD 、OD 交于点E 、F . (1)求证://OC AD ; (2)如图2,若DE DF =,求AEAF的值; (3)当四边形ABCD 的周长取最大值时,求DEDF的值.28.(12分)如图,已知点(1,2)A 、(5B ,)(0)n n >,点P 为线段AB 上的一个动点,反比例函数(0)ky x x=>的图象经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.” (1)当1n =时.①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.2021年江苏省无锡市初中毕业升学考试数 学 试 题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.﹣7的倒数是A .7B .17 C .17- D .﹣7 2.函数中自变量x 的取值范围是 A .2x ≥ B .13x ≥C .13x ≤D .13x ≠ 3.已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是 A .24,25 B .24,24 C .25,24 D .25,25 4.若x +y =2,z ﹣y =﹣3,则x +z 的值等于A .5B .1C .﹣1D .﹣5 5.正十边形的每一个外角的度数为A .36°B .30°C .144°D .150° 6.下列图形中,是轴对称图形但不是中心对称图形的是A .圆B .等腰三角形C .平行四边形D .菱形 7.下列选项错误的是A .1cos602︒=B .235a a a ⋅= C 2= D .2(2)22x y x y -=- 8.反比例函数k y x =与一次函数8161515y x =+的图形有一个交点B(12,m ),则k 的值为 A .1 B .2 C .23 D .439.如图,在四边形ABCD 中(AB >CD),∠ABC =∠BCD =90°,AB =3,BC ,把Rt △ABC 沿着AC翻折得到Rt △AEC ,若tan ∠AED DE 的长度A B C D10.如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =12,有下列结论:①CP 与QD 可能相等;②△AQD 与△BCP 可能相似;③四边形PCDQ 面积的最大值为;④四边形PCDQ 周长的最小值为3732+.其中,正确结论的序号 A .①④ B .②④ C .①③ D .②③二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.因式分解:ab 2﹣2ab +a = .12.2019年我市地区生产总值逼近12000亿元,用科学记数法表示12000是 . 13.已知圆锥的底面半径为1cm ,高为3cm ,则它的侧面展开图的面积为 cm 2.14.如图,在菱形ABCD 中,∠B =50°,点E 在CD 上,若AE =AC ,则∠BAE = °. 15.请写出一个函数表达式,使其图像的对称轴为y 轴: .16.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是 尺.17.二次函数y =ax 2﹣3ax +3的图像过点A(6,0),且与y 轴交于点B ,点M 在该抛物线的对称轴上,若△ABM 是以AB 为直角边的直角三角形,则点M 的坐标为 . 18.如图,在Rt △ABC 中,∠ACB =90°,AB =4,点D ,E 分别在边AB ,AC 上,且DB =2AD ,AE =3EC ,连 接BE ,CD ,相交于点O ,则△ABO 面积最大值为.第18题三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)2(2)516-+--; (2)11a ba b b a-+---.20.(本题满分8分)解方程与不等式:(1)210x x +-=; (2)20415x x -≤⎧⎨+<⎩.21.(本题满分8分)如图,已知AB ∥CD ,AB =CD ,BE =CF .求证: (1)△ABF ≌△DCE ; (2) AF ∥DE .22.(本题满分8分)现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀. (1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是 ; (2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程) 23.(本题满分6分)小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到(1= ;(2)请把下面的条形统计图补充完整:(画图后标注相应的数据)(3)请问小李在哪一年的支出最多?支出了多少万元?24.(本题满分8分)如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边AB、BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=53,BC=2,则⊙O的半径为.25.(本题满分8分)如图,DB过⊙O的圆心,交⊙O于点A、B,DC是⊙O的切线,点C是切点,已知∠D=30°,DC(1)求证:△BOC∽△BCD;(2)求△BCD的周长.26.(本题满分10分)有一块矩形地块ABCD,AB=20米,BC=30米,为美观,拟种植不同的花卉,如图所示,将矩形ABCD 分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EPGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.(1)当x=5时,求种植总成本y;(2)求种植总成本y与x的函数表达式,并写出自变量x的取值范围;(3)若甲、乙两种花卉的种植面积之差不超过120米2,求三种花卉的最低种植总成本.27.(本题满分10分)如图,在矩形ABCD 中,AB =2,AD =1,点E 为边CD 上的一点(与C 、D 不重合),四边形ABCE 关于直线AE 的对称图形为四边形ANME ,延长ME 交AB 于点P ,记四边形PADE 的面积为S .(1)若DE =3,求S 的值; (2)设DE =x ,求S 关于x 的函数表达式.28.(本题满分10分)在平面直角坐标系中,O 为坐标原点,直线OA 交二次函数214y x的图像于点A ,∠AOB =90°,点B 在该二次函数的图像上,设过点(0,m )(其中m >0)且平行于x 轴的直线交直线OA 于点M ,交直线OB 于点N ,以线段OM 、ON 为邻边作矩形OMPN .(1)若点A 的横坐标为8.①用含m 的代数式表示M 的坐标;②点P 能否落在该二次函数的图像上?若能,求出m 的值,若不能,请说明理由.(2)当m =2时,若点P 恰好落在该二次函数的图像上,请直接写出此时满足条件的所有直线OA 的函数表达式.江苏省泰州市中考数学试卷一、选择题:(本大题共有6小题,第小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2-的倒数是()A.2B.12C.2-D.12-2.(3分)把如图所示的纸片沿着虚线折叠,可以得到的几何体是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥3.(3分)下列等式成立的是( )A .3+=BC=D 3=4.(3分)如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )A .只闭合1个开关B .只闭合2个开关C .只闭合3个开关D .闭合4个开关5.(3分)点(,)P a b 在函数32y x =+的图象上,则代数式621a b -+的值等于( ) A .5B .3C .3-D .1-6.(3分)如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D 、E .若CDE ∠为36︒,则图中阴影部分的面积为( )A .10πB .9πC .8πD .6π二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接填写在答题卡相应位置上) 7.(3分)9的平方根等于 . 8.(3分)因式分解:24x -= .9.(3分)据新华社5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为 .10.(3分)方程2230x x +-=的两根为1x 、2x ,则12x x 的值为 .11.(3分)今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是 .12.(3分)如图,将分别含有30︒、45︒角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65︒,则图中角α的度数为 .13.(3分)以水平数轴的原点O 为圆心,过正半轴Ox 上的每一刻度点画同心圆,将Ox 逆时针依次旋转30︒、60︒、90︒、⋯、330︒得到11条射线,构成如图所示的“圆”坐标系,点A 、B 的坐标分别表示为(5,0)︒、(4,300)︒,则点C 的坐标表示为 .14.(3分)如图,直线a b ⊥,垂足为H ,点P 在直线b 上,4PH cm =,O 为直线b 上一动点,若以1cm 为半径的O 与直线a 相切,则OP 的长为 .15.(3分)如图所示的网格由边长为1个单位长度的小正方形组成,点A 、B 、C 在直角坐标系中的坐标分别为(3,6),(3,3)-,(7,2)-,则ABC ∆内心的坐标为 .16.(3分)如图,点P 在反比例函数3y x=的图象上,且横坐标为1,过点P 作两条坐标轴的平行线,与反比例函数(0)ky k x=<的图象相交于点A 、B ,则直线AB 与x 轴所夹锐角的正切值为 .三、解答题(本大题共有10题,共102分,请在答题卡规定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:011()()602π--+︒;(2)解不等式组:311,442x x x x -+⎧⎨+<-⎩18.(8分)6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成如下图表: 6月2日骑乘人员头盔佩戴情况统计表(1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?(3)求统计表中m的值.19.(8分)一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是.(精确到0.01),由此估出红球有个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.20.(10分)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.21.(10分)如图,已知线段a,点A在平面直角坐标系xOy内.(1)用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a.(保留作图痕迹,不写作法)(2)在(1)的条件下,若a A点的坐标为(3,1),求P点的坐标.22.(10分)我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面15m的A处测得在C处的龙舟俯角为23︒;他登高6m到正上方的B处测得驶至D处的龙舟俯角为50︒,问两次观测期间龙舟前进了多少?(结果精确到1m,参考数据:tan230.42︒≈,tan400.84︒≈,︒≈tan50 1.19︒≈,tan67 2.36)23.(10分)如图,在ABC∠=︒,3BC=,P为BC边上的动点(与B、C不重合),AC=,4C∆中,90∆的面积为S.=,ADPPD AB,交AC于点D,连接AP,设CP x//(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.24.(10分)如图,在O中,点P为AB的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD 相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若O的半径为8,AB的度数为90︒,求线段MN的长.25.(12分)如图,正方形ABCD的边长为6,M为AB的中点,MBE∆为等边三角形,过点E作ME的垂线分别与边AD 、BC 相交于点F 、G ,点P 、Q 分别在线段EF 、BC 上运动,且满足60PMQ ∠=︒,连接PQ .(1)求证:MEP MBQ ∆≅∆.(2)当点Q 在线段GC 上时,试判断PF GQ +的值是否变化?如果不变,求出这个值,如果变化,请说明理由.(3)设QMB α∠=,点B 关于QM 的对称点为B ',若点B '落在MPQ ∆的内部,试写出α的范围,并说明理由.26.(14分)如图,二次函数21()y a x m n =-+,226(0y ax n a =+<,0m >,0)n >的图象分别为1C 、2C ,1C 交y 轴于点P ,点A 在1C 上,且位于y 轴右侧,直线PA 与2C 在y 轴左侧的交点为B .(1)若P 点的坐标为(0,2),1C 的顶点坐标为(2,4),求a 的值; (2)设直线PA 与y 轴所夹的角为α.①当45α=︒,且A 为1C 的顶点时,求am 的值; ②若90α=︒,试说明:当a 、m 、n 各自取不同的值时,PAPB的值不变; (3)若2PA PB =,试判断点A 是否为1C 的顶点?请说明理由.江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.3的相反数是()A.﹣3B.3C.−13D.132.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm4.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.155.小红连续5天的体温数据如下(单位:℃):36.6,36.2,36.5,36.2,36.3.关于这组数据,下列说法正确的是()A.中位数是36.5℃B.众数是36.2°CC.平均数是36.2℃D.极差是0.3℃6.下列计算正确的是()A.a2+2a2=3a4B.a6÷a3=a2C.(a﹣b)2=a2﹣b2D.(ab)2=a2b27.如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于()。

