2022年山东省各地市中考数学试卷合辑8套(附答案)

合集下载

2022年山东省临沂市中考数学试题(含答案)

2022年山东省临沂市中考数学试题(含答案)

绝密★启用前试卷类型:A2022年临沂市初中学生学业考试试题数 学本卷须知:1.本试卷分第一卷〔选择题〕和第二卷〔非选择题〕,共8页,总分值120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题本卷须知见答题卡,答在本试卷上不得分.第一卷〔选择题 共42分〕一、选择题〔本大题共14小题,每题3分,共42分〕在每题所给出的四个选项中,只有一项为哪一项符合题目要求的.1.-3的相反数是〔A 〕3.〔B 〕-3.〔C 〕13.〔D 〕13-.2.根据世界贸易组织(W T O )秘书处初步统计数据,2022年中国货物进出口总额为 4160 000 000 000美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以记为〔A 〕124.1610⨯美元.〔B 〕134.1610⨯美元.3.如图,l 1∥l 2,∠A =40°,∠1=60°,那么∠2的度数为 〔A 〕40°. 〔B 〕60°. 〔C 〕80°. 〔D 〕100°.4.以下计算正确的选项是〔A 〕223a a a +=.〔B 〕2363)a b a b =(. 〔C 〕22()m m a a +=.〔D 〕326a a a ⋅=.2 C〔第3题图〕l 1B1l 25.不等式组-2≤11x +<的解集,在数轴上表示正确的选项是〔A 〕〔C 〕 62211(a aa a -+〔A 〕32.〔B 〕32-.〔C 〕12. 〔D 〕12-. 7.将一个n 边形变成n +1边形,内角和将 〔A 〕减少180°.〔B 〕增加90°. 〔C 〕增加180°.〔D 〕增加360°.8.某校为了丰富学生的校园生活,准备购置一批陶笛,A 型陶笛比B 型陶笛的单价低20元,用2700元购置A 型陶笛与用4500元购置B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的选项是〔A 〕2700450020x x =-.〔B 〕2700450020x x =-. 〔C 〕2700450020x x =+.〔D 〕2700450020x x =+. 9.如图,在⊙O 中,AC ∥OB ,∠BAO =25°, 那么∠BOC 的度数为〔A 〕25°. 〔B 〕50°. 〔C 〕60°. 〔D 〕80°.10.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是〔A 〕16.〔B 〕13.〔C 〕12.-1 -2 -3 2 0 1-1 -2 -3 -1 -2 -3 〔第9题图〕B15°60°75° 〔第13题图〕 A C 东北〔D 〕23.11.一个几何体的三视图如下列图,这个几何体的侧 面积为〔A 〕2πcm 2. 〔B 〕4πcm 2. 〔C 〕8πcm 2. 〔D 〕16πcm 2. 12.请你计算: (1)(1)x x -+, 2(1)(1)x x x -++,…,〔A 〕11n x +-. 〔B 〕11n x ++. 〔C 〕1n x -.〔D 〕1n x +.13.如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,假设渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,那么B ,C 之间的距离为〔A 〕20海里.〔B 〕103海里. 〔C 〕202海里. 〔D 〕30海里.14.在平面直角坐标系中,函数22(y x x x =-≥0)的图象为1C ,1C 关于原点对称的图象为2C ,那么直线y a =〔a 为常数〕与1C ,2C 的交点共有〔A 〕1个. 〔B 〕1个,或2个.〔C 〕1个,或2个,或3个.〔D 〕1个,或2个,或3个,或4个.第二卷〔非选择题 共78分〕本卷须知:1.第二卷分填空题和解答题.2.第二卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题〔本大题共5小题,每题3分,共15分〕 15.在实数范围内分解因式:36x x -=.16.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示: 那么这50均课外阅读时间17AC BC =,那么ABCD 18三角形OAB 过点D 19.是互不相同....现的.如一组数1记为A ={1,2,3定义:集合合称为集合A 5},那么A+B =.A三、解答题〔本大题共7小题,共63分〕20.〔本小题总分值7分〕 计算:11sin 6032831-︒+⨯+.21.〔本小题总分值7分〕随着人民生活水平的提高,购置老年代步车的人越来越多.这些老年代步车却成为交通平安的一大隐患.针对这种现象,某校数学兴趣小组在 老年代步车现象的调查报告 中就“你认为对老年代步车最有效的的管理措施〞随机对某社区局部居民进行了问卷调查,其中调查问卷设置以下选项〔只选一项〕:A :加强交通法规学习;B :实行牌照管理;C :加大交通违法处分力度;D :纳入机动车管理;E :分时间分路段限行.调查数据的局部统计结果如下表:〔第21题图〕 〔1〕据上述统计表中的数据可得m =_______,n =______,a =________; 〔2〕在答题卡中,补全条形统计图;〔3〕该社区有居民2600人,根据上述调查结果,请你估计选择“D :纳入机动车管理〞的居民约有多少人22.〔本小题总分值7分〕如图,等腰三角形ABC 的底角为30°, 以BC 为直径的⊙O 与底边AB 交于点D ,过D 作DE AC ⊥,垂足为E .〔1〕证明:DE 为⊙O 的切线;〔2〕连接OE ,假设BC =4,求△OEC 的面积.管理措施 答复人数 百分比A 25 5%B 100 mC 75 15%D n 35%E 125 25% 合计a100%A B C D E 管理措施人数200175 150 125 100755025〔第22题图〕BCODE23.〔本小题总分值9分〕对一张矩形纸片ABCD 进行折叠,具体操作如下:第一步:先对折,使AD 与BC 重合,得到折痕MN ,展开;第二步:再一次折叠,使点A 落在MN 上的点A '处,并使折痕经过点B ,得到折痕BE ,同时,得到线段BA ',EA ',展开,如图1;第三步:再沿EA '所在的直线折叠,点B 落在AD 上的点B '处,得到折痕EF ,同时得到线段B F ',展开,如图2.〔1〕证明:30ABE ∠=°;24.〔本小题总分值9分〕某景区的三个景点A ,B ,C 在同一线路上,甲、乙两名游客从景点A 出发,甲步行到景点C ,乙乘景区观光车先到景点B ,在B 处停留一段时间后,再步行到景点C . 甲、乙两人离开景点A 后的路程S 〔米〕关于时间t 〔分钟〕的函数图象如下列图.根据以上信息答复以下问题: 〔1〕乙出发后多长时间与甲相遇 〔2〕要使甲到达景点C 时,乙与 C 的路程不超过400米,那么乙从景点B 步行到景点C 的速度至少为多少 〔结果精确到0.1米/分钟〕25.〔本小题总分值11分〕问题情境:如图1,四边形ABCD 是正方形,M 是 BC 边上的一点,E 是CD 边的中点,AE 平分DAM ∠.探究展示:〔1〕证明:AM AD MC =+; 〔2〕AM DE BM =+是否成立假设成立,请给出证明;假设不成立,请说明理由.拓展延伸:〔3〕假设四边形ABCD 是长与宽不相等的矩形, 其他条件不变,如图2,探究展示〔1〕、〔2〕中的结 论是否成立请分别作出判断,不需要证明.26.〔本小题总分值13分〕〔第23题图〕BCN A '图1AB D CN A 'FB '图2E〔第24题图〕t 〔分钟〕ABMDEC图1A BM图2 DEC 〔第25题图〕M ED AM 甲 乙3020 6090 30005400S 〔米〕如图,在平面直角坐标系中,抛物线与x 轴 交于点A (-1,0)和点B (1,0),直线21y x =- 与y 轴交于点C ,与抛物线交于点C ,D .〔1〕求抛物线的解析式; 〔2〕求点A 到直线CD 的距离;〔3〕平移抛物线,使抛物线的顶点P 在直线 CD 上,抛物线与直线CD 的另一个交点为Q ,点 G 在y 轴正半轴上,当以G ,P ,Q 三点为顶点的 三角形为等腰直角三角形时,求出所有符合条件的绝密★启用前试卷类型:A 2022年临沂市初中学生学业考试试题数学参考答案及评分标准一、选择题〔每题3分,共42分〕 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案AADBBDCDBCBACC[来二、填空题〔每题3分,共15分〕15.(6)(6)x x x +-; 16.5.3; 17.1819; 18.1y x=; 19.{-3,-2,0,1,3,5,7}.〔注:各元素的排列顺序可以不同〕 20.解:原式3131328(31)(31)--+⨯+- 3132-〔6分〕 =122-=32.〔7分〕〔注:此题有3项化简,每项化简正确得2分〕〔第26题图〕xyA BCDOBCODEGFA21.〔1〕20%,175,500.〔3分〕〔2〕〔注:画对一个得1分,共2分〕〔3〕∵2600×35%=910〔人〕,∴选择D选项的居民约有910人.〔2分〕22.〔1〕〔本小问3分〕证明:连接OD.∵OB=OD,∴∠OBD=ODB.又∵∠A=∠B=30°,∴∠A=∠ODB,∴DO∥AC.〔2分〕∵DE⊥AC,∴OD⊥DE.∴DE为⊙O的切线.〔3分〕〔2〕〔本小问4分〕连接DC.∵∠OBD=∠ODB=30°,∴∠DOC=60°.∴△ODC为等边三角形.∴∠ODC=60°,∴∠CDE=30°.又∵BC=4,∴DC=2,∴CE=1.〔2分〕方法一:过点E作EF⊥BC,交BC的延长线于点F.∵∠ECF=∠A+∠B=60°,∴EF=C E·sin60°=133.〔3分〕∴S△OEC1133222OC EF=⋅=⨯=〔4分〕过点O作OG⊥AC,交AC的延长线于点G.∵∠OCG=∠A+∠B=60°,……………〔2分〕管理措施人数200175150125100755025A B C D E∴OG =OC ·sin60°=2×32=3.〔3分〕 ∴S △OEC 11313.222CE OG =⋅=⨯⨯=〔4分〕方法三: ∵OD ∥CE , ∴S △OEC = S △DEC .又∵DE=DC ·cos 30°=2×32=3,〔3分〕 ∴S △OEC 11313.222CE DE =⋅=⨯⨯=〔4分〕23.证明:〔1〕〔本小问5分〕由题意知,M 是AB 的中点,∴AB=A'B ,∠ABE=∠A'BE.〔2分〕 在Rt △A'MB 中,12MB =A'B , ∴∠BA'M=30°,〔4分〕∴∠ABE=30°.〔5分〕 〔2〕〔本小问4分〕 ∵∠ABE=30°, ∴∠EBF=60°, ∠BEF=∠AEB=60°,∴△BEF 为等边三角形.〔2分〕 由题意知,△BEF 与△B'EF 关于EF 所在的直线对称. ∴BE =B'E =B'F =BF , ∴四边形BF 'B E 为菱形.〔4分〕 24.解:〔1〕〔本小问5分〕当0≤t ≤90时,设甲步行路程与时间的函数解析式为S =at . ∵点(90,5400)在S =at 的图象上,∴a =60.当20≤t ≤30时,设乙乘观光车由景点A 到B 时的路程与时间的函数解析式为S =mt+n . ∵点(20,0),(30,3000)在S =mt+n 的图象上, ∴200,303000.m n m n +=⎧⎨+=⎩解得300,6000.m n =⎧⎨=-⎩〔2分〕∴函数解析式为S =300t -6000(20≤t ≤30).〔3分〕CN BA '图1ED A M B '图2A BD CN A 'F ME根据题意,得60,3006000, S tS t=⎧⎨=-⎩解得25,1500.ts=⎧⎨=⎩〔4分〕∴乙出发5分钟后与甲相遇.〔5分〕〔2〕〔本小问4分〕设当60≤t≤90时,乙步行由景点B到C的速度为v米/分钟,根据题意,得5400-3000-(90-60)v≤400,〔2分〕解不等式,得v ≥20066.73≈.〔3分〕∴乙步行由B到C的速度至少为66.7米/分钟.〔4分〕25. 证明:〔1〕〔本小问4分〕方法一:过点E作EF⊥AM,垂足为F.∵AE平分∠DAM,ED⊥AD,∴ED=EF.〔1分〕由勾股定理可得,AD=AF.〔2分〕又∵E是CD边的中点,∴EC=ED=EF.又∵EM=EM,∴Rt△EFM≌Rt△ECM.∴MC=MF.〔3分〕∵AM=AF+FM,∴AM=AD+MC.〔4分〕方法二:连接FC. 由方法一知,∠EFM=90°, AD=AF,EC=EF. 〔2分〕那么∠EFC=∠ECF,∴∠MFC=∠MCF.∴MF=MC.〔3分〕∵AM=AF+FM,∴AM=AD+MC.〔4分〕方法三:延长AE,BC交于点G.∵∠AED=∠GEC,∠AD E=∠GCE=90°,DE=EC,∴△ADE≌△GCE.∴AD=GC, ∠DAE=∠G.〔2分〕又∵AE平分∠DAM,C GAB M D EFN∴∠DAE=∠MAE , ∴∠G=∠MAE , ∴AM=GM ,〔3分〕∵GM=GC+MC=AD+MC , ∴AM=AD+MC .〔4分〕 方法四:连接ME 并延长交AD 的延长线于点N , ∵∠MEC =∠NED , EC =ED ,∠MCE =∠NDE=90°, ∴△MCE ≌△NDE .∴MC =ND ,∠CME=∠DNE .〔2分〕 由方法一知△EFM ≌△ECM , ∴∠FME=∠CME ,∴∠AMN=∠ANM .〔3分〕∴AM=AN=AD+DN=AD +MC.〔4分〕 〔2〕〔本小问5分〕成立.〔1分〕方法一:延长CB 使BF=DE ,连接AF ,∵AB=AD ,∠ABF=∠ADE=90°, ∴△ABF ≌△ADE ,∴∠F AB=∠EAD ,∠F=∠AED.〔2分〕∵AE 平分∠DAM ,∴∠DAE=∠MAE . ∴∠F AB=∠MAE ,∴∠F AM=∠F AB+∠BAM=∠BAM+∠MAE=∠BAE.〔3分〕 ∵AB ∥DC ,∴∠BAE=∠DEA , ∴∠F=∠F AM , ∴AM=FM.〔4分〕又∵FM=BM+BF=BM+DE , ∴AM=BM+DE.〔5分〕 方法二:设MC=x ,AD=a.由〔1〕知 AM=AD+MC=a+x. 在Rt △ABM 中,∵222AM AB BM =+,AB MDECF∴14x a =.〔4分〕∴34BM a =,54AM a =,∵BM+DE=315424a a a +=,∴AM BM DE =+.〔5分〕 〔3〕〔本小问2分〕 AM=AD+MC 成立,〔1分〕 AM=DE+BM 不成立.〔2分〕 26.〔1〕〔本小问3分〕解:在21y x =-中,令0x =,得 1y =-.∴C (0,-1)〔1分〕∵抛物线与x 轴交于A (-1,0), B (1,0), ∴C 为抛物线的顶点.设抛物线的解析式为21y ax =-, 将A (-1,0)代入,得 0=a -1. ∴a =1.∴抛物线的解析式为21y x =-.〔3分〕 〔2〕〔本小问5分〕 方法一:设直线21y x =-与x 轴交于E ,那么1(2E ,0).〔1分〕∴2151()2CE =+,13122AE =+=.〔2分〕 连接AC ,过A 作A F ⊥CD ,垂足为F , S △CAE 1122AE OC CE AF =⋅=⋅,〔4分〕 即13151222AF ⨯⨯=, ∴35AF =〔5分〕 方法二:由方法一知,图1x yAB C DO F E M∠AFE=90°,32AE=,52CE=.〔2分〕在△COE与△AFE中,∠COE=∠AFE=90°,∠CEO=∠AEF,∴△CO E∽△AF E .∴AF AECO CE=,〔4分〕即32 152 AF=.∴355AF=.〔5分〕〔3〕〔本小问5分〕由2211x x-=-,得10x=,22x=.∴D(2,3).〔1分〕如图1,过D作y轴的垂线,垂足为M,由勾股定理,得222425CD=+=.〔2分〕在抛物线的平移过程中,PQ=CD.〔i〕当PQ为斜边时,设PQ中点为N,G(0,b),那么GN=5.∵∠GNC=∠EOC=90°,∠GCN=∠ECO,∴△GN C ∽△EO C.∴GN CG OE CE=,5152,∴b=4.∴G(0,4) .〔3分〕〔ii〕当P为直角顶点时,设G(0,b),那么25PG=同〔i〕可得b=9,x yECOGQPN图2那么G (0,9) .〔4分〕〔iii 〕当Q 为直角顶点时, 同〔ii 〕可得G (0,9) .综上所述,符合条件的点G 有两个,分别是1G (0,4),2G (0,9).〔5分〕。

