1956年普通高等学校招生全国统一考数学试题及答案

合集下载

高考理科数学普通高等学校招生全国统一考试 附答案1456

高考理科数学普通高等学校招生全国统一考试 附答案1456

高考理科数学普通高等学校招生全国统一考试(附答案)注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()(1)18.下图是某地区2000年至环境基础设施投资额y(单位:亿元)的折现图。

高考数学高三模拟考试试卷压轴题高考理科数学真题一、选择题 1.复数()i 2i -=() A .12i + B .12i -C .12i -+D .12i --答案:A 解析过程: 原式=2ii2=1+2i2.若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为()A .0B .1C.32D .2 答案:D 解析过程:如图所表示的区域为不等式组表示的平面区域,易知点为目标函数取得最大值的最优解,即Zmax=0+21=23.执行如图所示的程序框图,输出的结果为()A .()22-,B .()40-,C .()44--,D .()08-,答案:B 解析过程: 据框图可得:4.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案: B解析过程:显然由m β∥推不出αβ∥,但αβ∥能推出m β∥,故选B 5.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .25+B .45+C .225+D .5解析过程:直观图如图: 在ABC∆过点A 作BC 的垂线交BC 于点D ,连接PD ,12ABC S BC AD ∆=⨯⨯12222=⨯⨯=, 12PAB PAC S S PA AC ∆∆==⨯⨯15512=⨯⨯=, 又因为5AC =,1PC =,所以6PB PC ==5PD =,12PCB S BC PD ∆=⨯⨯12552=⨯⨯=所以,表面积5225225S =+⨯+=+,选C 6.设{}n a 是等差数列. 下列结论中正确的是()A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a >D .若10a <,则()()21230a a a a --> 答案: C解析过程:可使用特值法。

数学试卷55年普通高等国统一考数学试题及答案

数学试卷55年普通高等国统一考数学试题及答案

1955年普通高等学校招生全国统一考试数学1.甲、以二次方程x 2-3x-1=0的两根的平方为两根,作一个二次方程解:设原方程的两根为α,β,则由根与系数关系可得:α+β=3,αβ=-1,又,α 2 +β 2 =(α+β)2-2αβ=11,α2β 2 =1,故所求的二次方程为 x 2-11x +1=0乙、等腰三角形的一腰的长是底边的4倍,求这三角形各角的余弦解:设AB=AC=4BC ,而AD 为底边上的高, 于是ACBC BC BC BC AC AB BC AC AB A ⋅⋅-+=⋅-+=4216162cos 222222.81cos ,81421cos ,3231323122======C AC BCAB BD B BCBC 同理 AB D C丙、已知正四棱锥底边的长为a ,侧棱与底面的交角为450,求这棱锥的高解:设S-ABCD 为正四棱锥,SO 为它的高,底边长为a ,∠SAO=450∵AO=a 22 ∴由△SOA 为等腰直角三角形, 故棱锥S-ABCD 的高SO=a 22 丁、写出二面角的平面角的定义 略2.求b ,c ,d 的值,使多项式x 3+bx 2+cx+d 适合于下列三条件:(1)被x-1整除,(2)被x-3除时余2, (3)被x+2除时与被x-2除时的余数相等解:根据余数定理及题设条件可得f(1)=1+b+c+d =0…………………………………① f(3)=27+9b+3c+d=2………………………………② -8+4b-2c+d= 8+4b+2c+d …………………………③ 化简③式可得 c=-4将其分别代入①②可得b+d=39b+d=-13 解得b=-2,d=5. 综上,b=-2,c=-4,d=5 S3.由直角△ABC 勾上一点D 作弦AB 的垂线交弦于E ,交股的延长线于F ,交外接圆于G EG 为EA 和EB 的比例中项,又为ED 和EF 的比例中项证:连接GA 、GB ,则△AGB 也是一个直角三角形因为EG 为直角△AGB 的斜边EG 为EA 和EB 的比例中项,即EG 2=EA ·EB ∵∠AFE=∠ABC ,∴直角△AEF ∽直角△DEB ,.EF ED EB EA EBEDEF EA ⋅=⋅=即 但是∵EG 2=EA ·EB ,∴EG 2=ED ·EF (等量代换). 故 EG 也是ED 和EF 的比例中项4.解方程x x x sin cos 2cos +=,求x 的通值解:x x x x sin cos sin cos 22+=-,)(.22,2,424,22)4cos(,22sin 22cos 22,1sin cos 01sin cos )(.4,1,010sin cos .0)1sin )(cos sin (cos ,0)sin (cos )sin )(cos sin (cos 为整数则得如果为整数则得如果k k k x k x x x x x x x x k k x tgx tgx x x x x x x x x x x x x ⎪⎩⎪⎨⎧π-ππ=∴π±π=π+∴=π+∴=-∴=-=-+π-π=∴-==+=+=--+=+--+5.一个三角形三边长成等差数列,其周长为12尺,面积为6平方尺,求证这个三角形为一个直角三角形证:可设其长分别为x-d,x,x+d.F C B因为三角形的周长为12尺, ∴(x-d)+x+(x+d)=12,∴x=4(尺) 于是该三角形的三边又可表示为4-d,4,4+d.由该三角形的面积为6,三边长为4-d,4,4+d ,代入求面积的计算公式,得.1,1),2)(2(1236)]4(6)[46)](4(6[662±==-+=+----=d d d d d d由此可知,该三角形三边的长为3、4、5(或5、4、3)(尺),故它是一个直角三角形。