2020中考数学试题(江苏省13市)

2020中考数学试题(江苏省13市)

2020年江苏省南京市中考数学试卷1.(2分)计算3﹣(﹣2)的结果是()A.﹣5B.﹣1C.1D.52.(2分)3的平方根是()A.9B.C.﹣D.±3.(2分)计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a84.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.(2分)关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根6.(2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)7.(2分)写出一个负数,使这个数的绝对值小于3:.8.(2分)若式子1﹣在实数范围内有意义,则x的取值范围是.9.(2分)纳秒(ns)是非常小的时间单位,1ns=10﹣9s.北斗全球导航系统的授时精度优于20ns.用科学记数法表示20ns是s.10.(2分)计算的结果是.11.(2分)已知x、y满足方程组,则x+y的值为.12.(2分)方程=的解是.13.(2分)将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是.14.(2分)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.15.(2分)如图,线段AB、BC的垂直平分线11、l2相交16.(2分)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是.17.(7分)计算(a﹣1+)÷.18.(7分)解方程:x2﹣2x﹣3=0.19.(8分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.20.(8分)已知反比例函数y=的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组解:解不等式①,得.根据函数y=的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW•h 的大约有多少户.组别用电量分组频数18≤x<9350 293≤x<178100 3178≤x<26334 4263≤x<34811 5348≤x<4331 6433≤x<5181 7518≤x<6032 8603≤x<6881选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)24.(8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D 作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.25.(8分)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?26.(9分)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C.证明的途径可以用下面的框图表示,填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.2020年江苏省常州市中考数学试卷1.(2分)2的相反数是()A.﹣2B.﹣C.D.22.(2分)计算m6÷m2的结果是()A.m3B.m4C.m8D.m123.(2分)如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥4.(2分)8的立方根为()A.B.C.2D.±25.(2分)如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1D.x+1>y+16.(2分)如图,直线a、b被直线c所截,a∥b,∠1=140°,则∠2的度数是()A.30°B.40°C.50°D.60°7.(2分)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.68.(2分)如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=,∠ADB=135°,S=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是()△ABDA.2B.4C.3D.69.(2分)计算:|﹣2|+(π﹣1)0=.10.(2分)若代数式有意义,则实数x的取值范围是.11.(2分)地球的半径大约为6400km.数据6400用科学记数法表示为.12.(2分)分解因式:x3﹣x=.13.(2分)若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是.14.(2分)若关于x的方程x2+ax﹣2=0有一个根是1,则a=.15.(2分)如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=°.16.(2分)数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB 在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是.17.(2分)如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=.18.(2分)如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为.19.(6分)先化简,再求值:(x+1)2﹣x(x+1),其中x=2.20.(8分)解方程和不等式组:(1)+=2;(2).21.(8分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.22.(8分)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.23.(8分)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.24.(8分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?25.(8分)如图,正比例函数y=kx的图象与反比例函数y=(x>0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.26.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.27.(10分)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q 在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ•PH的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为;②若直线n的函数表达式为y=x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,为半径作⊙F.若⊙F与直线1相离,点N(﹣1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l 的“特征数”是4,求直线l的函数表达式.28.(10分)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.2020年江苏省淮安市中考数学试卷1.(3分)2的相反数是()A.2B.﹣2C.D.﹣2.(3分)计算t3÷t2的结果是()A.t2B.t C.t3D.t53.(3分)下列几何体中,主视图为圆的是()A.B.C.D.4.(3分)六边形的内角和为()A.360°B.540°C.720°D.1080°5.(3分)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)6.(3分)一组数据9、10、10、11、8的众数是()A.10B.9C.11D.87.(3分)如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°8.(3分)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.5209.(3分)分解因式:m2﹣4=.10.(3分)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为.11.(3分)已知一组数据1、3、a、10的平均数为5,则a=.12.(3分)方程+1=0的解为.13.(3分)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为.14.(3分)菱形的两条对角线长分别为6和8,则这个菱形的边长为.15.(3分)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.16.(3分)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3个单位长度,到达反比例函数y=(x>0)图象上一点,则k2=.17.(10分)计算:(1)|﹣3|+(π﹣1)0﹣;(2)÷(1+).18.(8分)解不等式2x﹣1>.解:去分母,得2(2x﹣1)>3x﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是(填“A”或“B”).A.不等式两边都乘(或除以)同一个正数,不等号的方向不变;B.不等式两边都乘(或除以)同一个负数,不等号的方向改变.19.(8分)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?20.(8分)如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.21.(8分)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?22.(8分)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.23.(8分)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB=30°,∠ABC=45°,AC =8千米,求A、B两点间的距离.(参考数据:≈1.4,≈1.7,结果精确到1千米).24.(8分)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.(10分)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP =CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.26.(12分)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求的取值范围.27.(14分)如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.2020年江苏省连云港市中考数学试卷1.(3分)3的绝对值是()A.﹣3B.3C.D.2.(3分)如图由4个大小相同的正方体搭成的几何体,这个几何体的主视图是()A.B.C.D.3.(3分)下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2C.a2•a3=a6D.(a﹣2)2=a2﹣44.(3分)“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是()A.中位数B.众数C.平均数D.方差5.(3分)不等式组的解集在数轴上表示为()A.B.C.D.6.(3分)如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处.若∠DBC=24°,则∠A'EB等于()A.66°B.60°C.57°D.48°7.(3分)10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O均是正六边形的顶点.则点O是下列哪个三角形的外心()A.△AED B.△ABD C.△BCD D.△ACD8.(3分)快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y(km)与它们的行驶时间x(h)之间的函数关系.小欣同学结合图象得出如下结论:①快车途中停留了0.5h;②快车速度比慢车速度多20km/h;③图中a=340;④快车先到达目的地.其中正确的是()A.①③B.②③C.②④D.①④9.(3分)我市某天的最高气温是4℃,最低气温是﹣1℃,则这天的日温差是℃.10.(3分)“我的连云港”APP是全市统一的城市综合移动应用服务端.一年来,实名注册用户超过1600000人.数据“1 600 000”用科学记数法表示为.11.(3分)如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M、N的坐标分别为(3,9)、(12,9),则顶点A的坐标为.12.(3分)按照如图所示的计算程序,若x=2,则输出的结果是.13.(3分)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为min.14.(3分)用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为cm.15.(3分)如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=°.16.(3分)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.17.(6分)计算(﹣1)2020+()﹣1﹣.18.(6分)解方程组19.(6分)化简÷.20.(8分)在世界环境日(6月5日),学校组织了保护环境知识测试,现从中随机抽取部分学生的成绩作为样本,按“优秀”“良好”“合格”“不合格”四个等级进行统计,绘制了如下尚不完整的统计图表.测试成绩统计表根据统计图表提供的信息,解答下列问题:(1)表中a=,b=,c=;(2)补全条形统计图;(3)若该校有2400名学生参加了本次测试,估计测试成绩等级在良好以上(包括良好)的学生约有多少人?等级频数(人数)频率优秀30a良好b0.45合格240.20不合格120.10合计c121.(10分)从2021年起,江苏省高考采用“3+1+2”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2”中选化学、生物的概率.22.(10分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.23.(10分)甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,乙公司共捐款140000元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).24.(10分)如图,在平面直角坐标系xOy中,反比例函数y=(x>0)的图象经过点A(4,),点B在y轴的负半轴上,AB交x轴于点C,C为线段AB的中点.(1)m=,点C的坐标为;(2)若点D为线段AB上的一个动点,过点D作DE∥y轴,交反比例函数图象于点E,求△ODE面积的最大值.25.(12分)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋)中写道:“水能利物,轮乃曲成”.如图,半径为3m的筒车⊙O按逆时针方向每分钟转圈,筒车与水面分别交于点A、B,筒车的轴心O距离水面的高度OC长为2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P首次到达最高点?(2)浮出水面3.4秒后,盛水筒P距离水面多高?(3)若接水槽MN所在直线是⊙O的切线,且与直线AB交于点M,MO=8m.求盛水筒P从最高点开始,至少经过多长时间恰好在直线MN上.(参考数据:cos43°=sin47°≈,sin16°=cos74°≈,sin22°=cos68°≈)26.(12分)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若△DPQ与△ABC相似,求其“共根抛物线”L2的顶点P的坐标.27.(12分)(1)如图1,点P为矩形ABCD对角线BD上一点,过点P作EF∥BC,分别交AB、CD于点E、F.若BE=2,PF=6,△AEP的面积为S1,△CFP的面积为S2,则S1+S2=;(2)如图2,点P为▱ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为S1,四边形PFCG的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);(3)如图3,点P为▱ABCD内一点(点P不在BD上),过点P作EF∥AD,HG∥AB,与各边分别相交于点E、F、G、H.设四边形AEPH的面积为S1,四边形PGCF的面积为S2(其中S2>S1),求△PBD 的面积(用含S1、S2的代数式表示);(4)如图4,点A、B、C、D把⊙O四等分.请你在圆内选一点P(点P不在AC、BD上),设PB、PC、围成的封闭图形的面积为S1,P A、PD、围成的封闭图形的面积为S2,△PBD的面积为S3,△P AC的面积为S4,根据你选的点P的位置,直接写出一个含有S1、S2、S3、S4的等式(写出一种情况即可).2020年江苏省南通市中考数学试卷1.(3分)计算|﹣1|﹣3,结果正确的是()A.﹣4B.﹣3C.﹣2D.﹣12.(3分)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km2.将68000用科学记数法表示为()A.6.8×104B.6.8×105C.0.68×105D.0.68×1063.(3分)下列运算,结果正确的是()A.﹣=B.3+=3C.÷=3D.×=24.(3分)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°6.(3分)一组数据2,4,6,x,3,9的众数是3,则这组数据的中位数是()A.3B.3.5C.4D.4.57.(3分)下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD8.(3分)如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm29.(3分)如图①,E为矩形ABCD的边AD上一点,点P从点B出发沿折线B﹣E﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD的面积是()A.96cm2B.84cm2C.72cm2D.56cm210.(3分)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.311.(3分)分解因式:xy﹣2y2=.12.(3分)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.13.(4分)若m<2<m+1,且m为整数,则m=.14.(4分)如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.15.(4分)南宋数学家杨辉提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,16.(4分)如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.(4分)若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.18.(4分)将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=.19.(10分)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)÷(x+).20.(11分)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC.若AC=3,求⊙O的半径.21.(12分)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.等级人数百分比A1718.9%B3842.2%C2831.1%D77.8%合计90100%23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.25.(13分)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD 的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E 在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.。