2022年山东省泰安市中考数学试题(含答案解析)

2022年山东省泰安市中考数学试题(含答案解析)
16.如图,某一时刻太阳光从窗户射入房间内,与地面的夹角 ,已知窗户的高度 ,窗台的高度 ,窗外水平遮阳篷的宽 ,则 的长度为______(结果精确到 ).
17.将从1开始的连续自然数按以下规律排列:
若有序,则表示99的有序数对是_______.
18.如图,四边形 为正方形,点E是 的中点,将正方形
A. B.
C. D.
11.如图,平行四边形 的对角线 , 相交于点O.点E为 的中点,连接
并延长交 于点F, , .下列结论:① ;② ;
③四边形 是菱形;④ .其中正确结论的个数是
A.4B.3C.2D.1
12.如图,四边形 为矩形, , .点P是线段 上一动点,点M为线段 上一点. ,则 的最小值为
21.(本小题满分10分)
如图,点A在第一象限, 轴,垂足为C, , ,反比例函数 图像经过 的中点B,与 交于点D.
(1)求k值;
(2)求 面积.
22.(本小题满分10分)
泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A、B两种茶每盒的价格.
(1)本次调查一共随机抽取了名学生的成绩,频数直方图中,所抽取学生成绩的中位数落在组;
(2)补全学生成绩频数直方图:
(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?
(4)学校将从获得满分的5名同学(其中有两名男生,三名女生)中随机抽取两名,参加周一国旗下的演讲,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.
9.抛物线 上部分点的横坐标x,纵坐标y的对应值如表:

2022山东济宁中考数学试卷+答案解析

2022山东济宁中考数学试卷+答案解析

2022年山东济宁中考数学一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求)1.用四舍五入法取近似值,将数0.015 8精确到0.001的结果是()A.0.015B.0.016C.0.01D.0.022.如图是由6个完全相同的小正方体搭建而成的几何体,则这个几何体的主视图是()A B C D3.下列各式运算正确的是()A.-3(x-y)=-3x+yB.x3·x2=x6C.(π-3.14)0=1D.(x3)2=x54.下面各式从左到右的变形,属于因式分解的是()A.x2-x-1=x(x-1)-1B.x2-1=(x-1)2C.x2-x-6=(x-3)(x+2)D.x(x-1)=x2-x5.某班级开展“共建书香校园”读书活动。

统计了1至7月份该班同学每月阅读课外书的本数,并绘制出如图所示的折线统计图。

则下列说法正确的是()A.从2月到6月,阅读课外书的本数逐月下降B.从1月到7月,每月阅读课外书本数的最大值比最小值多45C .每月阅读课外书本数的众数是45D .每月阅读课外书本数的中位数是586. 一辆汽车开往距出发地420 km 的目的地,若这辆汽车比原计划每小时多行10 km ,则提前1小时到达目的地。

设这辆汽车原计划的速度是x km/h ,根据题意所列方程是 ( )A .420x=420x−10+1B .420x+1=420x+10C .420x=420x+10+1D .420x+1=420x−107. 已知圆锥的母线长为8 cm ,底面圆的直径为6 cm ,则这个圆锥的侧面积是( )A .96π cm 2B .48π cm 2C .33π cm 2D .24π cm 28. 若关于x 的不等式组{x −a >0,7−2x >5仅有3个整数解,则a 的取值范围是 ( )A .-4≤a <-2B .-3<a ≤-2C .-3≤a ≤-2D .-3≤a <-29. 如图,三角形纸片ABC 中,∠BAC =90°,AB =2,AC =3。

【中考真题】2022年山东省泰安市中考数学试卷(附答案)

【中考真题】2022年山东省泰安市中考数学试卷(附答案)