高考数学普通高等学校招生全国统一考试5

高考数学普通高等学校招生全国统一考试5

高考数学普通高等学校招生全国统一考试5高考数学普通高等学校招生全国统一考试5本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷(选择题共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名.准考证号.考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数的积化和差公式:正棱台.圆台的侧面积公式其中.分别表示上.下底面周长,表示斜高或母线长.球体的体积公式:,其中R表示球的半径.一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.设集合等于( )A.B.C.D.2.设,则( )A.y3_gt;y1_gt;y2 B.y2_gt;y1_gt;y3C.y1_gt;y2_gt;y3 D.y1_gt;y3_gt;y23.〝〞是〝〞的( )A.必要非充分条件 B.充分非必要条件C.充分必要条件D.既非充分又非必要条件4.已知α,β是平面,m,n是直线.下列命题中不正确的是( )A.若m∥α,α∩β=n,则m//n B.若m∥n,α∩β=n,则n⊥α C.若m⊥α,m⊥β,则α∥β D.若m⊥α,,则α⊥β5.如图,直线过椭圆的左焦点F1和一个顶点B,该椭圆的离心率为 ( )A.B.C. D.6.若且的最小值是 ( )A.2 B.3 C.4 D.57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( )A.B. C.D.8.若数列的通项公式是,则等于( )A.B.C.D.9.从黄瓜.白菜.油菜.扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( )A.24种B.18种C.12种D.6种10.某班试用电子投票系统选举班干部候选人.全班k名同学都有选举权和被选举权,他们的编号分别为1,2,…,k,规定:同意按〝1〞,不同意(含弃权)按〝0〞,令其中i=1,2,…,k,且j=1,2,…,k,则同时同意第1,2号同学当选的人数为( )A.B.C. D.第Ⅱ卷(非选择题共100分)二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.已知某球体的体积与其表面积的数值相等,则此球体的半径为.12.函数中,是偶函数.13.以双曲线右顶点为顶点,左焦点为焦点的抛物线的方程是14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为.三.解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数(Ⅰ)求的最小正周期; (Ⅱ)求的最大值.最小值.16.(本小题满分13分)已知数列是等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)令求数列前n项和的公式.17.(本小题满分15分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AB=a.(Ⅰ)求证:直线A1D⊥B1C1;(Ⅱ)求点D到平面ACC1的距离;(Ⅲ)判断A1B与平面ADC的位置关系,并证明你的结论.18.(本小题满分15分)如图,A1,A为椭圆的两个顶点,F1,F2为椭圆的两个焦点.(Ⅰ)写出椭圆的方程及准线方程;(Ⅱ)过线段OA上异于O,A的任一点K作OA的垂线,交椭圆于P,P1两点,直线A1P与AP1交于点M.求证:点M在双曲线上.19.(本小题满分14分)有三个新兴城镇,分别位于A,B,C三点处,且AB=AC=13km,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC的垂直平分线上的P点处,(建立坐标系如图)(Ⅰ)若希望点P到三镇距离的平方和为最小,点P应位于何处?(Ⅱ)若希望点P到三镇的最远距离为最小,点P应位于何处?20.