江苏省盐城市2024年中考数学试题(含答案)

江苏省盐城市2024年中考数学试题(含答案)

2024年扬州市中考数学试题一、选择题(本题有8小题,每小题3分,共24分)1.-3的肯定值是【】A.3 B.-3 C.-3 D.1 32.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.平行四边形B.等边三角形C.等腰梯形D.正方形3.今年我市参与中考的人数大约有41300人,将41300用科学记数法表示为【】A.413×102B.41.3×103C.4.13×104D.0.413×103 4.已知⊙O1、⊙O2的半径分别为3cm、5cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系是【】A.外切B.相交C.内切D.内含5.如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是【】A.4个B.5个C.6个D.7个6.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是【】A.y=(x+2)2+2 B.y=(x+2)2-2C.y=(x-2)2+2 D.y=(x-2)2-27.某校在开展“爱心捐助”的活动中,初三一班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是【】A.10 B.9 C.8 D.48.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2024,则m的值是【】A.43 B.44 C.45 D.46二、填空题(本大题共10小题,每小题3分,共30分)9.扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是.10.一个锐角是38度,则它的余角是度.11.已知2a-3b2=5,则10-2a+3b2的值是.12.已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是cm.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.如图,P A、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上,假如∠ACB=70°,那么∠P的度数是.15.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处.若ABBC=23,则tan∠DCF的值是.16.如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是.17.已知一个圆锥的母线长为10cm,将侧面绽开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是cm.18.如图,双曲线y=kx经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为5,则k的值是.三、解答题(本大题共有10小题,共96分)19.(1)计算:9-(-1)2+(-2024)0;(2)因式分解:m3n-9mn.20.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的a值代入计算.21.扬州市中小学全面开展“体艺2+1”活动,某校依据学校实际,确定开设A:篮球,B:乒乓球,C:声乐,D:塑身操等四中活动项目,为了解学生最喜爱哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有人.(2)请你将统计图1补充完整.(3)统计图2中D项目对应的扇形的圆心角是度.(4)已知该校学生2400人,请依据调查结果估计该校最喜爱乒乓球的学生人数.22.一个不透亮的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出其次个乒乓球.(1)共有种可能的结果.(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.23.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.24.为了改善生态环境,防止水土流失,某村安排在荒坡上种480棵树,由于青年志愿者的支援,每日比原安排多种13,结果提前4天完成任务,原安排每天种多少棵树?25.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就马上指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离(结果精确到0.1海里,参考数据:2≈1.41,3≈1.73).26.如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.(1)求证:AC平分BAD;(2)若AC=25,CD=2,求⊙O的直径.27.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,干脆写出全部符合条件的点M的坐标;若不存在,请说明理由.28.如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y 轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.(1)①干脆写出点E的坐标:;②求证:AG=CH.(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.(3)在(2)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.参考答案一、选择题(本题有8小题,每小题3分,共24分)1.(2024•扬州)-3的肯定值是( )A.3B.-3 C.-3 D.考点:肯定值。

江苏省全省十三市中考数学真题 及解析汇编

江苏省全省十三市中考数学真题 及解析汇编

江苏省全省中考数学真题及解析汇编目录1-江苏省南京市中考数学试卷及解析(28页) (1)2-江苏省镇江市中考数学试卷及解析(34页) (25)3-江苏省常州市中考数学试卷及解析(20页) (54)4-江苏省无锡市中考数学试卷及解析(21页) (74)5-江苏省苏州市中考数学试卷及解析(30页) (93)6-江苏省南通市中考数学试卷及解析(33页) (120)7-江苏省泰州市中考数学试卷及解析(28页) (149)8-江苏省扬州市中考数学试卷及解析(30页) (173)9-江苏省徐州市中考数学试卷及解析(29页) (200)10-江苏省淮安市中考数学试卷及解析(21页) (227)11-江苏省宿迁市中考数学试卷及解析(29页) (245)12-江苏省盐城市中考数学试卷及解析(35页) (270)13-江苏省连云港市中考数学试卷及解析(31页) (301)江苏省南京市中考数学试卷及解析(28页)一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)计算12+(﹣18)÷(﹣6)﹣(﹣3)×2的结果是()A.7 B.8 C.21 D.362.(2分)计算106×(102)3÷104的结果是()A.103B.107C.108D.1093.(2分)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有8条棱,该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥4.(2分)若错误!未找到引用源。

<a<错误!未找到引用源。

,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<45.(2分)若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根6.(2分)过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为()A.(4,错误!未找到引用源。

2023年江苏省南京市中考数学试卷+答案解析

2023年江苏省南京市中考数学试卷+答案解析

2023年江苏省南京市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷.用科学记数法表示3830000是()A. B. C. D.2.整数a满足,则a的值为()A.3B.4C.5D.63.若一个等腰三角形的腰长为3,则它的周长可能是()A.5B.10C.15D.204.甲、乙两地相距100km,汽车从甲地匀速行驶到乙地,则汽车行驶的时间单位:与行驶速度单位:之间的函数图象是()A. B. C. D.5.我国南宋数学家秦九韶的著作《数书九章》中有一道问题:“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何?”问题大意:如图,在中,里,里,里,则的面积是()A.80平方里B.82平方里C.84平方里D.86平方里6.如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cmB.40cmC.42cmD.45cm二、填空题:本题共10小题,每小题3分,共30分。

7.计算:____;____.8.若式子在实数范围内有意义,则x的取值范围是_______.9.计算的结果是_______________.10.分解因式的结果是___________.11.计算的结果是__________________.12.某校九年级有8个班级,人数分别为37,a,32,36,37,32,38,若这组数据的众数为32,则这组数据的中位数为______.13.甲车从A地出发匀速行驶,它行驶的路程单位:与行驶的时间单位:之间的函数关系如图所示.甲车出发后,乙车从A地出发沿同一路线匀速行驶.若乙车经过追上甲车,则乙车的速度单位:的取值范围是___________________.14.在平面直角坐标系中,点O为原点,点A在第一象限,且若反比例函数的图象经过点A,则k的取值范围是___________________.15.如图,与正六边形ABCDEF的边CD,EF分别相切于点C,若,则的半径长为___________________.16.如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在处,,垂足为若,,则__________________三、解答题:本题共11小题,共88分。