2022年山东省泰安市中考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.5-的倒数是【】A.15B.15-C.5D.5-2.计算(a3)2•a3的结果是()A.a8B.a9C.a10D.a113.某种零件模型如图所示,该几何体(空心圆柱)的俯视图是()A.B.C.D.4.如图,△ABC的外角△ACD的平分线CP与内角△ABC的平分线BP交于点P,若△BPC=40°,则△CAP=()A.40°B.45°C.50°D.60°5.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5B.15.5,15C.15,15.5D.15,15 6.某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成;如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x 天,下面所列方程中错误的是( ) A .2x 1x x 3+=+ B .23x x 3=+ C .11x 221x x 3x 3-⎛⎫+⨯+= ⎪++⎝⎭D .1x 1x x 3+=+ 7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.已知方程3a 1a a 44a--=--,且关于x 的不等式a x b <≤只有4个整数解,那么b 的取值范围是( ) A .23b <≤B .34b <≤C .23b ≤<D .34b ≤<9.如图,点I 为的ABC 内心,连接AI 并延长交ABC 的外接圆于点D ,点E 为弦AC 的中点,连接CD ,EI ,IC ,当2AI CD =,6IC =,5ID =时,IE 的长为( )A .5B .4.5C .4D .3.510.一元二次方程2152121543x x x -++=-+根的情况是( )A .有一个正根,一个负根B .有两个正根,且有一根大于9小于12C .有两个正根,且都小于12D .有两个正根,且有一根大于12 11.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180,对应点为2P ,则点2P 的坐标为( )A .(2.8,3.6)B . 2.8,6()3.--C .(3.8,2.6)D .( 3.8, 2.6)--12.如图,30AOB ∠=︒,点M 、N 分别在边OA OB 、上,且3,5OM ON ==,点P 、Q 分别在边OB OA 、上,则MP PQ QN ++的最小值是( )A B C 2 D 2二、填空题13.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)14.如图,△ ABC 中,△BAC =90°,AB =3,AC =4,点 D 是 BC 的中点,将△ ABD 沿 AD 翻折得到△ AED ,连 CE ,则线段 CE 的长等于_____15.如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O ′,B ′,连接BB ′,则图中阴影部分的面积是__________________.16.观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.17.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为30,已知斜坡的斜面坡度i =A ,B ,C ,D ,在同一平面内,小明同学测得古塔AB 的高度是___________.18.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB △△APD △△AEB ;△点B 到直线AE 的;△EB △ED ;△S △APD +S △APB △S 正方形ABCD .其中正确结论的序号是 .三、解答题19.(1)若单项式14m n x y -与单项式33812m nx y --是一多项式中的同类项,求m 、n 的值;(2)先化简,再求值:211111x x x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =.20.如图,反比例函数y=mx的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.21.为庆祝中国共产党建党100周年,某校加强了学生对党史知识的学习,并组织学生参加《党史知识》测试(满分100分).为了解学生对党史知识的掌握程度,从七、八年级中各随机抽取10名学生的测试成绩,进行统计、分析,过程如下:收集数据:七年级:8688959010095959993100八年级:100989889879895909089整理数据:分析数据:应用数据:(1)填空:=a______,b=______,c=______,d=______;(2)若八年级共有200人参与答卷,请估计八年级测试成绩大于95分的人数; (3)从测试成绩优秀的学生中选出5名语言表达能力较强的学生,其中八年级3名,七年级2名.现从这5名学生中随机抽取2名到当地社区担任党史宣讲员.请用画树状图或列表的方法,求恰好抽到同年级学生的概率.22.某电子商品经销店欲购进A 、B 两种平板电脑,若用9000元购进A 种平板电脑12台,B 种平板电脑3台;也可以用9000元购进A 种平板电脑6台,B 种平板电脑6台.(1)求A 、B 两种平板电脑的进价分别为多少元?(2)考虑到平板电脑需求不断增加,该商城准备投入3万元再购进一批两种规格的平板电脑,已知A 型平板电脑售价为700元/台,B 型平板电脑售价为1300元/台.根据销售经验,A 型平板电脑不少于B 型平板电脑的2倍,但不超过B 型平板电脑的2.8倍.假设所进平板电脑全部售完,为使利润最大,该商城应如何进货?23.正方形ABCD 中,P 为AB 边上任一点,AE DP ⊥于E ,点F 在DP 的延长线上,且DE EF =,连接AF BF 、,BAF ∠的平分线交DF 于G ,连接GC .(1)求证:AEG △是等腰直角三角形; (2)求证:AG CG +=;(3)若2AB =,P 为AB 的中点,求BF 的长.24.如图,抛物线2321y mx mx m =+-+的图象经过点C ,交x 轴于点()()12,0,,0A x B x (点A 在点B 左侧),且215x x -=连接BC ,D 是AC 上方的抛物线一点.(1)求抛物线的解析式;(2)连接BC ,CD ,:DCE BCE S S △△是否存在最大值?若存在,请求出其最大值及此时点D 的坐标;若不存在,请说明理由.(3)第二象限内抛物线上是否存在一点D ,DF 垂直AC 于点F ,使得DCF 中有一个锐角等于与BAC 的两倍?若存在,求点D 得横坐标,若不存在,请说明理由. 25.如图,四边形ABCD 中,AB=AD=CD ,以AB 为直径的△O 经过点C ,连接AC ,OD 交于点E . (1)证明:OD△BC ;(2)若tan△ABC=2,证明:DA 与△O 相切;(3)在(2)条件下,连接BD 交于△O 于点F ,连接EF ,若BC=1,求EF 的长.参考答案:1.A 【解析】 【详解】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以结合绝对值的意义,得5-的倒数为1115==55÷--.故选A . 2.B 【解析】 【分析】先计算幂的乘方,然后再计算同底数幂的乘法即可. 【详解】(a 3)2•a 3=6 a •39 a a =, 故选:B . 【点睛】本题考查了幂的运算,熟记幂的乘方和同底数幂的乘法公式是解决此题的关键. 3.C 【解析】 【详解】找到从上面看所得到的图形即可:空心圆柱由上向下看,看到的是一个圆环.故选C 4.C 【解析】 【分析】根据外角与内角性质得出△BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出△CAP =△F AP ,即可得出答案. 【详解】解:延长BA ,作PN △BD ,PF △BA ,PM △AC , 设△PCD =x °, △CP 平分△ACD ,△△ACP =△PCD =x °,PM =PN , △BP 平分△ABC ,△△ABP =△PBC ,PF =PN , △PF =PM , △△BPC =40°,△△ABP =△PBC =△PCD ﹣△BPC =(x ﹣40)°,△△BAC =△ACD ﹣△ABC =2x °﹣(x °﹣40°)﹣(x °﹣40°)=80°, △△CAF =100°,在Rt △PF A 和Rt △PMA 中, {PA PA PM PF==,△Rt △PF A △Rt △PMA (HL ), △△F AP =△P AC =50°. 故选C .【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM =PN =PF 是解题的关键. 5.D 【解析】 【详解】根据图中信息可知这些队员年龄的平均数为: 132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选:D . 6.D【解析】【分析】设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x3+,根据甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.【详解】解:设规定日期为x天,由题意可得,11x221x x3x3-⎛⎫+⨯+=⎪++⎝⎭,整理得2x1x x3+=+,或2x1x x3=-+或23x x3=+.则ABC选项均正确,故选:D.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7.B【解析】【详解】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0.故选项正确;C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.故选B.点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.8.D【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a的值,代入不等式组确定出b 的范围即可.【详解】解:分式方程去分母得:3-a-a2+4a=-1,即a2-3a-4=0,分解因式得:(a-4)(a+1)=0,解得:a=-1或a=4,经检验a=4是增根,分式方程的解为a=-1,当a=-1时,由a<x≤b只有4个整数解,得到3≤b<4.故选:D.【点睛】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.9.C【解析】【分析】延长ID到M,使DM=ID,连接CM.想办法求出CM,证明IE是△ACM的中位线即可解决问题.【详解】解:延长ID到M,使DM=ID,连接CM.△I是△ABC的内心,△△IAC=△IAB,△ICA=△ICB,△△DIC=△IAC+△ICA,△DCI=△BCD+△ICB,△△DIC=△DCI,△DI=DC=DM,△△ICM=90°,△CM,△AI=2CD=10,△AI=IM,△AE=EC,△IE是△ACM的中位线,△IE=1CM=4,2故选:C.【点睛】本题考查三角形的内心、三角形的外接圆、三角形的中位线定理、直角三角形的判定、勾股定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题.10.D【解析】【分析】将方程转化为一次函数与二次函数的交点问题求解.画出函数图象,找准图象与坐标轴的交点,结合图象可选出答案.【详解】解:如图,由题意二次函数y =212124x x -++,与y 交与点(0,12)与x 轴交于(-4,0)(12,0),一次函数y =5153x -+,与y 交与点(0,15)与x 轴交于(9,0) 因此,两函数图象交点一个在第一象限,一个在第四象限,所以两根都大于0,且有一根大于12故选:D .【点睛】本题考查了抛物线与x 轴的交点,利用数形结合的思想,画图象时找准关键点,与坐标轴的交点,由图象得结果.11.A【解析】【详解】分析:由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1,再根据P 1与P 2关于原点对称,即可解决问题.详解:由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1.△P (1.2,1.4),△P 1(﹣2.8,﹣3.6).△P 1与P 2关于原点对称,△P 2(2.8,3.6).故选A .点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.12.A【解析】【分析】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值;证出△ONN ′为等边三角形,△OMM ′为等边三角形,得出△N ′OM ′=90°,由勾股定理求出M ′N ′即可.【详解】解:作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,如图所示:连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:5ON ON '==,3OM OM '==,△N ′OQ =△M ′OB =30°, △△NON ′=60°,'60MOM ∠=︒,△△ONN ′为等边三角形,△OMM ′为等边三角形,△△N ′OM ′=90°,△在Rt△M ′ON ′中,M ′N故选:A .【点睛】本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.13.7.1×10-7【解析】【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【详解】△地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,△地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10-7.故答案是:7.1×10-7.【点睛】本题主要考查了用科学记数法表示数的除法与有效数字,正确掌握运算法则是解题关键.14.7 5【解析】【详解】如图,过点A作AH△BC于点H,连接BE交AD于点O,△△ABC中,△BAC=90°,AB=3,AC=4,点D是BC的中点,△BC5=,AD=BD=2.5,△12BC·AH=12AC·AB,即2.5AH=6,△AH=2.4,由折叠的性质可知,AE=AB,DE=DB=DC,△AD是BE的垂直平分线,△BCE是直角三角形,△S△ADB=12AD·OB=12BD·AH,△OB=AH=2.4,△BE=4.8,△CE 75.故答案为:75.【点睛】本题的解题要点有:(1)读懂题意,画出符合要求的图形;(2)作AH △BC 于点H ,连接BE 交AD 于点O ,利用面积法求出AH 和OB 的长;(3)一个三角形中,若一边上的中线等于这边的一半,则这边所对的角是直角.15.23π 【解析】【分析】连接OO ′,BO ′,根据旋转的性质得到AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒,推出△OAO ′是等边三角形,得到60AOO '∠=︒,因为△AOB =120°,所以60O OB '∠=︒,则OO B '是等边三角形,得到120AO B '∠=︒,得到30O B B O BB ''''∠=∠=︒,90B BO '∠=︒,根据直角三角形的性质得24B O OB '==,根据勾股定理得B B '=,用B OB '△的面积减去扇形O OB '的面积即可得.【详解】解:如图所示,连接OO ′,BO ′,△将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,△AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒△△OAO ′是等边三角形,△60AOO '∠=︒,OO OA '=,△点O '在△O 上,△△AOB =120°,△60O OB '∠=︒,△OO B '是等边三角形,△120AO B '∠=︒,△120AO B ''∠=︒,△120B O B ''∠=︒,△11(180)(180120)3022O B B O BB B O B ''''''∠=∠=︒-∠=⨯︒-︒=︒,△180180306090B BO OB B B OB '''∠=︒-∠-∠=︒-︒-︒=︒,△24B O OB '==,在Rt B OB '中,根据勾股定理得,B B '△图中阴影部分的面积=2160222=223603B OB O OB SS ''⨯-=⨯⨯扇形ππ,故答案为:23π. 【点睛】 本题考查了圆与三角形,旋转的性质,勾股定理,解题的关键是掌握这些知识点. 16.不存在【解析】【分析】首先根据n =1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n ;然后根据n =1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:△n =1时,“•”的个数是3=3×1;n =2时,“•”的个数是6=3×2;n =3时,“•”的个数是9=3×3;n =4时,“•”的个数是12=3×4;……△第n 个图形中“•”的个数是3n ;又△n =1时,“○”的个数是1=1(11)2⨯+; n =2时,“○”的个数是2(21)32⨯+=, n =3时,“○”的个数是3(31)62⨯+=,n =4时,“○”的个数是4(41)102⨯+=, ……△第n 个“○”的个数是()12n n +, 由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=△,()1320222n n n +-=△ 解△得:无解解△得:12n n == 故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.17.