(本小题满分14分)设是定义在区间上的函数,且满足条件:(i)(ii)对任意的(Ⅰ)证明:对任意的(Ⅱ)判断函数是否满足题设条件;(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数,且使得对任意的若存在,请举一例:若不存在,请说明理由.绝密启用前普通高等学校招生全国统一考试数学试题参考解答一.选择题:本题考查基本知识和基本运算. 每小题5分,满分50分. 1.A 2.D 3.A 4.A 5.D 6.B 7.C 8.B 9.B 10.C 二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.3 12. 13.14.三.解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角.和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分. (Ⅰ)解:因为所以的最小正周期(Ⅱ)解:因为所以的最大值为,最小值为-16.本小题主要考查等差.等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分.(Ⅰ)解:设数列公差为,则又所以(Ⅱ)解:由得①②将①式减去②式,得所以17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力. 满分15分.(Ⅰ)证法一:∵点D是正△ABC中BC边的中点,∴AD⊥BC,又A1A⊥底面ABC,∴A1D⊥BC ,∵BC∥B1C1,∴A1D⊥B1C1.证法二:连结A1C1,则A1C=A1B. ∵点D是正△A1CB的底边中BC的中点,∴A1D⊥BC ,∵BC∥B1C1,∴A1D⊥B1C1.(Ⅱ)解法一:作DE⊥AC于E, ∵平面ACC1⊥平面ABC,∴DE⊥平面ACC1于E,即DE的长为点D到平面ACC1的距离. 在Rt△ADC中,AC=2CD=∴所求的距离解法二:设点D到平面ACC1的距离为,∵体积即点D到平面ACC1的距离为.(Ⅲ)答:直线A1B//平面ADC1,证明如下:证法一:如图1,连结A1C交AC1于F,则F为A1C的中点,∵D是BC的中点,∴DF∥A1B,又DF 平面ADC1,A1B平面ADC1,∴A1B∥平面ADC1.证法二:如图2,取C1B1的中点D1,则AD∥A1D1,C1D∥D1B,∴AD∥平面A1D1B,且C1D∥平面A1D1B,∴平面ADC1∥平面A1D1B,∵A1B平面A1D1B,∴A1B∥平面ADC1.18.本小主要考查直线.椭圆和双曲线等基本知识,考查分析问题和解决问题的能力.满分15分.(Ⅰ)解:由图可知,该椭圆的方程为准线方程为(Ⅱ)证明:设K点坐标,点P.P1的坐标分别记为,其中则……① 直线A1P,P1A的方程分别为:……② ……③②式除以③式得化简上式得代入②式得于是,直线A1P与AP1的交点M的坐标为因为所以,直线A1P与AP1的交点M在双曲线.19.本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)解:设P的坐标为(0,),则P至三镇距离的平方和为所以,当时,函数取得最小值. 答:点P的坐标是(Ⅱ)解法一:P至三镇的最远距离为由解得记于是因为在[上是增函数,而上是减函数. 所以时,函数取得最小值. 答:点P的坐标是解法二:P至三镇的最远距离为由解得记于是函数的图象如图,因此,当时,函数取得最小值.答:点P的坐标是解法三:因为在△ABC中,AB=AC=13,且,所以△ABC的外心M在线段AO上,其坐标为,且AM=BM=CM. 当P在射线MA上,记P为P1;当P在射线MA的反向延长线上,记P为P2,这时P到A.B.C三点的最远距离为P1C和P2A,且P1C≥MC,P2A≥MA,所以点P与外心M重合时,P到三镇的最远距离最小.答:点P的坐标是20.本小题考查函数.不等式等基本知识,考查综合运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)证明:由题设条件可知,当时,有即(Ⅱ)答:函数满足题设条件.验证如下:对任意的,当当当不妨设有所以,函数满足题设条件.(Ⅲ)答:这样满足的函数不存在.理由如下:假设存在函数满足条件,则由得①由于对任意的,都有所以,②①与②矛盾,因此假设不成立,即这样的函数不存在.。