2024年江苏连云港市中考数学试题+答案详解

2024年江苏连云港市中考数学试题+答案详解

2024年江苏连云港市中考数学试题+答案详解(试题部分)一、选择题(本大题共有8小题,每小题3分,共24分在每小题给出的四个选项中,只有一项符1合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.12−的相反数是( )A. 2−B. 2C. 12−D.122. 2024年5月,全国最大的海上光伏项目获批落地连云港,批准用海面积约28000亩,总投资约90亿元.其中数据“28000”用科学记数法可以表示为( ) A. 32810⨯B. 42.810⨯C. 32.810⨯D. 50.2810⨯3. 下列运算结果等于6a 的是( ) A. 33a a +B. 6a a ⋅C. 28a a ÷D. ()32a −4. 下列网格中各个小正方形的边长均为1,阴影部分图形分别记作甲、乙、丙、丁,其中是相似形的为( )A. 甲和乙B. 乙和丁C. 甲和丙D. 甲和丁5. 如图,将一根木棒的一端固定在O 点,另一端绑一重物.将此重物拉到A 点后放开,让此重物由A 点摆动到B 点.则此重物移动路径的形状为( )A. 倾斜直线B. 抛物线C. 圆弧D. 水平直线6. 下列说法正确的是( )A. 10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B. 从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C. 小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D. 抛一枚质地均匀的硬币,正面朝上的概率为12,连续抛此硬币2次必有1次正面朝上7. 如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm ,则图中阴影图形的周长是( )A. 440cmB. 320cmC. 280cmD. 160cm8. 已知抛物线2y ax bx c =++(a 、b 、c 是常数,a<0)的顶点为(1,2).小烨同学得出以下结论:①0abc <;②当1x >时,y 随x 的增大而减小;③若20ax bx c ++=的一个根为3,则12a =−;④抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是( ) A. ①②B. ②③C. ③④D. ②④二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9. 如果公元前121年记作121−年,那么公元后2024年应记作__________年.10. 在实数范围内有意义,则x 的取值范围是_____.11. 如图,直线ab ,直线l a ⊥,1120∠=︒,则2∠=__________︒.12. 关于x 的一元二次方程20x x c −+=有两个相等的实数根,则c 的值为__________.13. 杠杆平衡时,“阻力⨯阻力臂=动力⨯动力臂”.已知阻力和阻力臂分别为1600N 和0.5m ,动力为(N)F ,动力臂为(m)l .则动力F 关于动力臂l 的函数表达式为__________.14. 如图,AB 是圆的直径,1∠、2∠、3∠、4∠的顶点均在AB 上方的圆弧上,1∠、4∠的一边分别经过点A 、B ,则1234∠+∠+∠+∠=__________︒.15. 如图,将一张矩形纸片ABCD 上下对折,使之完全重合,打开后,得到折痕EF ,连接BF .再将矩形纸片折叠,使点B 落在BF 上的点H 处,折痕为AG .若点G 恰好为线段BC 最靠近点B 的一个五等分点,4AB =,则BC 的长为__________.16. 如图,在ABC 中,90C ∠=︒,30B ∠=︒,2AC =.点P 在边AC 上,过点P 作PD AB ⊥,垂足为D ,过点D 作DF BC ⊥,垂足为F .连接PF ,取PF 的中点E .在点P 从点A 到点C 的运动过程中,点E 所经过的路径长为__________.三、解答题(本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤,作图过程需保留作图痕迹)17. 计算0|2|(π1)−+−−18. 解不等式112x x −<+,并把解集在数轴上表示出来. 19. 下面是某同学计算21211m m −−−的解题过程: 解:2121211(1)(1)(1)(1)m m m m m m m +−=−−−+−+−① (1)2m =+−②1m =−③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程. 20. 如图,AB 与CD 相交于点E ,EC ED =,AC BD ∥.(1)求证:AEC BED △△≌;(2)用无刻度的直尺和圆规作图:求作菱形DMCN ,使得点M 在AC 上,点N 在BD 上.(不写作法,保留作图痕迹,标明字母)21. 为了解七年级男生体能情况,某校随机抽取了七年级20名男生进行体能测试,并对测试成绩(单位:分)进行了统计分析: 【收集数据】100 94 88 88 52 79 83 64 83 87 76 89 91 68 77 97 72 83 96 73 【整理数据】该校规定:59x ≤为不合格,5975x <≤为合格,7589x <≤为良好,89100x <≤为优秀.(成绩用x 表示)【分析数据】此组数据的平均数是82,众数是83,中位数是c ; 【解决问题】 (1)填空:=a__________,b =__________,c =__________;(2)若该校七年级共有300名男生,估计体能测试能达到优秀的男生约有多少人? (3)根据上述统计分析情况,写一条你的看法.22. 数学文化节猜谜游戏中,有四张大小、形状、质地都相同的字谜卡片,分别记作字谜A 、字谜B 、字谜C 、字谜D ,其中字谜A 、字谜B 是猜“数学名词”,字谜C 、字谜D 是猜“数学家人名”. (1)若小军从中随机抽取一张字谜卡片,则小军抽取的字谜是猜“数学名词”的概率是__________; (2)若小军一次从中随机抽取两张字谜卡片,请用画树状图或列表的方法求小军抽取的字谜均是猜“数学家人名”的概率.23. 我市将5月21日设立为连云港市“人才日”,以最大诚意礼遇人才,让人才与城市“双向奔赴”.活动主办方分两次共邮购了200把绘有西游文化的折扇作为当天一项活动的纪念品.折扇单价为8元,其中邮费和优惠方式如下表所示:若两次邮购折扇共花费1504元,求两次邮购的折扇各多少把?24. 如图1,在平面直角坐标系xOy 中,一次函数1(0)y kx k =+≠的图像与反比例函数6y x=的图像交于点A 、B ,与y 轴交于点C ,点A 的横坐标为2.(1)求k 的值;(2)利用图像直接写出61kx x+<时x 的取值范围; (3)如图2,将直线AB 沿y 轴向下平移4个单位,与函数6(0)y x x=>的图像交于点D ,与y 轴交于点E ,再将函数6(0)y x x=>的图像沿AB 平移,使点A 、D 分别平移到点C 、F 处,求图中阴影部分的面积.25. 图1是古代数学家杨辉在《详解九章算法》中对“邑的计算”的相关研究.数学兴趣小组也类比进行了如下探究:如图2,正八边形游乐城12345678A A A A A A A A 的边长为km 2,南门O 设立在67A A 边的正中央,游乐城南侧有一条东西走向的道路BM ,67A A 在BM 上(门宽及门与道路间距离忽略不计),东侧有一条南北走向的道路BC ,C 处有一座雕塑.在1A 处测得雕塑在北偏东45︒方向上,在2A 处测得雕塑在北偏东59︒方向上.(1)12CA A ∠=__________︒,21CA A ∠=__________︒; (2)求点1A 到道路BC 的距离;(3)若该小组成员小李出南门O 后沿道路MB 向东行走,求她离B 处不超过多少千米,才能确保观察雕塑不会受到游乐城的影响?(结果精确到0.1km 1.41≈,sin 760.97︒≈,tan76 4.00︒≈,sin590.86︒≈,tan59 1.66︒≈)26. 在平面直角坐标系xOy 中,已知抛物线21y ax bx =+−(a 、b 为常数,0a >).(1)若抛物线与x 轴交于(1,0)A −、(4,0)B 两点,求抛物线对应的函数表达式;(2)如图,当1b =时,过点(1,)C a −、(1,D a +分别作y 轴的平行线,交抛物线于点M 、N ,连接MN MD 、.求证:MD 平分CMN ∠;(3)当1a =,2b ≤−时,过直线1(13)y x x =−≤≤上一点G 作y 轴的平行线,交抛物线于点H .若GH 的最大值为4,求b 的值.27. 【问题情境】(1)如图1,圆与大正方形的各边都相切,小正方形是圆的内接正方形,那么大正方形面积是小正方形面积的几倍?小昕将小正方形绕圆心旋转45°(如图2),这时候就容易发现大正方形面积是小正方形面积的__________倍.由此可见,图形变化是解决问题的有效策略;【操作实践】(2)如图3,图①是一个对角线互相垂直的四边形,四边a 、b 、c 、d 之间存在某种数量关系.小昕按所示步骤进行操作,并将最终图形抽象成图4.请你结合整个变化过程,直接写出图4中以矩形内一点P 为端点的四条线段之间的数量关系;【探究应用】(3)如图5,在图3中“④”的基础上,小昕将PDC △绕点P 逆时针旋转,他发现旋转过程中DAP ∠存在最大值.若8PE =,5PF =,当DAP ∠最大时,求AD 的长;(4)如图6,在Rt ABC △中,90C ∠=︒,点D 、E 分别在边AC 和BC 上,连接DE 、AE 、BD .若5AC CD +=,8BC CE +=,求AE BD +的最小值.2024年江苏连云港市中考数学试题+答案详解(答案详解)一、选择题(本大题共有8小题,每小题3分,共24分在每小题给出的四个选项中,只有一项符1合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.12−的相反数是( )A. 2−B. 2C. 12−D.12【答案】D 【解析】【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解. 【详解】解:因为-12+12=0, 所以-12的相反数是12. 故选:D .【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2. 2024年5月,全国最大的海上光伏项目获批落地连云港,批准用海面积约28000亩,总投资约90亿元.其中数据“28000”用科学记数法可以表示为( ) A. 32810⨯ B. 42.810⨯C. 32.810⨯D. 50.2810⨯【答案】B 【解析】【分析】本题考查科学记数法,根据科学记数法的表示方法:10,110,na a n ⨯≤<为整数,进行表示即可. 【详解】解:428000 2.810=⨯; 故选:B .3. 下列运算结果等于6a 的是( ) A. 33a a + B. 6a a ⋅C. 28a a ÷D. ()32a −【答案】C 【解析】【分析】本题考查整式的运算,根据合并同类项,同底数幂的乘除法则,积的乘方和幂的乘方法则,逐一进行计算判断即可.【详解】解:A 、3332a a a +=,不符合题意; B 、67a a a ⋅=,不符合题意; C 、826a a a ÷=,符合题意; D 、()326a a −=−,不符合题意;故选:C .4. 下列网格中各个小正方形的边长均为1,阴影部分图形分别记作甲、乙、丙、丁,其中是相似形的为( )A. 甲和乙B. 乙和丁C. 甲和丙D. 甲和丁【答案】D 【解析】【分析】本题考查相似图形,根据对应角相等,对应边对应成比例的图形是相似图形结合正方形的性质,进行判断即可.