(20m +【解析】【分析】过D 作DF △BC 于F ,DH △AB 于H ,设DF =x m ,CFm ,求出x =10,则BH =DF =,CF =,DH =BF ,再求出AH ,即可求解. 【详解】解:过D 作DF △BC 于F ,DH △AB 于H ,△DH =BF ,BH =DF ,△斜坡的斜面坡度i =1△:DF CF =设DF =x m ,CFm ,△CD220==,x△x=10,△BH=DF=10m,CF=,△DH=BF=(m),△△ADH=30°,△AH10=+m),△AB=AH+BH=20103(m),+.故答案为:(20m【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.18.△△△【解析】【分析】△利用同角的余角相等,易得△EAB=△P AD,再结合已知条件利用SAS可证两三角形全等;△过B作BF△AE,交AE的延长线于F,利用△中的△BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;△利用△中的全等,可得△APD=△AEB,结合三角形的外角的性质,易得△BEP=90°,即可证;△连接BD,求出△ABD的面积,然后减去△BDP的面积即可;△在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.【详解】△△△EAB+△BAP=90°,△P AD+△BAP=90°,△△EAB=△P AD,又△AE=AP,AB=AD,△在△APD和△AEB中,AE AP EAB PAD AB AD =⎧⎪∠=∠⎨⎪=⎩,△△APD △△AEB (SAS );故此选项成立;△△△APD △△AEB ,△△APD =△AEB ,△△AEB =△AEP +△BEP ,△APD =△AEP +△P AE , △△BEP =△P AE =90°,△EB △ED ;故此选项成立;△过B 作BF △AE ,交AE 的延长线于F , △AE =AP ,△EAP =90°,△△AEP =△APE =45°,又△△中EB △ED ,BF △AF , △△FEB =△FBE =45°,又△BE =2PE ==△BF =EF =故此选项不正确;△如图,连接BD ,在Rt△AEP 中,△AE =AP =1,△EP =,又△PB =△BE =△△APD △△AEB ,△PD =BE =△S△ABP +S △ADP =S △ABD -S △BDP = 12S 正方形ABCD - 12×DP ×BE = 12×(4+)- 12××12+ 故此选项不正确.△△EF =BF =AE=1,△在Rt△ABF 中,AB 2=(AE +EF ) 2+BF 2=4+△S 正方形ABCD =AB 2=4+ 故此选项正确. 故答案为△△△. 【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识. 19.(1)m =2,n =-1;(2)21x +,4-【解析】 【分析】(1)根据同类项的概念列二元一次方程组,然后解方程组求得m 和n 的值; (2)先通分算小括号里面的,然后算括号外面的,最后代入求值. 【详解】解:(1)由题意可得33814m n m n -=⎧⎨-=⎩①②,△-△3⨯,可得:55n -=, 解得:1n =-,把1n =-代入△,可得:(1)3m --=, 解得:2m =,m ∴的值为2,n 的值为1-;(2)原式(1)(1)[](1)(1)(1)(1)x x x x x x x -++=⋅+-+-21(1)(1)(1)(1)x x x x x x x -++=⋅+-+-21x =+,当1x =时,原式21)12114=+=-+=- 【点睛】本题考查同类项,解二元一次方程组,分式的化简求值,二次根式的混合运算,理解同类项的概念,掌握消元法解二元一次方程组的步骤以及完全平方公式222()2a b a ab b +=++的结构是解题关键. 20.(1)y =12x;y =12-x +7;(2)点E 的坐标为(0,6)或(0,8).【解析】 【分析】(1)把点A 的坐标代入y =m x ,求出反比例函数的解析式,把点B 的坐标代入y =mx,求出n 的值,即可得点B 的坐标,再把A 、B 的坐标代入直线y =kx +b ,求出k 、b 的值,从而得出一次函数的解析式;(2)设点E 的坐标为(0,m ),连接AE ,BE ,先求出点P 的坐标(0,7),得出PE =|m ﹣7|,根据S △AEB =S △BEP ﹣S △AEP =5,求出m 的值,从而得出点E 的坐标. 【详解】解:(1)把点A (2,6)代入y =mx,得m =12, 则y =12x. 把点B (n ,1)代入y =12x,得n =12, 则点B 的坐标为(12,1).由直线y =kx +b 过点A (2,6),点B (12,1)得26121k b k b +=⎧⎨+=⎩,解得127k b ⎧=-⎪⎨⎪=⎩, 则所求一次函数的表达式为y =12-x +7;(2)如图,直线AB 与y 轴的交点为P ,设点E 的坐标为(0,m ),连接AE ,BE , 则点P 的坐标为(0,7).△PE =|m ﹣7|.△S △AEB =S △BEP ﹣S △AEP =5, △12×|m ﹣7|×(12﹣2)=5 △|m ﹣7|=1 △m 1=6,m 2=8△点E 的坐标为(0,6)或(0,8). 21.(1)1,4,92.5,95;(2)80;(3)25【解析】 【分析】(1)利用唱票的形式得到a 、b 的值,根据中位数的定义确定c 的值,根据众数的定义确定d 的值;(2)用200乘以样本中八年级测试成绩大于95分所占的百分比即可;(3)画树状图展示所有20种等可能的结果,找出两同学为同年级的结果数,然后根据概率公式求解. 【详解】解:(1)1a =,4b =,八年级成绩按由小到大排列为:87,89,89,90,90,95,98,98,98,100, 所以八年级成绩的中位数909592.52c +==, 七年级成绩中95出现的次数最多,则95d =; 故答案为1,4,92.5,95; (2)42008010⨯=, 估计八年级测试成绩大于95分的人数为80人; (3)画树状图为:共有20种等可能的结果,其中两同学为同年级的结果数为8,所以抽到同年级学生的概率82 205==.【点睛】本题考查了列表法与树状图法:通过列表或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了统计图.22.(1)A、B两种平板电脑的进价分别为500元、1000元(2)为使利润最大,购进B种平板电脑13台,A种平板电脑34台.【解析】【分析】(1)设A和B的进价分别为x和y,台数×进价=付款,可得到一个二元一次方程组,解即可.(2)设购买B平板电脑a台,则购进A种平板电脑300001000500a-台,由题意可得到不等式组,解不等式组即可.(1)设A、B两种平板电脑的进价分别为x元、y元.由题意得,1239000 669000x yx y+=⎧⎨+=⎩,解得5001000xy=⎧⎨=⎩,答:A、B两种平板电脑的进价分别为500元、1000元;(2)设商店准备购进B种平板电脑a台,则购进A种平板电脑300001000500a-台,由题意,得30000100025003000010002.8500aaaa-⎧≤⎪⎪⎨-⎪≤⎪⎩,解得12.5≤a≤15,△a为整数,△a=13或14或15.设总利润为w,则:w=(700-500)×300001000500a-+(1300-1000)a=-100a+12000,△-100<0,△w随a的增大而减小,△为使利润最大,该商城应购进B 种平板电脑13台,A 种平板电脑30000100000135-⨯=34台.答:购进B 种平板电脑13台,A 种平板电脑34台. 【点睛】本题考查了一次函数的应用以及二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解. 23.(1)见解析 (2)见解析【解析】 【分析】(1)根据线段垂直平分线的定义得到AF =AD ,根据等腰三角形的性质、角平分线的定义证明即可;(2)作CH △DP ,交DP 于H 点,证明△ADE △△DCH (AAS ),得到CH =DE ,DH =AE =EG,证明CG ,AG DH ,计算即可.(3)过点F 作FN CD ⊥交,AB CD 分别于点,M N ,则四边形AMND 是矩形,根据DFN ADF ∠=∠,得出tan tan ADP DFN ∠=∠,AP DN PM AD FN FM ==12=,设MB x =,则1PM x =-,则222FM PM x ==-,进而根据勾股定理建立方程求得BM ,在Rt FMB 中,勾股定理即可求解. (1)证明:△DE =EF ,AE △DP , △AF =AD , △△AFD =△ADF ,△△ADF +△DAE =△P AE +△DAE =90°, △△AFD =△P AE , △AG 平分△BAF , △△F AG =△GAP . △△AFD +△F AE =90°, △△AFD +△P AE +△F AP =90°△2△GAP +2△P AE =90°, 即△GAE =45°,△△AGE 为等腰直角三角形; (2)证明:作CH △DP ,交DP 于H 点,△△DHC =90°. △AE △DP , △△AED =90°, △△AED =△DHC .△△ADE +△CDH =90°,△CDH +△DCH =90°, △△ADE =△DCH . △在△ADE 和△DCH 中,AED DHC ADE DCH AD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ADE △△DCH (AAS ), △CH =DE ,DH =AE =EG . △EH +EG =EH +HD , 即GH =ED , △GH =CH . △CG. △AG, △AG,△CG +AG, △CG +AGGH +HD ),即CG +AG DG . (3)如图,过点F 作FN CD ⊥交,AB CD 分别于点,M N ,则四边形AMND 是矩形, ∴AD FN ∥, ∴2MN AD ==,P 为AB 的中点,2AB =,则112AP AB ==, AD FN ∥,DFN ADF ∴∠=∠, tan tan ADP DFN ∴∠=∠,AP DN PM AD FN FM ∴==12=, 设MB x =,则1PM x =-,则222FM PM x ==-,Rt AFM △中,2,2AF AB AM AB MB x ===-=-,222AF FM AM =+, 即()()2222222x x =-+-,解得25x =或2x =(舍去), 25BM ∴=,262255FM =-⨯=,Rt FMB 中,FB ==. 【点睛】本题考查的是正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质,解直角三角形,掌握正方形的性质、解直角三角形,全等三角形的判定定理和性质定理是解题的关键.24.(1)2132;22y x x =--+(2)存在,:DCE BCE S S △△的最大值是45,()2,3D -(3)存在,点D 的横坐标为2-或2911- 【解析】 【分析】(1)根据一元二次方程根与系数的关系求得m 的值进而即可求解;(2)令y =0,解方程得到x 1=-4,x 2=1,求得()4,0A -,()10B ,,进而求得直线AC 的解析式,,过D 作DM △x 轴于M ,过B 作BN △x 轴交于AC 于N ,根据相似三角形的性质即可得到结论;(3)根据勾股定理的逆定理得到△ABC 是以△ACB 为直角的直角三角形,取AB 的中点P ,求得P (-32,0),得到P A =PC =PB =52,过D 作x 轴的平行线交y 轴于R ,交AC 的延线于G ,情况一:如图2,△DCF =2△BAC =△DGC +△CDG ,情况二,△FDC =2△BAC ,解直角三角形即可得到结论. (1)由2321y mx mx m =+-+,令0y =,即23210mx mx m +-+= 则12122112,3m x x x x m m-+⋅==-++=- 交x 轴于点()()12,0,,0A x B x (点A 在点B 左侧),且215x x -= ∴()12225x x -=即()21212425x x x x +-= ∴()2134225m ⎛⎫--⨯-+= ⎪⎝⎭解得12m =-∴ 抛物线的函数表达式为213222y x x =--+;(2)由213222y x x =--+,令0y =,则213x x 2022--+=解得124,1x x =-=则()4,0A -,()10B , 令0x =,则2y = 即()0,2C设直线AC 的解析式为y kx b =+则402k b b -+=⎧⎨=⎩ 解得122k b ⎧=⎪⎨⎪=⎩ ∴直线AC 的解析式为122y x =+过D 作DM △x 轴交AC 于M ,过B 作BN △x 轴交AC 于N , △DM △BN , △△DME △△BNE ,△:DCE BCE S S △△=DE :BE =DM :BN , 设D (a ,213222a a --+),△M (a ,12a +2), △B (1.0),△N (1,52),△:DCE BCE S S △△=DM :BN =(-12a 2-2a ):52∴:DCE BCE S S △△=-15(a +2)2+45;△当a =-2时,S 1:S 2的最大值是45;213222a a --+3=,则()2,3D ; (3)△A (-4,0),B (1,0),C (0,2),△AC BC AB =5, △AC 2+BC 2=AB 2,△△ABC 是以△ACB 为直角的直角三角形, 取AB 的中点P , △P (-32,0),△P A =PC =PB =52,△△CPO =2△BAC ,△tan △CPO =tan (2△BAC )=43,过作x 轴的平行线交y 轴于R ,交AC 的延长线于G ,情况一:如图2,△△DCF =2△BAC =△DGC +△CDG , △△CDG =△BAC ,△tan △CDG =tan △BAC =12,即RC :DR =12,令D (a ,-12a 2-32a +2), △DR =-a ,RC =-12a 2-32a , △(-12a 2-32a ):(-a )=1:2, △a 1=0(舍去),a 2=-2,△xD =-2,情况二:△△FDC =2△BAC ,△tan △FDC =43, 设FC =4k ,△DF =3k ,DC =5k ,△tan △DGC =3k :FG =1:2,△FG =6k ,△CG =2k ,DG△,RC RG ==,DR DG RG =-=,△213.:):)():()22DR RC a a a ==---, 解得a 1=0(舍去),a 2=-2911, 综上所述:点D 的横坐标为-2或-2911. 【点睛】本题考查了二次函数综合题,一元二次方程根与系数的关系,待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形,直角三角形的性质等知识点,正确的作出辅助线是解题的关键.25.(1)证明见解析;(2)证明见解析;(3)2【解析】【详解】【分析】(1)连接OC ,证△OAD△△OCD 得△ADO=△CDO ,由AD=CD 知DE△AC ,再由AB 为直径知BC△AC ,从而得OD△BC ;(2)根据tan△ABC=2可设BC=a 、则AC=2a 、,证OE 为中位线知OE=12a 、AE=CE=12AC=a ,进一步求得,在△AOD 中利用勾股定理逆定理证△OAD=90°即可得;(3)先证△AFD△△BAD 得DF•BD=AD 2△,再证△AED△△OAD 得OD•DE=AD 2△,由△△得DF•BD=OD•DE ,即DF DE OD BD =,结合△EDF=△BDO 知△EDF△△BDO ,据此可得EF DE OB BD=,结合(2)可得相关线段的长,代入计算可得. 【详解】(1)如图,连接OC ,在△OAD 和△OCD 中,OA OC AD CD OD OD =⎧⎪=⎨⎪=⎩,△△OAD△△OCD (SSS ),△△ADO=△CDO ,又AD=CD ,△DE△AC ,△AB 为△O 的直径,△△ACB=90°,△△ACB=90°,即BC△AC ,△OD△BC ;(2)△tan△ABC=AC BC=2, △设BC=a 、则AC=2a ,,△OE△BC ,且AO=BO , △OE=12BC=12a ,AE=CE=12AC=a ,在△AED 中,,在△AOD 中,AO 2+AD 2=)2+)2=254a 2,OD 2=(OF+DF )2=(12a+2a )2=254a 2, △AO 2+AD 2=OD 2,△△OAD=90°,则DA 与△O 相切;(3)如图,连接AF ,△AB 是△O 的直径,△△AFD=△BAD=90°,△△ADF=△BDA ,△△AFD△△BAD , △DF AD AD BD=,即DF•BD=AD 2△, 又△△AED=△OAD=90°,△ADE=△ODA ,△△AED△△OAD , △AD DE OD AD=,即OD•DE=AD 2△, 由△△可得DF•BD=OD•DE ,即DF DE OD BD =, 又△△EDF=△BDO ,△△EDF△△BDO , △EF DE OB BD=, △BC=1,OD=52、ED=2、,=,【点睛】本题考查了切线的判定、等腰三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理以及勾股定理的逆定理等,综合性较强,有一定的难度,准确添加辅助线构造图形是解题的关键.。