高考数学普通高等学校招生全国统一考试60

高考数学普通高等学校招生全国统一考试60

高考数学普通高等学校招生全国统一考试60本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分 考试时间120分钟.第Ⅰ部分(选择题 共60分)参考公式:如果事件A 、B 互斥;那么 P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立;那么 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ;那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(一、选择题:本大题共12小题;每小题5分;共60分.在每小题给出的四个选项中;只有一项是符合题目要求的. 1.函数y =( )A .[1,)+∞B .2,3⎛⎫+∞⎪⎝⎭C .[23,1]D .(23;1]2.函数221()1x f x x -=+, 则(2)1()2f f =( )A .1B .-1C .35 D .35- 3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为( )A .2 BC .1 D4.不等式221x x +>+的解集是( )A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(1,0)(0,1)-D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C.D6.若向量a 与b 的夹角为60;||4,(2).(3)72b a b a b =+-=-,则向量a 的模为 ( ) A .2 B .4 C .6 D .12 7.已知p 是r 的充分不必要条件;s 是r 的必要条件;q 是s 的必要条件。

那么p 是q 成立的: ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件8.不同直线,m n 和不同平面,αβ;给出下列命题 ( )①////m m αββα⎫⇒⎬⊂⎭ ② //////m n n m ββ⎫⇒⎬⎭③ ,m m n n αβ⊂⎫⇒⎬⊂⎭异面 ④ //m m αββα⊥⎫⇒⊥⎬⎭其中假命题有: ( )A .0个B .1个C .2个D .3个 9. 若{}n a 是等差数列;首项120032004200320040,0,.0a a a a a >+><;则使前n 项和0n S > 成立的最大自然数n 是( )A .4005B .4006C .4007D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左;右焦点分别为12,F F ,点P 在双曲线的右支上;且12||4||PF PF =,则此双曲线的离心率e 的最大值为( ) A .43 B .53 C .2 D .7311.已知盒中装有3只螺口与7只卡口灯炮;这些灯炮的外形与功率都相同且灯口向下放着;现需要一只卡口灯炮使用;电工师傅每次从中任取一只并不放回;则他直到第3次才取得卡口灯炮的概率为 ( )A .2140B .1740C .310 D .712012. 如图;棱长为5的正方体无论从哪一个面看;都有两个直通的边长为1的正方形孔;则这个有孔正方体的表面积(含孔内各面)是 ( ) A .258 B .234 C .222 D .210第Ⅱ部分(非选择题 共90分)13.若在5(1)ax +的展开式中3x 的系数为80-;则_______a = 14.已知)0,0(,232>>=+y x yx ,则xy 的最小值是____________ 15.已知曲线31433y x =+;则过点(2,4)P 的切线方程是______________ 16.毛泽东在《送瘟神》中写到:“坐地日行八万里”。

高考数学普通高等学校招生全国统一考试65

高考数学普通高等学校招生全国统一考试65
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦洁净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原先的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。
【答案】C
解:③是假命题,如右图所示
满足 , ,
但 ,故选C.
( 8 )先后抛掷两枚平均的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子
朝上的面的点数分别为X、Y,则 的概率为()
A. B. C. D.
【答案】C
解:满足 的X、Y有(1, 2),(2, 4),(3, 6)这3种情形,而总的可能数有36种,因此 ,故选C.
(Ⅱ)试求方程 在闭区间 上的根的个数,并证明你的结论. Nhomakorabea【答案】
解:(Ⅰ)∵ ,

即 ,
∵在[0,7]上,只有 ,
∴ ,∴ ,
∴ 是非奇非偶函数.
(Ⅱ)由 ,令 ,得 ,
由 ,令 ,得 ,
∴ ,
∴ 是以10为周期的周期函数,
由 得, 的图象关于 对称,
∴在[0,11]上,只有 ,
∴10是 的最小正周期,
(9)在同一平面直角坐标系中,函数 和 的图像
关于直线 对称.现将 图像沿x轴向左平移2个单位,
再沿y轴向上平移1个单位,所得的图像是由两条线段组成的折线
(如图2所示),则函数 的表达式为
A. B.
C. D.
【答案】A
解:将图象沿y轴向下平移1个单位,再沿 轴向右平移2个单位得下图A,从而能够得到 的图象,故 ,