【详解】解:由图可知,只有选项甲和丁中的对应角相等,且对应边对应成比例,它们的形状相同,大小不同,是相似形. 故选D .5. 如图,将一根木棒的一端固定在O 点,另一端绑一重物.将此重物拉到A 点后放开,让此重物由A 点摆动到B 点.则此重物移动路径的形状为( )A. 倾斜直线B. 抛物线C. 圆弧D. 水平直线【答案】C 【解析】【分析】本题考查动点的移动轨迹,根据题意,易得重物移动的路径为一段圆弧.【详解】解:在移动的过程中木棒的长度始终不变,故点A的运动轨迹是以O为圆心,OA为半径的一段圆弧,故选:C.6. 下列说法正确的是()A. 10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B. 从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C. 小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D. 抛一枚质地均匀的硬币,正面朝上的概率为1,连续抛此硬币2次必有1次正面朝上2【答案】C【解析】【分析】本题考查事件发生的可能性与概率.由题意根据事件的可能性以及事件发生的概率对各选项进行依次判断即可.【详解】解:A、“10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率一样”,故该选项错误,不符合题意;B、从1,2,3,4,5中随机抽取一个数,奇数有3个,偶数有2个,取得奇数的可能性较大,故该选项错误,不符合题意;C、“小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件”,故该选项正确,符合题意;D、抛一枚质地均匀的硬币,正面朝上的概率为1,连续抛此硬币2次有可能有1次正面朝上,故该选项2错误,不符合题意;故选:C.7. 如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A. 440cmB. 320cmC. 280cmD. 160cm【答案】A【解析】【分析】本题考查平移的性质,利用平移的性质将阴影部分的周长转化为边长是80cm 的正方形的周长加上边长是80cm 的正方形的两条边长再减去220cm ⨯,由此解答即可.【详解】解:由图可得:阴影部分的周长为边长是80cm 的正方形的周长加上边长是80cm 的正方形的两条边长再减去220cm ⨯,∴阴影图形的周长是:480280220440cm ⨯+⨯−⨯=,故选:A .8. 已知抛物线2y ax bx c =++(a 、b 、c 是常数,a<0)的顶点为(1,2).小烨同学得出以下结论:①0abc <;②当1x >时,y 随x 的增大而减小;③若20ax bx c ++=的一个根为3,则12a =−;④抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是( )A. ①②B. ②③C. ③④D. ②④ 【答案】B【解析】 【分析】根据抛物线的顶点公式可得12b a−=,结合a<0,2a b c ++=,由此可判断①;由二次函数的增减性可判断②;用a 表示b 、c 的值,再解方程即可判断③,由平移法则即可判断④. 【详解】解:根据题意可得:12b a−=, 2b a ∴−=, 0a <,02b ∴−<即0b >, 2a bc ++=,2b a =−22c a b a ∴=−−=+,c ∴的值可正也可负,∴不能确定abc 的正负;故①错误;a<0,∴抛物线开口向下,且关于直线1x =对称,当1x >时,y 随x 的增大而减小;故②正确;2,2b a c a =−=+,∴抛物线为222y ax x a a −=++,6092a a a =+−+,12a ∴=−,故③正确; 抛物线()2212y ax bx c a x =++=−+,将()212y a x =−+向左平移1个单位得:()221122y a x ax =−++=+, ∴抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位得到的,故④错误;∴正确的有②③,故选:B .【点睛】本题考查了二次函数的性质,二次函数的平移,二次函数图象上点的坐标特征,二次函数与一元二次方程,一元二次方程的解的定义,用a 表示b 、c 的值是本题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9. 如果公元前121年记作121−年,那么公元后2024年应记作__________年.【答案】2024+【解析】【分析】本题考查正负数的意义,根据正负数表示一对相反意义的量,公元前为负,则公元后为正,进行作答即可.【详解】解:公元前121年记作121−年,那么公元后2024年应记作2024+年;故答案为:2024+.10. 在实数范围内有意义,则x 的取值范围是_____.【答案】2x ≥【解析】【详解】根据二次根式被开方数必须是非负数的条件,在实数范围内有意义,必须20x −≥,∴2x ≥.故答案为:2x ≥11. 如图,直线a b ,直线l a ⊥,1120∠=︒,则2∠=__________︒.【答案】30【解析】【分析】本题考查平行线的性质,三角形的外角,根据两直线平行,同位角相等,求出3∠的度数,外角的性质,得到3902∠=︒+∠,即可求出2∠的度数.【详解】解:∵a b ,∴31120∠=∠=︒,∵l a ⊥,∴3290∠=∠+︒,∴230∠=︒;故答案为:30.12. 关于x 的一元二次方程20x x c −+=有两个相等的实数根,则c 的值为__________. 【答案】14##0.25 【解析】【分析】本题考查了一元二次方程根的个数与根的判别式的关系.根据题意得224c 0∆=−=,进行计算即可得.【详解】解:若关于x 的一元二次方程20x x c −+=有两个相等的实数根,2140c ∆=−=,14c ∴=,故答案为:14. 13. 杠杆平衡时,“阻力⨯阻力臂=动力⨯动力臂”.已知阻力和阻力臂分别为1600N 和0.5m ,动力为(N)F ,动力臂为(m)l .则动力F 关于动力臂l 的函数表达式为__________. 【答案】800F l =【解析】【分析】本题考查了根据实际问题列反比例函数关系式,根据题意可得16000.5l F ⋅=⨯,进而即可求解,掌握杠杆原理是解题的关键.【详解】解:由题意可得,16000.5l F ⋅=⨯,∴800l F =,即800F l=, 故答案为:800F l=. 14. 如图,AB 是圆的直径,1∠、2∠、3∠、4∠的顶点均在AB 上方的圆弧上,1∠、4∠的一边分别经过点A 、B ,则1234∠+∠+∠+∠=__________︒.【答案】90【解析】【分析】本题考查圆周角定理,根据半圆的度数为180︒,同弧所对的圆周角是圆心角的一半,进行求解即可.【详解】∵AB 是圆的直径,∴AB 所对的弧是半圆,所对圆心角的度数为180︒,∵1∠、2∠、3∠、4∠所对的弧的和为半圆, ∴11234180902∠+∠+∠+∠=⨯︒=︒, 故答案为:90.15. 如图,将一张矩形纸片ABCD 上下对折,使之完全重合,打开后,得到折痕EF ,连接BF .再将矩形纸片折叠,使点B 落在BF 上的点H 处,折痕为AG .若点G 恰好为线段BC 最靠近点B 的一个五等分点,4AB =,则BC 的长为__________.【答案】【解析】【分析】本题考查矩形折叠,勾股定理,解直角三角形,设AG 与BF 交于点M ,BG a =,则:5BC a =,勾股定理求出,AG BF ,等积法求出BM ,根据cos BM BC FBC BG BF ∠==,列出方程进行求解即可.【详解】解:设AG 与BF 交于点M ,∵矩形ABCD ,∴90,4ABC C AB CD ∠=∠=︒==,∵翻折, ∴122CF CD ==,AG BH ⊥, 设BG a =,则:5BC a =,∴AG ==BF == ∵1122ABG S AB BG AG BM =⋅=⋅, ∴AB BG BM AG ⋅==, ∵90BMG C ∠=∠=︒, ∴cos BM BC FBC BG BF∠==, ∴BM BF BG BC ⋅=⋅,5a a =⋅,解得:a =a =∴5BC a ==故答案为:16. 如图,在ABC 中,90C ∠=︒,30B ∠=︒,2AC =.点P 在边AC 上,过点P 作PD AB ⊥,垂足为D ,过点D 作DF BC ⊥,垂足为F .连接PF ,取PF 的中点E .在点P 从点A 到点C 的运动过程中,点E 所经过的路径长为__________.【答案】4【解析】 【分析】本题考查含30度角的直角三角形,一次函数与几何的综合应用,矩形的判定和性质,两点间的距离,以C 为原点,建立如图所示的坐标系,设AP a =,则2CP a =−,利用含30度角的直角三角形的性质,求出点E 的坐标,得到点E 在直线13y x =−上运动,求出点P 分别与,A C 重合时,点E 的坐标,利用两点间的距离公式进行求解即可.【详解】解:以C 为原点,建立如图所示的坐标系,设AP a =,则2CP a =−,则:()0,2P a −,∵30B ∠=︒,∴60A ∠=︒,∵PD AB ⊥,∴90PDA ∠=︒,∴30APD ∠=︒, ∴122a AD AP ==, 过点D 作DG AC ⊥,则:90AGD ∠=︒,∴1,244a AG AD DG a ====, ∵DF BC ⊥,DG AC ⊥,90ACB ∠=︒,∴四边形DGCF 为矩形,∴DG CF =,∴,04F ⎛⎫ ⎪ ⎪⎝⎭,∵E 为,P F 的中点,∴1,182E a a ⎛⎫− ⎪ ⎪⎝⎭,令1,182x a y a ==−,则:13y x =−,∴点E 在直线1y x =上运动, 当点P 与C 重合时,0a =,此时()0,1E ,当点P 与A 重合时,2a =,此时,04E ⎛⎫ ⎪ ⎪⎝⎭,∴点E 4=;故答案为:4. 三、解答题(本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤,作图过程需保留作图痕迹)17. 计算0|2|(π1)−+−【答案】1−【解析】【分析】本题考查实数的混合运算,零指数幂,先进行去绝对值,零指数幂和开方运算,再进行加减运算即可.【详解】解:原式2141=+−=−18. 解不等式112x x −<+,并把解集在数轴上表示出来. 【答案】3x >−,图见解析【解析】【分析】本题主要考查解一元一次不等式以及在数轴上表示不等式的解集,根据去分母,去括号,移项,合并可得不等式的解集,然后再在数轴上表示出它的解集即可 【详解】解:112x x −<+, 去分母,得12(1)x x −<+,去括号,得122x x −<+,移项,得122x x −−<−,解得3x >−.这个不等式的解集在数轴上表示如下:19. 下面是某同学计算21211m m −−−的解题过程: 解:2121211(1)(1)(1)(1)m m m m m m m +−=−−−+−+−① (1)2m =+−②1m =−③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.【答案】从第②步开始出现错误,正确过程见解析【解析】【分析】本题考查异分母分式的加减运算,先通分,然后分母不变,分子相减,最后将结果化为最简分式即可.掌握相应的计算法则,是解题的关键.【详解】解:从第②步开始出现错误.正确的解题过程为: 原式121211(1)(1)(1)(1)(1)(1)(1)(1)1m m m m m m m m m m m m ++−−=−===+−+−+−+−+. 20. 如图,AB 与CD 相交于点E ,EC ED =,AC BD ∥.(1)求证:AEC BED △△≌;(2)用无刻度的直尺和圆规作图:求作菱形DMCN ,使得点M 在AC 上,点N 在BD 上.