2022年山东省威海市中考数学试卷(带详解)

2022年山东省威海市中考数学试卷(带详解)

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年山东省威海市中考数学试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx题号 一 二 三 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. −5的相反数是( )A. 5B. 15C. −15D. −52. 如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………A.B.C.D.3. 一个不透明的袋子中装有2个红球、3个白球和4个黄球,每个球除颜色外都相同.从中任意摸出1个球,摸到红球的概率是( )A. 29B. 13C. 49D. 124. 下列计算正确的是( )A. a 3⋅a 3=a 9B. (a 3)3=a 6C. a 6÷a 3=a 2D. a 3+a 3=2a 35. 图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK.图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A. A 点B. B 点C. C 点D. D 点6. 如图,在方格纸中,点P ,Q ,M 的坐标分别记为(0,2),(3,0),(1,4).若MN//PQ ,则点N 的坐标可能是( )A. (2,3)B. (3,3)C. (4,2)D. (5,1)……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………7. 试卷上一个正确的式子(1a+b +1a−b )÷★=2a+b 被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( )A. aa−bB.a−b aC. aa+bD. 4aa 2−b 28. 如图,二次函数y =ax 2+bx(a ≠0)的图象过点(2,0),下列结论错误的是( )A. b >0B. a +b >0C. x =2是关于x 的方程ax 2+bx =0(a ≠0)的一个根D. 点(x 1,y 1),(x 2,y 2)在二次函数的图象上,当x 1>x 2>2时,y 2<y 1<09. 过直线l 外一点P 作直线l 的垂线PQ.下列尺规作图错误的是( )A.B.C.D.10. 由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =⋯=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………A. (43)3B. (43)7C. (43)6D. (34)6第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分) 11. 因式分解:ax 2−4a = ______ .12. 若关于x 的一元二次方程x 2−4x +m −1=0有两个不相等的实数根,则m 的取值范围是 .13. 某小组6名学生的平均身高为a cm ,规定超过a cm 的部分记为正数,不足a cm 的部分记为负数,他们的身高与平均身高的差值情况记录如下表:学生序号 1 2 3 4 5 6 身高差值(cm)+2x+3−1−4−1据此判断,2号学生的身高为______cm .14. 按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是______.15. 正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =kx (k ≠0)的图象经过点C ,则k 的值为______.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………16. 幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则m n =______.三、解答题(本大题共8小题,共72.0分。

2022年山东潍坊中考数学试题及答案详解

2022年山东潍坊中考数学试题及答案详解

2022年山东潍坊中考数学试题及答案详解(试题部分)一、单项选择题(共8小题,每小题3分,共24分。

每小题四个选项只有一项正确)1. 下列几何体中,三视图都是..圆的为 ( )A B C D2. 秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为√5−12,下列估算正确的是 ( )A.0<√5−12<25B.25<√5−12<12C.12<√5−12<1 D.√5−12>1 3. 不等式组{x +1≥0,x −1<0的解集在数轴上表示正确的是( )ABCD 4. 抛物线y =x 2+x +c 与x 轴只有一个公共点,则c 的值为 ( )A.-14B.14C.-4D.45. 如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线l 与出射光线m 平行。

若入射光线l 与镜面AB 的夹角∠1=40°10',则∠6的度数为( )A.100°40'B.99°80'C.99°40'D.99°20'6.地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同。

观察图中数据,你发现()A.海拔越高,大气压越大B.图中曲线是反比例函数的图象C.海拔为4千米时,大气压约为70千帕D.图中曲线表达了大气压和海拔两个量之间的变化关系7.观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加×100%≈6.6%)。

2022年3月当月增267万吨,当月增速为6.6%(计算方法:2674 036速为-14.0%,设2021年3月原油进口量为x万吨,下列算法正确的是()A.x−4 271×100%=-14.0%4 271×100%=-14.0%B.4 271−x4 271C.x−4 271×100%=-14.0%xD.4 271−x×100%=-14.0%x8.如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E、F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止。

2022山东临沂中考数学试卷+答案解析

2022山东临沂中考数学试卷+答案解析

2022年山东临沂中考数学一、选择题(每小题3分,共36分,下列各小题均有四个选项,其中只有一个是正确的)1.-2的相反数是()A.±2B.-12C.2 D.122.剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录。

鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题,以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是()A B C D3.计算a(a+1)-a的结果是()A.1B.a2C.a2+2aD.a2-a+14.如图,点A,B位于数轴上原点两侧,且OB=2OA。

若点B表示的数是6,则点A表示的数是()A.-2B.-3C.-4D.-55.如图所示的三棱柱的展开图不可能...是()ABCD6. 如图是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是 ( )A.900°B.720°C.540°D.360°7. 满足m >|√10-1|的整数m 的值可能是 ( )A.3B.2C.1D.08. 方程x 2-2x -24=0的根是 ( )A.x 1=6,x 2=4B.x 1=6,x 2=-4C.x 1=-6,x 2=4D.x 1=-6,x 2=-49. 为做好疫情防控工作,某学校门口设置了A ,B 两条体温快速检测通道,该校同学王明和李强均从A 通道入校的概率是 ( )A.14B.13C.12D.3410. 如图,在△ABC 中,DE ∥BC ,AD DB =23,若AC =6,则EC =( )A.65B.125C.185D.24511. 将5 kg 浓度为98%的酒精,稀释为75%的酒精。

设需要加水x kg ,根据题意可列方程为 ( )A.0.98×5=0.75xB.0.98×55+x=0.75C.0.75×5=0.98xD.0.75×55−x=0.9812.甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示。

2022山东日照中考数学试卷+答案解析

2022山东日照中考数学试卷+答案解析

2022年山东日照中考数学一、选择题(本题共12个小题,每小题3分,满分36分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题目要求选项的字母代号填涂在答题卡相应位置上)1.-2的相反数是()A.2B.12C.-12D.-22.山东省第二十五届运动会将于2022年8月25日在日照市开幕,“全民健身与省运同行”成为日照市当前的运动主题.在下列给出的运动图片中,是轴对称图形的是()A B C D3.全民免费接种新冠病毒疫苗是党中央、国务院作出的重大决策部署,通过接种疫苗,让更多人获得免疫力,尽早形成人群免疫屏障.截至2022年5月20日,全国31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗336 905万剂次。