1955年普通高等学校招生全国统一考数学试题及答案

1955年普通高等学校招生全国统一考数学试题及答案

1955年普通高等学校招生全国统一考试数学1.甲、以二次方程x 2-3x-1=0的两根的平方为两根,作一个二次方程解:设原方程的两根为α,β,则由根与系数关系可得:α+β=3,αβ=-1,又,α2 +β2 =(α+β)2-2αβ=11,α2β2 =1,故所求的二次方程为 x 2-11x +1=0乙、等腰三角形的一腰的长是底边的4倍,求这三角形各角的余弦解:设AB=AC=4BC ,而AD 为底边上的高, 于是ACBC BC BC BC AC AB BC AC AB A ⋅⋅−+=⋅−+=4216162cos 222222.81cos ,81421cos ,3231323122======C AC BCAB BD B BCBC 同理 AB D C丙、已知正四棱锥底边的长为a ,侧棱与底面的交角为450,求这棱锥的高解:设S-ABCD 为正四棱锥,SO 为它的高,底边长为a ,∠SAO=450∵AO=a 22 ∴由△SOA 为等腰直角三角形, 故棱锥S-ABCD 的高SO=a 22 丁、写出二面角的平面角的定义 略2.求b ,c ,d 的值,使多项式x 3+bx 2+cx+d 适合于下列三条件:(1)被x-1整除,(2)被x-3除时余2, (3)被x+2除时与被x-2除时的余数相等解:根据余数定理及题设条件可得f(1)=1+b+c+d =0…………………………………① f(3)=27+9b+3c+d=2………………………………② -8+4b-2c+d= 8+4b+2c+d …………………………③ 化简③式可得 c=-4将其分别代入①②可得b+d=39b+d=-13 解得b=-2,d=5. 综上,b=-2,c=-4,d=5 S3.由直角△ABC 勾上一点D 作弦AB 的垂线交弦于E ,交股的延长线于F ,交外接圆于G EG 为EA 和EB 的比例中项,又为ED 和EF 的比例中项证:连接GA 、GB ,则△AGB 也是一个直角三角形因为EG 为直角△AGB 的斜边EG 为EA 和EB 的比例中项,即EG 2=EA ·EB ∵∠AFE=∠ABC ,∴直角△AEF ∽直角△DEB ,.EF ED EB EA EBEDEF EA ⋅=⋅=即 但是∵EG 2=EA ·EB ,∴EG 2=ED ·EF (等量代换). 故 EG 也是ED 和EF 的比例中项4.解方程x x x sin cos 2cos +=,求x 的通值解:x x x x sin cos sin cos 22+=−,)(.22,2,424,22)4cos(,22sin 22cos 22,1sin cos 01sin cos )(.4,1,010sin cos .0)1sin )(cos sin (cos ,0)sin (cos )sin )(cos sin (cos 为整数则得如果为整数则得如果k k k x k x x x x x x x x k k x tgx tgx x x x x x x x x x x x x ⎪⎩⎪⎨⎧π−ππ=∴π±π=π+∴=π+∴=−∴=−=−+π−π=∴−==+=+=−−+=+−−+5.一个三角形三边长成等差数列,其周长为12尺,面积为6平方尺,求证这个三角形为一个直角三角形证:可设其长分别为x-d,x,x+d.F C B因为三角形的周长为12尺, ∴(x-d)+x+(x+d)=12,∴x=4(尺) 于是该三角形的三边又可表示为4-d,4,4+d.由该三角形的面积为6,三边长为4-d,4,4+d ,代入求面积的计算公式,得.1,1),2)(2(1236)]4(6)[46)](4(6[662±==−+=+−−−−=d d d d d d由此可知,该三角形三边的长为3、4、5(或5、4、3)(尺),故它是一个直角三角形。

普通高等学校招生全国统一考试 数学(上海卷)