(不写作法,保留作图痕迹,标明字母)【答案】(1)见解析 (2)见解析【解析】【分析】(1)根据平行线的性质得到,A B C D ∠=∠∠=∠,结合EC ED =,利用AAS 即可证明AEC BED △△≌;(2)作CD 的垂直平分线,分别交,AC BD 于点,M N ,连接,DM CN 即可.【小问1详解】 证明:AC BD ∥,A B ∴∠=∠,C D ∠=∠.在AEC △和BED 中,A B C D EC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)AEC BED ∴≌;【小问2详解】解:MN 是CD 的垂直平分线,,MD MC DN CN ∴==,由(1)的结论可知,,A B AE BE ∠=∠=,又∵AEM BEN ∠=∠,则AEM BEN ≅,∴,ME NE =CD MN ⊥,CD ∴是MN 的垂直平分线,,DM DN CM CN ∴==,DM DN CN CM ∴===,∴四边形DMCN 是菱形,如图所示,菱形DMCN 为所求.【点睛】本题考查了垂直平分线的作法,平行线的性质,三角形全等的判定,菱形的判定,熟练掌握垂直平分线的作法及三角形全等的判定定理是解题的关键.21. 为了解七年级男生体能情况,某校随机抽取了七年级20名男生进行体能测试,并对测试成绩(单位:分)进行了统计分析:【收集数据】100 94 88 88 52 79 83 64 83 8776 89 91 68 77 97 72 83 96 73【整理数据】该校规定:59x ≤为不合格,5975x <≤为合格,7589x <≤为良好,89100x <≤为优秀.(成绩用x 表示)【分析数据】此组数据的平均数是82,众数是83,中位数是c;【解决问题】(1)填空:=a__________,b=__________,c=__________;(2)若该校七年级共有300名男生,估计体能测试能达到优秀的男生约有多少人?(3)根据上述统计分析情况,写一条你的看法.【答案】(1)4,0.25,83(2)75人(3)男生体能状况良好【解析】【分析】本题考查频数分布表和用样本估计总体:(1)利用频数=频率×数据总数可求出a的值;利用频率=频数÷数据总数可求出b,最后根据中位数定义可求出c;(2)用样本估计总体可得结论;(3)结合分析,得出看法【小问1详解】解:2020%4a=⨯=;5200.25b=÷=;把20个数据按从小到大的顺序排列为:52,64,68,72,73,76,77,79,83,83,83,87,88,88,89,91,94,96,97,100,最中间的两个数据为83,83,所以,8383832c+==,故答案为:4,0.25,83;【小问2详解】解:53007520⨯=(人) 答:估计体能测试能达到优秀的男生约有75人;【小问3详解】解:从样本的平均数、中位数和众数可以看出,男生整体体能状况良好22. 数学文化节猜谜游戏中,有四张大小、形状、质地都相同的字谜卡片,分别记作字谜A 、字谜B 、字谜C 、字谜D ,其中字谜A 、字谜B 是猜“数学名词”,字谜C 、字谜D 是猜“数学家人名”.(1)若小军从中随机抽取一张字谜卡片,则小军抽取的字谜是猜“数学名词”的概率是__________; (2)若小军一次从中随机抽取两张字谜卡片,请用画树状图或列表的方法求小军抽取的字谜均是猜“数学家人名”的概率.【答案】(1)12(2)16【解析】【分析】(1)根据简单地概率公式解答即可.(2)利用画树状图法解答即可.本题考查了简单地概率公式,树状图法求概率,熟练掌握画树状图法求概率是解题的关键.【小问1详解】 小军抽取的字谜是猜“数学名词”的概率是2142=, 故答案为:12.【小问2详解】根据题意,画树状图如下:由图可知,共有12种等可能的结果,其中小军抽取的字谜均是猜“数学家人名”的有2种, ∴小军抽取的字谜均是猜“数学家人名”的概率是21126=. 23. 我市将5月21日设立为连云港市“人才日”,以最大诚意礼遇人才,让人才与城市“双向奔赴”.活动主办方分两次共邮购了200把绘有西游文化的折扇作为当天一项活动的纪念品.折扇单价为8元,其中邮费和优惠方式如下表所示:若两次邮购折扇共花费1504元,求两次邮购的折扇各多少把?【答案】两次邮购的折扇分别是40把和160把【解析】【分析】本题主要考查一元一次方程的应用,首先判断出两次购买数量的范围,再设设一次邮购折扇(100)x x <把,则另一次邮䝧折扇(200)x −把,根据“两次邮购折扇共花费1504元”列出一元一次方程,求解即可【详解】解:若每次购买都是100把,则20080.914401504⨯⨯=≠.∴一次购买少于100把,另一次购买多于100把.∴设一次邮购折扇(100)x x <把,则另一次邮购折扇(200)x −把.由题意得:8(110%)0.98(200)1504x x ++⨯−=,解得40x =.20020040160x ∴−=−=.答:两次邮购的折扇分别是40把和160把.24. 如图1,在平面直角坐标系xOy 中,一次函数1(0)y kx k =+≠的图像与反比例函数6y x=的图像交于点A 、B ,与y 轴交于点C ,点A 的横坐标为2.(1)求k 的值;(2)利用图像直接写出61kx x+<时x 的取值范围; (3)如图2,将直线AB 沿y 轴向下平移4个单位,与函数6(0)y x x =>的图像交于点D ,与y 轴交于点E ,再将函数6(0)y x x=>的图像沿AB 平移,使点A 、D 分别平移到点C 、F 处,求图中阴影部分的面积. 【答案】(1)1k =(2)3x <−或02x <<(3)8【解析】【分析】本题考查反比例函数与一次函数的综合应用:(1)先求出A 点坐标,再将A 点代入一次函数的解析式中求出k 的值即可;(2)图像法求不等式的解集即可;(3)根据平移的性质,得到阴影部分的面积即为ACFD 的面积,进行求解即可.【小问1详解】点A 在6y x=的图像上, ∴当2x =时,632y ==. ∴(2,3)A ,将点(2,3)A 代入1y kx =+,得1k =.【小问2详解】由(1)知:1y x =+, 联立16y x y x =+⎧⎪⎨=⎪⎩,解得:23x y =⎧⎨=⎩或32x y =−⎧⎨=−⎩, ∴()3,2B −−; 由图像可得:61kx x+<时x 的取值范围为:3x <−或02x <<.【小问3详解】∵1y x =+,∴当0x =时,1y =,∴(0,1)C ,∵将直线AB 沿y 轴向下平移4个单位,∴4CE =,直线DE 的解析式为:3y x =−,设直线DE 与x 轴交于点H∴当0x =时,=3y −,当0y =时,3x =,∴()3,0H ,()0,3E −,∴3OF OE ==,∴45FEC ∠=︒,如图,过点C 作CG DE ⊥,垂足为G ,∴2CG CE == 又(2,3)A ,(0,1)C ,AC ∴=.连接,AD CF ,∵平移,∴AC DF ∥,AC DF =,∴四边形ACFD 为平行四边形,∴阴影部分面积等于ACFD 的面积,即8=.25. 图1是古代数学家杨辉在《详解九章算法》中对“邑的计算”的相关研究.数学兴趣小组也类比进行了如下探究:如图2,正八边形游乐城12345678A A A A A A A A 的边长为km 2,南门O 设立在67A A 边的正中央,游乐城南侧有一条东西走向的道路BM ,67A A 在BM 上(门宽及门与道路间距离忽略不计),东侧有一条南北走向的道路BC ,C 处有一座雕塑.在1A 处测得雕塑在北偏东45︒方向上,在2A 处测得雕塑在北偏东59︒方向上.(1)12CA A ∠=__________︒,21CA A ∠=__________︒;(2)求点1A 到道路BC 的距离;(3)若该小组成员小李出南门O 后沿道路MB 向东行走,求她离B 处不超过多少千米,才能确保观察雕塑不会受到游乐城的影响?(结果精确到0.1km 1.41≈,sin 760.97︒≈,tan76 4.00︒≈,sin590.86︒≈,tan59 1.66︒≈)【答案】(1)1290CA A ︒∠=,2176CA A ︒∠=(2)2.0千米 (3)2.4km【解析】【分析】本题考查正多边形的外角,解直角三角形,相似三角形的判定和性质:(1)求出正八边形的一个外角的度数,再根据角的和差关系进行求解即可;(2)过点1A 作1A D BC ⊥,垂足为D ,解21Rt CA A △,求出112tan 76 4.002CA A A ∴=⋅≈⨯=︒解1Rt CA D △,求出11cos 45 2.0km 2A D CA ︒=⋅==,即可; (3)连接8CA 并延长交BM 于点E ,延长81A A 交BE 于点G ,过点8A 作8A F BC ⊥,垂足为F ,解78Rt A A G △,求出8A G ,证明8Rt Rt CA F CEB △∽△,列出比例式进行求解即可.【小问1详解】 解:∵正八边形的一个外角的度数为:360458︒=︒, ∴12454590CA A ∠︒=︒+︒=,21180455976CA A ∠︒=︒−︒−︒=;故答案为:90,76;【小问2详解】过点1A 作1A D BC ⊥,垂足为D .在21Rt CA A △中,212A A =,2176CA A ︒∠=,112tan 76 4.002CA A A ∴=⋅≈⨯=︒ 在1Rt CA D △中,1904545CA D ∠︒=︒−︒=,11cos45 2.0km 2A D CA ∴=⋅=︒=. 答:点1A 到道路BC 的距离为2.0千米.【小问3详解】连接8CA 并延长交BM 于点E ,延长81A A 交BE 于点G ,过点8A 作8A F BC ⊥,垂足为F .正八边形的外角均为45︒,∴在78Rt A A G △中,812A G =. 812FB A G ∴==.又812A F A D CD ===,182DF A A ==,52CB CD DF FB +∴=++=. ∵88,CFA B FCA BCE ∠=∠∠=∠,∴8Rt Rt CA F CEB △∽△,8CF A F CB EB ∴=22EB+=, 2 1.41≈,2.4km EB ∴≈.答:小李离点B 不超过2.4km ,才能确保观察雕塑不会受到游乐城的影响.26. 在平面直角坐标系xOy 中,已知抛物线21y ax bx =+−(a 、b 为常数,0a >).(1)若抛物线与x 轴交于(1,0)A −、(4,0)B 两点,求抛物线对应的函数表达式;(2)如图,当1b =时,过点(1,)C a −、(1,D a +分别作y 轴的平行线,交抛物线于点M 、N ,连接MN MD 、.求证:MD 平分CMN ∠;(3)当1a =,2b ≤−时,过直线1(13)y x x =−≤≤上一点G 作y 轴的平行线,交抛物线于点H .若GH 的最大值为4,求b 的值.【答案】(1)213144y x x =−− (2)见解析 (3)3−【解析】【分析】(1)利用待定系数法求解即可;(2)连接CN ,根据题意,求得(1,2)M a −−,(1,)N a ,进而求出2CN =,(2)2CM a a =−−=,利用勾股定理求出MN =DN =,从而得到NDM NMD ∠=∠,结合平行线的性质即可证明结论;(3)设(,1)G m m −,则()2,1H m m bm +−,13m ≤≤,求出当1a =时,213x b =−≥,得到点G 在H 的上方,设GH t =,故2(1)t m b m =−+−,其对称轴为12b m −=,分为31322b −≤≤和132b −>两种情况讨论即可.【小问1详解】解:分别将(1,0)A −,(4,0)B 代入21y ax bx =+−,得1016410a b a b −−=⎧⎨+−=⎩, 解得1434a b ⎧=⎪⎪⎨⎪=−⎪⎩.∴函数表达式为213144y x x =−−;【小问2详解】解:连接CN ,1b =Q ,21y ax x ∴=+−.当=1x −时,2y a =−,即点(1,2)M a −−,当1x =时,y a =,即点(1,)N a . (1,)C a −,(1,)N a ,2CN ∴=,(2)2CM a a =−−=,CM CN ⊥,。