数据336 905万用科学记数法表示为()A.0.336 905×1010B.3.369 05×1010C.3.369 05×109D.33.690 5×1094.下列运算正确的是()A.a6÷a2=a3B.a4·a2=a6C.(a2)3=a5D.a3+a3=a65.在实数√2,π0,cos 30°,√83中,有理数的个数是()A.1B.2C.3D.46.如图,矩形ABCD为一个正在倒水的水杯的截面图,杯中水面与CD的交点为E,当水杯底面BC与水平面的夹角为27°时,∠AED的大小为()A.27°B.53°C.57°D.63°7.下列说法正确的是()A.一元一次方程x2-1=x的解是x=2B.在连续5次数学测试中,两名同学的平均成绩相同,则方差较大的同学的成绩更稳定C.从5名男生,2名女生中抽取3人参加活动,至少会有1名男生被抽中D.将一次函数y=-2x+5的图象向上平移两个单位,则平移后的图象对应的函数解析式为y=-2x+18.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022 年ft东省滨州市中考数学试卷一、选择题:本大题共12 个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3 分,满分36 分.1.(3 分)某市冬季中的一天,中午12 时的气温是﹣3℃,经过6 小时气温下降了7℃,那么当天18 时的气温是()A.10℃B.﹣10℃C.4℃D.﹣4℃ 2.(3 分)在物理学中,导体中的电流I 跟导体两端的电压U、导体的电阻R 之间有以下关系:I=,去分母得IR=U,那么其变形的依据是()A.等式的性质1 B.等式的性质2C.分式的基本性质D.不等式的性质23.(3 分)如图,在弯形管道ABCD 中,若AB∥CD,拐角∠ABC=122°,则∠BCD 的大小为()A.58°B.68°C.78°D.122°4.(3 分)下列计算结果,正确的是()A.(a2)3=a5 B.=3 C.=2 D.cos30°=5.(3 分)把不等式组中每个不等式的解集在一条数轴上表示出来,正确的为()A.B.C.D.6.(3 分)一元二次方程2x2﹣5x+6=0 的根的情况为()A.无实数根B.有两个不等的实数根C.有两个相等的实数根D.不能判定7.(3 分)如图,在⊙O 中,弦AB、CD 相交于点P.若∠A=48°,∠ APD=80°,则∠B 的大小为()A.32°B.42°C.52°D.62°8.(3 分)下列命题,其中是真命题的是()A.对角线互相垂直的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相平分的四边形是菱形D.对角线互相垂直的矩形是正方形9.(3 分)在同一平面直角坐标系中,函数y=kx+1 与y=﹣(k 为常数且k≠0)的图象大致是()A.B.C.D.10.(3 分)今年我国小麦大丰收,农业专家在某种植片区随机抽取了10 株小麦,测得其麦穗长(单位:cm)分别为8,8,6,7,9,9,7,8,10,8,那么这一组数据的方差为()A.1.5 B.1.4 C.1.3 D.1.211.(3 分)如图,抛物线y=ax2+bx+c 与x 轴相交于点A(﹣2,0)、B (6,0),与y 轴相交于点C,小红同学得出了以下结论:①b2﹣4ac>0;②4a+b=0;③当y>0 时,﹣2<x<6;④a+b+c<0.其中正确的个数为()A.4 B.3 C.2 D.112.(3 分)正方形ABCD 的对角线相交于点O(如图1),如果∠BOC 绕点O 按顺时针方向旋转,其两边分别与边AB、BC 相交于点E、F (如图2),连接EF,那么在点E 由B 到A 的过程中,线段EF 的中点G 经过的路线是()A.线段B.圆弧C.折线D.波浪线二、填空题:本大题共6 个小题,每小题4 分,满分24 分.13.(4 分)若二次根式在实数范围内有意义,则x 的取值范围为.14.(4 分)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C 的大小为.15.(4 分)在Rt△ABC 中,若∠C=90°,AC=5,BC=12,则sin A 的值为.16.(4 分)若点A(1,y1)、B(﹣2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系为.17.(4 分)若m+n=10,mn=5,则m2+n2 的值为.18.(4 分)如图,在矩形ABCD 中,AB=5,AD=10.若点E 是边AD 上的一个动点,过点E 作EF⊥AC 且分别交对角线AC、直线BC 于点O 、F ,则在点E 移动的过程中,AF+FE+EC 的最小值为.三、解答题:本大题共6 个小题,满分60 分.解答时请写出必要的演推过程.19.(8 分)先化简,再求值:(a+1﹣)÷,其中a=tan45°+()﹣1﹣π0.20.(9 分)某校为满足学生课外活动的需求,准备开设五类运动项目,分别为A:篮球,B:足球,C:乒乓球,D:羽毛球,E:跳绳.为了解学生的报名情况,现随机抽取八年级部分学生进行调查,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上图文信息回答下列问题:(1)此次调查共抽取了多少名学生?(2)请将此条形统计图补充完整;(3)在此扇形统计图中,项目D 所对应的扇形圆心角的大小为;(4)学生小聪和小明各自从以上五类运动项目中任选一项参加活动,请利用画树状图或列表的方法求他俩选择相同项目的概率.21.(9 分)如图,已知AC 为⊙O 的直径,直线PA 与⊙O 相切于点A,直线PD 经过⊙O 上的点B 且∠CBD=∠CAB,连接OP 交AB 于点M.求证:(1)PD 是⊙O 的切线;(2)AM2=OM•PM.22.(10 分)某种商品每件的进价为10 元,若每件按20 元的价格销售,则每月能卖出360 件;若每件按30 元的价格销售,则每月能卖出60 件.假定每月的销售件数y 是销售价格x(单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.23.(10 分)如图,菱形ABCD 的边长为10,∠ABC=60°,对角线AC、BD 相交于点O,点E 在对角线BD 上,连接AE,作∠AEF=120°且边EF 与直线DC 相交于点F.(1)求菱形ABCD 的面积;(2)求证AE=EF.24.(14 分)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3 与x 轴相交于点A、B(点A 在点B 的左侧),与y 轴相交于点C,连接AC、BC.(1)求线段AC 的长;(2)若点P 为该抛物线对称轴上的一个动点,当PA=PC 时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当△BCM 为直角三角形时,求点M 的坐标.2022 年ft东省滨州市中考数学试卷参考答案与试题解析一、选择题:本大题共12 个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3 分,满分36 分.1.(3 分)某市冬季中的一天,中午12 时的气温是﹣3℃,经过6 小时气温下降了7℃,那么当天18 时的气温是()A.10℃B.﹣10℃C.4℃D.﹣4℃【分析】有理数减法法则:减去一个数,等于加上这个数的相反数.【解答】解:﹣3﹣7=﹣10(℃),故选:B.2.(3 分)在物理学中,导体中的电流I 跟导体两端的电压U、导体的电阻R 之间有以下关系:I=,去分母得IR=U,那么其变形的依据是()A.等式的性质1 B.等式的性质2C.分式的基本性质D.不等式的性质2【分析】根据等式的基本性质,对原式进行分析即可.【解答】解:将等式I=,去分母得IR=U,实质上是在等式的两边同时乘R,用到的是等式的基本性质2.故选:B.3.(3 分)如图,在弯形管道ABCD 中,若AB∥CD,拐角∠ABC=122°,则∠BCD 的大小为()A.58°B.68°C.78°D.122°【分析】根据平行线的性质得出∠ABC+∠BCD=180°,代入求出即可.【解答】解:∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=122°,∴∠BCD=180°﹣122°=58°,故选:A.4.(3 分)下列计算结果,正确的是()A.(a2)3=a5 B.=3 C.=2 D.cos30°=【分析】根据幂的乘方的运算法则对A 选项进行判断;利用二次根式的乘法法则对B 选项进行判断;根据立方根对C 选项进行判断;根据特殊角的三角函数值对D 选项进行判断.【解答】解:A.(a2)=a6,所以 A 选项不符合题意;B.==2 ,所以B 选项不符合题意;C.=2,所以C 选项符合题意;D.cos30°=,所以D 选项不符合题意;故选:C.5.(3 分)把不等式组中每个不等式的解集在一条数轴上表示出来,正确的为()A.B.C.D.【分析】先解出不等式组中的每一个不等式的解集,然后即可写出不等式组的解集,再在数轴上表示出每一个不等式的解集即可.【解答】解:解不等式x﹣3<2x,得x>﹣3,解不等式,得x≤5,故原不等式组的解集是﹣3<x≤5,其解集在数轴上表示如下:故选:C.6.(3 分)一元二次方程2x2﹣5x+6=0 的根的情况为()A.无实数根B.有两个不等的实数根C.有两个相等的实数根D.不能判定【分析】求出判别式Δ=b2 ﹣4ac,判断其的符号就即可得出结论.【解答】解:∵Δ=(﹣5)2﹣4×2×6=25﹣48=﹣23<0,∴2x2﹣5x+6=0 无实数根,故选:A.7.(3 分)如图,在⊙O 中,弦AB、CD 相交于点P.若∠A=48°,∠ APD=80°,则∠B 的大小为()A.32°B.42°C.52°D.62°【分析】根据圆周角定理,可以得到∠D 的度数,再根据三角形外角的性质,可以求出∠B 的度数.【解答】解:∵∠A=∠D,∠A=48°,∴∠D=48°,∵∠APD=80°,∠APD=∠B+∠D,∴∠B=∠APD﹣∠D=80°﹣48°=32°,故选:A.8.(3 分)下列命题,其中是真命题的是()A.对角线互相垂直的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相平分的四边形是菱形D.对角线互相垂直的矩形是正方形【分析】根据,平行四边形,矩形,菱形,正方形的判定方法一一判断即可.【解答】解:A、对角线互相垂直的四边形是平行四边形,是假命题,本选项不符合题意;B、有一个角是直角的四边形是矩形,是假命题,本选项不符合题意;C、对角线互相平分的四边形是菱形,是假命题,本选项不符合题意;D、对角线互相垂直的矩形是正方形,是真命题,本选项符合题意.故选:D.9.(3 分)在同一平面直角坐标系中,函数y=kx+1 与y=﹣(k 为常数且k≠0)的图象大致是()A.B.C.D.【分析】根据一次函数和反比例函数的性质即可判断.【解答】解:当k>0 时,则﹣k<0,一次函数y=kx+1 图象经过第一、二、三象限,反比例函数图象在第二、四象限,所以A 选项正确,C 选项错误;当k<0 时,一次函数y=kx+1 图象经过第一、二,四象限,所以B、D 选项错误.故选:A.10.(3 分)今年我国小麦大丰收,农业专家在某种植片区随机抽取了10 株小麦,测得其麦穗长(单位:cm)分别为8,8,6,7,9,9,7,8,10,8,那么这一组数据的方差为()A.1.5 B.1.4 C.1.3 D.1.2【分析】先根据算术平均数的定义求出平均数,再根据方差的定义列式计算即可.【解答】解:这一组数据的平均数为×(8+8+6+7+9+9+7+8+10+8)=8,故这一组数据的方差为×[4×(8﹣8)2+(6﹣8)2+2×(7﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,故选:D.11.