普通高等学校招生全国统一考试(上海卷)数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式的值为2.双曲线的渐近线方程为______3.的二项展开式中的系数为(结果用数值表示)4.设常数,函数,若的反函数的图像经过点,则=5.已知复数满足,(是虚数单位),则6.记等差数列的前项和为,若,则7.已知.若函数为奇函数,且在上递减,则8.在平面直角坐标系中,已知点是轴上的两个动点,且,则最小值为9.有编号互不相同的五个砝码,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为___________(结果用最简分数表示)10.设等比数列的通项公式为,前项和为,若,则___________11.已知常数,函数的图像经过点,若,则=12.已知实数1212,,,x x y y 满足:22221122121211,1,2x y x y x x y y +=+=+=,则+的最大值为_____二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设p 是椭圆22153x y +=上的动点,则p 到该椭圆的两个焦点的距离之和为()A. B. C. D.14.已知a R ∈,则“1a >”是“11a<”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。

1955年普通高等学校招生全国统一考数学试题及答案

1955年普通高等学校招生全国统一考试数学1.甲、以二次方程x 2-3x-1=0的两根的平方为两根,作一个二次方程解:设原方程的两根为α,β,则由根与系数关系可得:α+β=3,αβ=-1,又,α 2 +β 2 =(α+β)2-2αβ=11,α2β 2 =1,故所求的二次方程为 x 2-11x +1=0乙、等腰三角形的一腰的长是底边的4倍,求这三角形各角的余弦解:设AB=AC=4BC ,而AD 为底边上的高, 于是ACBC BC BC BC AC AB BC AC AB A ⋅⋅-+=⋅-+=4216162cos 222222.81cos ,81421cos ,3231323122======C AC BCAB BD B BCBC 同理 AB D C丙、已知正四棱锥底边的长为a ,侧棱与底面的交角为450,求这棱锥的高解:设S-ABCD 为正四棱锥,SO 为它的高,底边长为a ,∠SAO=450∵AO=a 22 ∴由△SOA 为等腰直角三角形, 故棱锥S-ABCD 的高SO=a 22 丁、写出二面角的平面角的定义 略2.求b ,c ,d 的值,使多项式x 3+bx 2+cx+d 适合于下列三条件:(1)被x-1整除,(2)被x-3除时余2, (3)被x+2除时与被x-2除时的余数相等 解:根据余数定理及题设条件可得f(1)=1+b+c+d =0…………………………………① f(3)=27+9b+3c+d=2………………………………② -8+4b-2c+d= 8+4b+2c+d …………………………③ 化简③式可得 c=-4将其分别代入①②可得 b+d=39b+d=-13 解得b=-2,d=5. 综上,b=-2,c=-4,d=5S3.由直角△ABC 勾上一点D 作弦AB 的垂线交弦于E ,交股的延长线于F ,交外接圆于G 求证:EG 为EA 和EB 的比例中项,又为ED 和EF 的比例中项证:连接GA 、GB ,则△AGB 也是一个直角三角形因为EG 为直角△AGB 的斜边EG 为EA 和EB 的比例中项,即EG 2=EA ·EB∵∠AFE=∠ABC ,∴直角△AEF ∽直角△DEB ,.EF ED EB EA EBEDEF EA ⋅=⋅=即 但是∵EG 2=EA ·EB ,∴EG 2=ED ·EF (等量代换). 故 EG 也是ED 和EF 的比例中项4.解方程x x x sin cos 2cos +=,求x 的通值 解:x x x x sin cos sin cos 22+=-,)(.22,2,424,22)4cos(,22sin 22cos 22,1sin cos 01sin cos )(.4,1,010sin cos .0)1sin )(cos sin (cos ,0)sin (cos )sin )(cos sin (cos 为整数则得如果为整数则得如果k k k x k x x x x x x x x k k x tgx tgx x x x x x x x x x x x x ⎪⎩⎪⎨⎧π-ππ=∴π±π=π+∴=π+∴=-∴=-=-+π-π=∴-==+=+=--+=+--+5.一个三角形三边长成等差数列,其周长为12尺,面积为6平方尺,求证这个三角形为一个直角三角形 证:可设其长分别为x-d,x,x+d.F C B因为三角形的周长为12尺, ∴(x-d)+x+(x+d)=12,∴x=4(尺) 于是该三角形的三边又可表示为4-d,4,4+d.由该三角形的面积为6,三边长为4-d,4,4+d ,代入求面积的计算公式,得.1,1),2)(2(1236)]4(6)[46)](4(6[662±==-+=+----=d d d d d d由此可知,该三角形三边的长为3、4、5(或5、4、3)(尺),故它是一个直角三角形。