2024年江苏省淮安市中考数学试卷(含答案)

2024年江苏省淮安市中考数学试卷(含答案)

2024年江苏省淮安市中考数学试卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列实数中,比−2小的数是( )A. −1B. 0C. 2D. −32.下列计算正确的是( )A. a⋅a3=a4B. a2+a3=a5C. a6÷a=a6D. (a3)4=a73.中国古典建筑中的镂空砖雕图案精美,下列砖雕图案中不是中心对称图形的是( )A. B. C. D.4.如图,AB//CD,点E在直线AB上,点F、G在直线CD上,∠FEG=90°,∠EGF=28°,则∠AEF的度数是( )A. 46°B. 56°C. 62°D. 72°5.用一根小木棒与两根长度分别为3cm、5cm的小木棒组成三角形,则这根小木棒的长度可以是( )A. 9cmB. 7cmC. 2cmD. 1cm6.若关于x的一元二次方程x2−4x+k=0有2个不相等的实数根,则k的取值范围是( )A. k≥4B. k>4C. k≤4D. k<47.如图,用9个直角三角形纸片拼成一个类似海螺的图形,其中每一个直角三角形都有一条直角边长为1.记这个图形的周长(实线部分)为l,则下列整数与l最接近的是( )A. 14B. 13C. 12D. 118.如图,在▱ABCD中,AB=2,BC=3,∠B=60°,P是BC边上的动点(BP>1),将△ABP沿AP翻折得△AB′P,射线PB′与射线AD交于点E.下列说法不正确的是( )A. 当AB′⊥AB时,B′A=B′EB. 当点B′落在AD上时,四边形ABPB′是菱形C. 在点P运动的过程中,线段AE的最小值为2AP⋅BB′D. 连接BB′,则四边形ABPB′的面积始终等于12二、填空题:本题共8小题,每小题3分,共24分。

=______.9.计算:8×1210.分解因式:a2−16=______.11.2024年5月3日嫦娥六号成功发射,它将在相距约380000km的地月之间完成月壤样品的“空中接力”.数据380000用科学记数法表示为______.12.一只不透明的袋中装有8个白球和若干个红球,这些球除颜色外都相同,搅匀后每次随机从袋中摸出一个球,记下颜色后放回袋中.通过大量重复摸球试验后发现,摸到白球的频率是0.4,则袋中约有红球___个.13.如图,△ABC是⊙O的内接三角形,∠BAC=50°,⊙O半径为3,则BC的长为______.14.一辆轿车从A地驶向B地,设出发x ℎ后,这辆轿车离B地路程为y km,已知y与x之间的函数表达式为y=200−80x,则轿车从A地到达B地所用时间是______ℎ.15.某公园广场的地面由形状、大小完全相同的一种地砖密铺(无空隙、不重叠的拼接)而成,铺设方式如图1.图2是其中一块地砖的示意图,AB=EF,CD=GH,BC=FG,BC//FG,AB//CD//GH//EF,部分尺寸如图所示(单位:dm).结合图1、图2信息,可求得BC的长度是______dm.16.如图,点P是正六边形ABCDEF的边AB的中点,一束光线从点P出发,照射到镜面EF上的点Q处,经反射后恰好经过顶点C.已知正六边形的边长为2,则EQ=______.三、解答题:本题共11小题,共102分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年江苏省常州市中考数学试卷-解析版一、选择题(共8小题,每小题2分,满分16分)1、(2011•常州)在下列实数中,无理数是()A、2B、0C、D、考点:无理数。

专题:存在型。

分析:根据无理数的定义进行解答即可.解答:解:∵无理数是无限不循环小数,∴是无理数,2,0,是有理数.故选C.点评:本题考查的是无理数的定义,即初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2、(2010•贵港)下列计算正确的是()A、a2•a3=a6B、y3÷y3=yC、3m+3n=6mnD、(x3)2=x6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