(3 分)如图,抛物线y=ax2+bx+c 与x 轴相交于点A(﹣2,0)、B (6,0),与y 轴相交于点C,小红同学得出了以下结论:①b2﹣4ac>0;②4a+b=0;③当y>0 时,﹣2<x<6;④a+b+c<0.其中正确的个数为()A.4 B.3 C.2 D.1【分析】根据二次函数的性质和图象中的数据,可以分别判断出各个结论是否正确,从而可以解答本题.【解答】解:由图象可得,该抛物线与x 轴有两个交点,则b2﹣4ac>0,故①正确;∵抛物线y=ax2+bx+c 与x 轴相交于点A(﹣2,0)、B(6,0),∴该抛物线的对称轴是直线x==2,∴﹣=2,∴b+4a=0,故②正确;由图象可得,当y>0 时,x<﹣2 或x>6,故③错误;当x=1 时,y=a+b+c<0,故④正确;故选:B.12.(3 分)正方形ABCD 的对角线相交于点O(如图1),如果∠BOC 绕点O 按顺时针方向旋转,其两边分别与边AB、BC 相交于点E、F (如图2),连接EF,那么在点E 由B 到A 的过程中,线段EF 的中点G 经过的路线是()A.线段B.圆弧C.折线D.波浪线【分析】建立如图平面直角坐标系,设正方形ABCD 的边长为1,证明△AOE≌△BOF(ASA),推出AE=BF,设AE=BF=a,则F (a,0),E(0,1﹣a),由题意G(a,﹣a),推出点G 在直线y=﹣x+上运动,可得结论.【解答】解:建立如图平面直角坐标系,设正方形ABCD 的边长为1,∵四边形ABCD 是正方形,∴OAE=∠OBF=45°,OA=OB,∵∠AOB=∠EOF=90°,∴∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴AE=BF,设AE=BF=a,则F(a,0),E(0,1﹣a),∵EG=FG,∴G(a,﹣a),∴点G 在直线y=﹣x+上运动,∴点G 的运动轨迹是线段,故选:A.二、填空题:本大题共6 个小题,每小题4 分,满分24 分.13.(4 分)若二次根式在实数范围内有意义,则x 的取值范围为x≥5 .【分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.【解答】解:要使二次根式在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.14.(4 分)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C 的大小为30°.【分析】根据等腰三角形的性质和三角形内角和得到∠B=∠C=30°.【解答】解:∵AB=AC 且∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=×60°=30°.故答案为:30°.15.(4 分)在Rt△ABC 中,若∠C=90°,AC=5,BC=12,则sin A 的值为.【分析】根据题意画出图形,进而利用勾股定理得出AB 的长,再利用锐角三角函数关系,即可得出答案.【解答】解:如图所示:∵∠C=90°,AC=5,BC=12,∴AB==13,∴sin A=.故答案为:.16.(4 分)若点A(1,y1)、B(﹣2,y2)、C(﹣3,y3)都在反比例函数y =的图象上,则y1、y2、y3的大小关系为y2<y3<y1.【分析】根据题目中的函数解析式和反比例函数的性质,可以得到y1、y2、y3的大小关系.【解答】解:∵反比例函数y=,∴该函数图象在第一、三象限,在每个象限内,y 随x 的增大而减小,∵点A(1,y1)、B(﹣2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,∴y2<y3<0<y1,即y2<y3<y1,故答案为:y2<y3<y1.17.(4 分)若m+n=10,mn=5,则m2+n2 的值为90 .【分析】根据完全平方公式计算即可.【解答】解:∵m+n=10,mn=5,∴m2+n2=(m+n)2﹣2mn=102﹣2×5=100﹣10=90.故答案为:90.18.(4 分)如图,在矩形ABCD 中,AB=5,AD=10.若点E 是边AD 上的一个动点,过点 E 作EF⊥AC 且分别交对角线AC、直线BC于点O、F,则在点E 移动的过程中,AF+FE+EC 的最小值为 + .【分析】如图,过点E 作EH⊥BC 于点H.利用相似三角形的性质求出FH,EF,设BF=x,则DE=10﹣x﹣=﹣x,因为EF 是定值,所以AF+CE 的值最小时,AF+EF+CE 的值最小,由AF+CE =+,可知欲求AF+CE 的最小值相当于在x 轴上找一点P(x,0),使得P 到A(0,5),B(,5)的距离和最小,如图1 中,作点A 关于x 轴的对称点A′,连接BA′交xz 轴于点P,连接AP,此时PA+PB 的值最小,最小值为线段A′B 的长,由此即可解决问题.【解答】解:如图,过点 E 作EH⊥BC 于点H.∵四边形ABCD 是矩形,∴∠B=∠BAD=∠BHE=90°,∴四边形ABHE 是矩形,∴EH=AB=5,∵BC=AD=10,∴AC===5,∵EF⊥AC,∴∠COF=90°,∴∠EFH+∠ACB=90°,∵∠BAC+∠ACB=90°,∴∠EFH=∠BAC,∴△EHF∽△CBA,∴==,∴==,∴FH=,EF=,设BF=x,则DE=10﹣x﹣=﹣x,∵EF 是定值,∴AF+CE 的值最小时,AF+EF+CE 的值最小,∵AF+CE=+,∴欲求AF+CE 的最小值相当于在x 轴上找一点P(x,0),使得P 到A(0,5),B(,5)的距离和最小,如图1 中,作点A 关于x 轴的对称点A′,连接BA′交xz 轴于点P,连接AP,此时PA+PB 的值最小,最小值为线段A′B 的长,∵A′(0,﹣5),B(,5),∴A′B==,∴AF+CE 的最小值为,∴AF+EF+CE 的最小值为+.解法二:过点C 作CC′∥EF,使得CC′=EF,连接C′F.∵EF=CC′,EF∥CC′,∴四边形EFC′C 是平行四边形,∴EC=FC′,∴AF+EC=AF+FC′≥AC′=,∴AF+EF+CE 的最小值为+.故答案为:+.三、解答题:本大题共6 个小题,满分60 分.解答时请写出必要的演推过程.19.(8 分)先化简,再求值:(a+1﹣)÷,其中a=tan45°+()﹣1﹣π0.【分析】先将小括号内的式子进行通分计算,然后算括号外面的除法,再利用特殊角的三角函数值,负整数指数幂和零指数幂的运算求出a 的值,代入进行计算即可;【解答】解:原式==•=•=,∵a=tan45°+()﹣1﹣π0=1+2﹣1=2,∴当a=2 时,原式==0.20.(9 分)某校为满足学生课外活动的需求,准备开设五类运动项目,分别为A:篮球,B:足球,C:乒乓球,D:羽毛球,E:跳绳.为了解学生的报名情况,现随机抽取八年级部分学生进行调查,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上图文信息回答下列问题:(1)此次调查共抽取了多少名学生?(2)请将此条形统计图补充完整;(3)在此扇形统计图中,项目 D 所对应的扇形圆心角的大小为54°;(4)学生小聪和小明各自从以上五类运动项目中任选一项参加活动,请利用画树状图或列表的方法求他俩选择相同项目的概率.【分析】(1)用D 项目的人数除以它所占的百分比得到调查的总人数;(2)先计算出C 项目的人数,然后补全条形统计图;(3)用360°乘以D 项目人数所占的百分比得到项目D 所对应的扇形圆心角的大小;(4)画树状图展示所有25 种等可能的结果,找出相同项目的结果数,然后根据概率公式求解.【解答】解:(1)10÷10%=100(名),所以此次调查共抽取了100 名学生;(2)C 项目的人数为:100﹣20﹣30﹣15﹣10=25(名),条形统计图补充为:(3)在此扇形统计图中,项目D 所对应的扇形圆心角为:360°×=54°;故答案为:54°;(4)画树状图为:共有25 种等可能的结果,其中相同项目的结果数为5,所以他俩选择相同项目的概率==.21.(9 分)如图,已知AC 为⊙O 的直径,直线PA 与⊙O 相切于点A,直线PD 经过⊙O 上的点B 且∠CBD=∠CAB,连接OP 交AB 于点M.求证:(1)PD 是⊙O 的切线;(2)AM2=OM•PM.【分析】(1)先连接OB,然后根据题目中的条件可以得到∠OBD=90°,从而可以证明结论成立;(2)根据题目中的条件和(1)中的结论,可以证明△OAM∽△APM,然后即可得到结论成立.【解答】证明:(1)连接OB,如图所示,∵OB=OC,∴∠OCB=∠OBC,∵AC 是⊙O 的直径,∴∠CBA=90°,∴∠CAB+∠OCB=90°,∵∠CBD=∠CAB,∴∠CBD+∠OCB=90°,∴∠OBD=90°,∴PD 是⊙O 的切线;(2)由(1)知PD 是⊙O 的切线,直线PA 与⊙O 相切,∴PO 垂直平分AB,∴∠AMP=∠ANO=90°,∴∠APM+∠PAM=90°,∵∠OAP=90°,∴∠PAM+∠OAM=90°,∴∠APM=∠OAM,∴△OAM∽△APM,∴,∴AM2=OM•PM.22.(10 分)某种商品每件的进价为10 元,若每件按20 元的价格销售,则每月能卖出360 件;若每件按30 元的价格销售,则每月能卖出60 件.假定每月的销售件数y 是销售价格x(单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.【分析】(1)根据题意利用待定系数法可求得y 与x 之间的关系;(2)写出利润和x 之间的关系是可发现是二次函数,求二次函数的最值问题即.【解答】解:(1)设y=kx+b,把x=20,y=360,和x=30,y=60 代入,可得,解得:,∴y=﹣30x+960(10≤x≤32);(2)设每月所获的利润为W 元,∴W=(﹣30x+960)(x﹣10)=﹣30(x﹣32)(x﹣10)=﹣30(x2﹣42x+320)=﹣30(x﹣21)2+3630.∴当x=21 时,W 有最大值,最大值为3630.23.(10 分)如图,菱形ABCD 的边长为10,∠ABC=60°,对角线AC、BD 相交于点O,点E 在对角线BD 上,连接AE,作∠AEF=120°且边EF 与直线DC 相交于点F.(1)求菱形ABCD 的面积;(2)求证AE=EF.【分析】(1)根据锐角三角函数可以求得BC 边上的高,然后根据菱形的面积=底×高,即可求得相应的面积;(2)连接EC,然后可以得到AE=EC,再根据四边形内角和,可以求得∠ECF=∠EFC,然后通过等量代换,即可证明结论成立.【解答】(1)解:作AG⊥BC 交BC 于点G,如图所示,∵四边形ABCD 是菱形,边长为10,∠ABC=60°,∴BC=10,AG=AB•sin60°=10× =5 ,∴菱形ABCD 的面积是:BC•AG=10×5=50 ,即菱形ABCD 的面积是50;(2)证明:连接EC,∵四边形ABCD 是菱形,∠ABC=60°,∴EO 垂直平分AC,∠BCD=120°,∴EA=EC,∠DCA=60°,∴∠EAC=∠ECA,∠ACF=120°,∵∠AEF=120°,∴∠EAC+∠EFC=360°﹣∠AEF﹣∠ACF=360°﹣120°﹣120°=120°,∵∠ECA+∠ECF=120°,∴∠EFC=∠ECF,∴EC=EF,∴AE=EF.24.(14 分)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3 与x 轴相交于点A、B(点A 在点B 的左侧),与y 轴相交于点C,连接AC、BC.(1)求线段AC 的长;(2)若点P 为该抛物线对称轴上的一个动点,当PA=PC 时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当△BCM 为直角三角形时,求点M 的坐标.【分析】(1)根据坐标轴上点的特点求出点A,C 的坐标,即可求出答案;(2)设出点P 的坐标,利用PA=PC 建立方程求解,即可求出答案;(3)分三种情况,利用等腰直角三角形的性质求出前两种情况,利用三垂线构造出相似三角形,得出比例式,建立方程求解,即可求出答案.