分析:根据同底数幂的运算法则、幂的乘方、合并同类项的法则进行计算即可.解答:解:A、应为a2•a3=a5,故本选项错误;B、应为y3÷y3=1,故本选项错误;C、3m与3n不是同类项,不能合并,故本选项错误;D、(x3)2=x3×2=x6,正确.故选D.点评:考查同底数幂的运算:乘法法则,底数不变,指数相加;除法法则,底数不变,指数相减;乘方,底数不变,指数相乘.3、(2011•常州)已知某几何体的一个视图(如图),则此几何体是()A、正三棱柱B、三棱锥C、圆锥D、圆柱考点:由三视图判断几何体。

专题:作图题。

分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆锥.故选C.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.4、(2011•常州)某地区有8所高中和22所初中.要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是()A、从该地区随机选取一所中学里的学生B、从该地区30所中学里随机选取800名学生C、从该地区一所高中和一所初中各选取一个年级的学生D、从该地区的22所初中里随机选取400名学生考点:抽样调查的可靠性。

专题:分类讨论。

分析:抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.解答:解:某地区有8所高中和22所初中.要了解该地区中学生的视力情况,A,C,D中进行抽查是,不具有普遍性,对抽取的对象划定了范围,因而不具有代表性.B、本题中为了了解该地区中学生的视力情况,从该地区30所中学里随机选取800名学生就具有代表性.故选B.点评:本题主要考查抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.5、(2011•常州)若在实数范围内有意义,则x的取值范围()A、x≥2B、x≤2C、x>2D、x<2考点:二次根式有意义的条件。

专题:计算题。

分析:二次根式有意义,被开方数为非负数,即x﹣2≥0,解不等式求x的取值范围.解答:解:∵在实数范围内有意义,∴x﹣2≥0,解得x≥2.故选A.点评:本题考查了二次根式有意义的条件.关键是明确二次根式有意义时,被开方数为非负数.6、(2011•常州)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=,BC=2,则sin∠ACD 的值为()A、B、C、D、考点:锐角三角函数的定义;勾股定理。

专题:应用题。

分析:在直角△ABC中,根据勾股定理即可求得AB,而∠B=∠ACD,即可把求sin∠ACD转化为求sinB.解答:在直角△ABC中,根据勾股定理可得:AB===3.∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD.∴sin∠ACD=sin∠B==,故选A.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.7、(2011•常州)在平面直角坐标系中,正方形ABCD的顶点分别为A(1,1)、B(1,﹣1)、C(﹣1,﹣1)、D(﹣1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D的对称点P4,作点P4关于点A的对称点P5,作P5关于点B的对称点P6┅,按如此操作下去,则点P2011的坐标为()A、(0,2)B、(2,0)C、(0,﹣2)D、(﹣2,0)考点:坐标与图形变化-对称;正方形的性质。

专题:规律型。

分析:根据正方形的性质以及坐标变化得出对应点的坐标,再利用变化规律得出点P2011的坐标与P3坐标相同,即可得出答案.解答:解:∵作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D的对称点P4,作点P4关于点A的对称点P5,作P5关于点B的对称点P6┅,按如此操作下去,∴每变换4次一循环,∴点P2011的坐标为:2011÷4=52…3,点P2011的坐标与P3坐标相同,∴点P2011的坐标为:(﹣2,0),故选:D.点评:此题主要考查了坐标与图形的变化以及正方形的性质,根据图形的变化得出点P2011的坐标与P3坐标相同是解决问题的关键.8、(2011•常州)已知二次函数,当自变量x取m时对应的值大于0,当自变量x 分别取m﹣1、m+1时对应的函数值为y1、y2,则y1、y2必须满足()A、y1>0、y2>0B、y1<0、y2<0C、y1<0、y2>0D、y1>0、y2<0考点:抛物线与x轴的交点;二次函数图象上点的坐标特征。

专题:计算题。

分析:根据函数的解析式求得函数与x轴的交点坐标,利用自变量x取m时对应的值大于0,确定m﹣1、m+1的位置,进而确定函数值为y1、y2.解答:解:令=0,解得:x=,∵当自变量x取m时对应的值大于0,∴<m<,∴m﹣1<,m+1>,∴y1<0、y2<0.故选B.点评:本题考查了抛物线与x轴的交点和二次函数图象上的点的特征,解题的关键是求得抛物线与横轴的交点坐标.二、填空题(共9小题,每小题3分,满分27分)9、(2011•常州)计算:=;=;=1;=﹣2.考点:负整数指数幂;相反数;绝对值;零指数幂。

专题:计算题。

分析:分别根据绝对值、0指数幂及负整数指数幂的运算法则进行计算即可.解答:解:=;=;=1;=﹣2.故答案为:,,1,﹣2.点评:本题考查的是绝对值、0指数幂及负整数指数幂的运算法则,熟知以上知识是解答此题的关键.10、(2003•镇江)(1)计算:(x+1)2=x2+2x+1;(2)分解因式:x2﹣9=(x﹣3)(x+3).考点:因式分解-提公因式法;完全平方公式。

分析:根据完全平方公式进行计算.解答:解:①(x+1)2=x2+2x+1;②x2﹣9=(x﹣3)(x+3).点评:本题考查了完全平方公式,熟练掌握完全平方公式是解题的关键.11、(2011•常州)若∠α的补角为120°,则∠α=60°,sinα=.考点:特殊角的三角函数值;余角和补角。

专题:计算题。

分析:根据补角的定义,即可求出∠α的度数,从而求出sinα的值.解答:解:根据补角定义,∠α=180°﹣120°=60°,于是sinα=sin60°=.故答案为60°,.点评:此题考查了特殊角的三角函数值和余角和补角的定义,要熟记特殊角的三角函数值.12、(2011•常州)已知关于x的方程x2+mx﹣6=0的一个根为2,则m=1,另一个根是﹣3.考点:一元二次方程的解;根与系数的关系。

专题:方程思想。

分析:根据一元二次方程的解定义,将x=2代入关于x的方程x2+mx﹣6=0,然后解关于m的一元一次方程;再根据根与系数的关系x1+x2=﹣解出方程的另一个根.解答:解:根据题意,得4+2m﹣6=0,即2m﹣2=0,解得,m=1;由韦达定理,知x1+x2=﹣m;∴2+x2=﹣1,解得,x2=﹣3.故答案是:1、﹣3.点评:本题主要考查了一元二次方程的解、根与系数的关系.在利用根与系数的关系x1+x2=﹣、x1•x2=来计算时,要弄清楚a、b、c的意义.13、(2011•常州)已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是24cm,面积是240πcm2.考点:扇形面积的计算;弧长的计算。

分析:根据弧长公式即可得到关于扇形半径的方程,然后根据扇形的面积公式即可求解.解答:解:设扇形的半径是r,则=20π解得:r=24.扇形的面积是:×20π×24=240π.故答案是:24和240π.点评:本题主要考查了扇形的面积和弧长,正确理解公式是解题的关键.14、(2011•常州)某市2007年5月份某一周的日最高气温(单位:℃)分别为:25、28、30、29、31、32、28,这周的日最高气温的平均值是℃,中位数是29℃.考点:中位数;算术平均数。

专题:计算题。

分析:先求出各数的和,再除以数据总个数即可得到周日的最高气温平均值.将该组数据按从小到大依次排列,即可得到中间位置的数﹣﹣﹣中位数.解答:解:==,将该组数据按从小到大依次排列得到:25,28,28,29,30,31,32;处在中间位置的数为29,故中位数为29.故答案为,29.点评:本题考查了中位数和算术平均数,尤其要注意,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数15、(2011•常州)如图,DE是⊙O的直径,弦AB⊥CD,垂足为C,若AB=6,CE=1,则OC=4,CD=9.考点:垂径定理;勾股定理。

专题:数形结合;方程思想。

分析:连接OA构成直角三角形,先根据垂径定理,由DE垂直AB得到点C为AB的中点,由AB=6可求出AC的长,再设出圆的半径OA为x,表示出OC,根据勾股定理建立关于x的方程,求出方程的解即可得到x的值,即为圆的半径,通过观察图形可知,OC等于半径减1,CD等于半径加OC,把求出的半径代入即可得到答案.解答:解:连接OA,∵直径DE⊥AB,且AB=6∴AC=BC=3,设圆O的半径OA的长为x,则OE=OD=x∵CE=1,∴OC=x﹣1,在直角三角形AOC中,根据勾股定理得:x2﹣(x﹣1)2=32,化简得:x2﹣x2+2x﹣1=9,即2x=10,解得:x=5所以OE=5,则OC=OE﹣CE=5﹣1=4,CD=OD+OC=9.故答案为:4;9点评:此题考查了学生对垂径定理的运用与掌握,注意利用圆的半径,弦的一半及弦心距所构成的直角三角形来解决实际问题,做此类题时要多观察,多分析,才能发现线段之间的联系.16、(2011•常州)已知关于x的一次函数y=kx+4k﹣2(k≠0).若其图象经过原点,则k=,若y随着x的增大而减小,则k的取值范围是k<0.考点:一次函数的性质;待定系数法求一次函数解析式。

相关文档
最新文档