【解答】解:(1)针对于抛物线y=x2﹣2x﹣3,令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,∴x=3 或x=﹣1,∵点 A 在点 B 的左侧,∴A(﹣1,0),B(3,0),∴AC==;(2)∵抛物线y=x2﹣2x﹣3 的对称轴为直线x=﹣=1,∵点P 为该抛物线对称轴上,∴设P(1,p),∴PA==,PC==,∵PA=PC,∴=,∴p=﹣1,∴P(1,﹣1);(3)由(1)知,B(3,0),C(0,﹣3),∴OB=OC=3,设M(m,m2﹣2m﹣3),∵△BCM 为直角三角形,∴①当∠BCM=90°时,如图1,过点M 作MH⊥y 轴于H,则HM=m,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠HCM=90°﹣∠OCB=45°,∴∠HMC=45°=∠HCM,∴CH=MH,∵CH=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,∴﹣m2+2m=m,∴m=0(不符合题意,舍去)或m=1,∴M(1,﹣4);②当∠CBM=90°时,过点M 作M'H'⊥x 轴,同①的方法得,M'(﹣2,5);③当∠BMC=90°时,如图2,Ⅰ、当点M 在第四象限时,过点M 作MD⊥y 轴于D,过点B 作BE⊥DM,交DM 的延长线于E,∴∠CDM=∠E=90°,∴∠DCM+∠DMC=90°,∵∠DMC+∠EMB=90°,∴∠DCM=∠EMB,∴△CDM∽△MEB,∴,∵M(m,m2﹣2m﹣3),B(3,0),C(0,﹣3),∴DM=m,CD=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,ME=3﹣m,BE =﹣(m2﹣2m﹣3)=﹣m2+2m+3,∴,∴m=0(舍去)或m=3(点 B 的横坐标,不符合题意,舍去)或m=(不符合题意,舍去)或m=,∴M(,﹣),Ⅱ、当点M 在第三象限时,M(,﹣),即满足条件的M 的坐标为(1,﹣4)或(﹣2,5)或(,﹣),或(,﹣).2022 年ft东省聊城市中考数学试卷一、选择题(本题共12 个小题,每小题3 分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3 分)实数a 的绝对值是,a 的值是()A. B.﹣ C.± D.±2.(3 分)如图,该几何图形是沿着圆锥体的轴切割后得到的“半个”圆锥体,它的左视图是()A.B.C.D.3.(3 分)下列运算正确的是()A.(﹣3xy)2=3x2y2 B.3x2+4x2=7x4C.t(3t2﹣t+1)=3t3﹣t2+1 D.(﹣a3)4÷(﹣a4)3=﹣14.(3 分)要检验一个四边形的桌面是否为矩形,可行的测量方案是()A.测量两条对角线是否相等B.度量两个角是否是90°C.测量两条对角线的交点到四个顶点的距离是否相等D.测量两组对边是否分别相等5.(3 分)射击时,子弹射出枪口时的速度可用公式v=进行计算,其中a 为子弹的加速度,s 为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为()A.0.4×103m/s B.0.8×103m/s C.4×102m/s D.8×102m/s6.(3 分)关于x,y 的方程组的解中x 与y 的和不小于5,则k 的取值范围为()A.k≥8 B.k>8 C.k≤8 D.k<87.(3 分)用配方法解一元二次方程3x2+6x﹣1=0 时,将它化为(x+a)2=b 的形式,则a+b 的值为()A. B. C.2 D.8.(3 分)“俭以养德”是中华民族的优秀传统,时代中学为了对全校学生零花钱的使用进行正确引导,随机抽取50 名学生,对他们一周的零花钱数额进行了统计,并根据调查结果绘制了不完整的频数分布表和扇形统计图,如图所示:组别零花钱数额x/元频数一x≤10二10<x≤15 12三15<x≤20 15四20<x≤25 a五x>25 5关于这次调查,下列说法正确的是()A.总体为 50 名学生一周的零花钱数额B.五组对应扇形的圆心角度数为 36°C.在这次调查中,四组的频数为 6D.若该校共有学生 1500 人,则估计该校零花钱数额不超过 20 元的人数约为 1200 人9.(3 分)如图,AB ,CD 是⊙O 的弦,延长 AB ,CD 相交于点 P .已知∠P =30°,∠AOC =80°,则的度数是()A .30°B .25°C .20°D .10°10.(3 分)如图,在直角坐标系中,线段 A 1B 1 是将△ABC 绕着点 P (3,2)逆时针旋转一定角度后得到的△A 1B 1C 1的一部分,则点 C 的对应点 C 1 的坐标是()A .(﹣2,3)B .(﹣3,2)C .(﹣2,4)D .(﹣3,3)11.(3 分)如图,△ABC 中,若∠BAC =80°,∠ACB =70°,根据图中尺规作图的痕迹推断,以下结论错误的是()A.∠BAQ =40°B .DE = BDC .AF =ACD .∠EQF =25°12.(3 分)如图,一次函数 y =x +4 的图象与 x 轴,y 轴分别交于点 A ,B ,点 C (﹣2,0)是 x 轴上一点,点 E ,F 分别为直线 y =x +4 和 y 轴上的两个动点,当△CEF 周长最小时,点 E ,F 的坐标分别为()A .E (﹣,),F (0,2)B .E (﹣2,2),F (0,2)C .E (﹣,),F (0,)D .E (﹣2,2),F (0,)二、填空题(本题共 5 个小题,每小题 3 分,共 15 分.只要求填写最后结果)13.(3 分)不等式组的解集是.14.(3 分)如图,两个相同的可以自由转动的转盘 A 和 B ,转盘 A 被三等分,分别标有数字 2,0,﹣1;转盘 B 被四等分,分别标有数字 3,2,﹣2,﹣3.如果同时转动转盘 A ,B ,转盘停止时,两个指针指向转盘 A ,B 上的对应数字分别为 x ,y (当指针指在两个扇形的交线时,需重新转动转盘),那么点(x ,y )落在直角坐标系第二象限的概率是.15.(3 分)若一个圆锥体的底面积是其表面积的,则其侧面展开图圆心角的度数为.16.(3 分)某食品零售店新上架一款冷饮产品,每个成本为 8 元,在销售过程中,每天的销售量 y (个)与销售价格 x (元/个)的关系如图所示,当 10≤x ≤20 时,其图象是线段 AB ,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).17.(3 分)如图,线段 AB =2,以 AB 为直径画半圆,圆心为 A 1,以 AA 1 为直径画半圆①;取 A 1B 的中点 A 2,以 A 1A 2 为直径画半圆②;取 A 2B 的中点 A 3,以 A 2A 3 为直径画半圆③…按照这样的规律画下去,大半圆内部依次画出的 8 个小半圆的弧长之和为.三、解答题(本题共 8 个小题,共 69 分.解答题应写出文字说明、证明过程或推演步骤)18.(7 分)先化简,再求值:÷(a ﹣)﹣,其中 a =2sin45°+()﹣1.19.(8 分)为庆祝中国共产主义青年团成立 100 周年,学校团委在八、九年级各抽取 50 名团员开展团知识竞赛, 为便于统计成绩,制定了取整数的计分方式,满分 10 分.竞赛成绩如图所示:(1) 你能用成绩的平均数判断哪个年级的成绩比较好吗?通过计算说明;(2) 请根据图表中的信息,回答下列问题.众数 中位数 方差八年级竞赛成绩7 8 1.88九年级竞赛成绩 a 8 b①表中的 a =,b = ;②现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?(3) 若规定成绩 10 分获一等奖,9 分获二等奖,8 分获三等奖,则哪个年级的获奖率高?20.(8 分)如图,△ABC 中,点D 是AB 上一点,点E 是AC 的中点,过点C 作CF∥AB,交DE 的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D 是AB 的中点,那么当AC 与BC 满足什么条件时,四边形ADCF 是菱形,证明你的结论.21.(8 分)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10 天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20 天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40 天,那么以后每天改造管网至少还要增加多少米?22.(8 分)我市某辖区内的兴国寺有一座宋代仿木楼阁式空心砖塔,塔旁有一棵唐代古槐,称为“宋塔唐槐”(如图①).数学兴趣小组利用无人机测量古槐的高度,如图②所示,当无人机从位于塔基B 点与古槐底D点之间的地面H 点,竖直起飞到正上方45 米E 点处时,测得塔AB 的顶端A 和古槐CD 的顶端C 的俯角分别为26.6°和76°(点B,H,D 三点在同一直线上).已知塔高为39 米,塔基B 与树底D 的水平距离为20 米,求古槐的高度(结果精确到 1 米).(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)23.(8 分)如图,直线y=px+3(p≠0)与反比例函数y=(k>0)在第一象限内的图象交于点A(2,q),与y 轴交于点B,过双曲线上的一点C 作x 轴的垂线,垂足为点D,交直线y=px+3 于点E,且S△AOB:S△COD=3:4.(1)求k,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.24.(10 分)如图,点O 是△ABC 的边AC 上一点,以点O 为圆心,OA 为半径作⊙O,与BC 相切于点E,交AB 于点D,连接OE,连接OD 并延长交CB 的延长线于点F,∠AOD=∠EOD.(1)连接AF,求证:AF 是⊙O 的切线;(2)若FC=10,AC=6,求FD 的长.25.(12 分)如图,在直角坐标系中,二次函数y=﹣x2+bx+c 的图象与x 轴交于A,B 两点,与y 轴交于点C (0,3),对称轴为直线x=﹣1,顶点为点D.(1)求二次函数的表达式;(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;(3)如图②,延长DC 交x 轴于点M,平移二次函数y=﹣x2+bx+c 的图象,使顶点D 沿着射线DM 方向平移到点D1 且CD1=2CD,得到新抛物线y1,y1 交y 轴于点N.如果在y1 的对称轴和y1 上分别取点P,Q,使以MN 为一边,点M,N,P,Q 为顶点的四边形是平行四边形,求此时点Q 的坐标.2022 年ft东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12 个小题,每小题3 分.在每小题给出的四个选项中,只有一项符合题目要求)1.【分析】根据绝对值的意义直接进行解答【解答】解:∵|a|=,∴a=±.故选:D.【点评】本题考查了绝对值的意义,即在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.2.【分析】根据左视图的定义解答即可.【解答】解:从左边看该几何体它是一个斜边在左侧的三角形,故选:B.【点评】本题考查了简单组合体的三视图,从左面看得到的视图是左视图.3.【分析】A、根据积的乘方与幂的乘方运算判断即可;B、根据合并同类项法则计算判断即可;C、根据单项式乘多项式的运算法则计算判断即可;D、根据积的乘方与幂的乘方、同底数幂的除法法则计算即可.【解答】解:A、原式=9x2y2,不合题意;B、原式=7x2,不合题意;C、原式=3t3﹣t2+t,不合题意;D、原式=﹣1,符合题意;故选:D.【点评】此题考查的是积的乘方与幂的乘方运算、合并同类项法则、单项式乘多项式的运算、同底数幂的除法法则,掌握其运算法则是解决此题的关键.。

相关文档
最新文档