1962-1966年普通高等学校招生全国统一考试数学试题参考答案

AD=BC,AB=CD D CBA D /C /B /A /A B D =半圆周 2(A B +A D )=圆周27°1962年普通高等学校招生全国统一考试数学参考答案1.解:设平均每年增长%x ,则有2(1%)121%x +=+, 解得10x =.又第一年产量/第三年产量 =110083%121%121=≈+∴该工厂平均每年比上一年增长10%,第一年的产量是第三年的产量的83%. 2.解:5)21(i -的实部是由包含i 的偶次方的各项所组成, ∴所求之实部为.41)2()2(44522505=-+-+i C i C C3.解:由已知方程得),92lg(4)3)(5(lg-=+-x x x 即(5)(3)294x x x -+=-,∴210210x x -+=, ∴3,7x x ==,当3x =时,方程无意义, ∴原方程的解为7x =.4.解:4sin(2arcsin )5442sin arcsin cos arcsin 55⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭432425525=⨯⨯=.5.证:(1)设ABCD 为圆的内接平行四边形(如图),由于两平行 弦所夹的弧相等,∴又∵ ∴∴∠C=900,∴ABCD 为矩形. (2)设ABCD 为圆外切平行四边形(如图). ∵圆的外切四边形的每 组对边的和相等,∴AD BC AB +=+ 但,AD BC AB CD ==,∴22,AD AB AB AD ==∴ABCD 为菱形.6.解:由②得 a y x -=③ 将③代入①得24(()210y y a y ---+=,即26(41)0y y a -++=,……………④ 2(6)4(41)16(2)a a ∆=--+=--.(1)当0∆>,即2a <时,方程组有不同的两实数解,且3y ==±,3xa =±,即 113,3x a y ⎧=+⎪⎨=+⎪⎩或 223,3x a y ⎧=-⎪⎨=+-⎪⎩ (2)当0∆=,即2a =时,方程组有相同的两实数解1,3.x y =⎧⎨=⎩(3)当0∆<,即2a >时,方程组没有实数解.7.解:∠ADB =1800-(330+270)=1200根据正弦定理,得sin 27sin120AB AD ⋅︒==︒第7题图 第8题图D1C1B1A1ED CBADCBA又∠CAD=630-330=300,由余弦定理可得222cos30 CD AD AC AD AC=+-⋅⋅︒,24sin271232︒=+-24(0.4540)120.45400.3668.3=+-⨯=∴0.61.CD≈8.解(1):设AA'mt=,A B'nt=.又1mt nt+=,∴1tm n=+.在直角△D AA''中,222D A D A AA''''=+2222222()m t n t m n t=+=+,而正方形A B C D''''的面积=2222222()()m nD A m n tm n+''=+=+.证(2):∵2221()2m nm n+-+22222()()2()m n m nm n+-+=+22()2()m nm n-=≥+,∴2221()2m nm n+≥+.9.证:设正方体的棱长为1,连接AC,则AC=2.∵AE为直角△1A AC的斜边1AC上的高,∴1A E·1AC=21AA,CE·1AC=AC2.两式相除,得,21)2(122211===ACAAECEA∴1A E:CE=1:2.10.证:第一种情形:四条直线4321,,,llll没有三条直线过同一点,这时它们共有六个交点,,,,,A B C D E F,它们各不相同.令直线21,ll相交于点A,可决定一平面α.∵点,,B C D均在平面α内,∴直线43,ll也在平面α内,∴直线4321,,,llll同在平面α内.第二种情形:四条直线4321,,,llll中有三条,例如,,,321lll过同一点A.∵直线4l不过点A,∴由点A及直线4l可决定一平面α.∵直线4l与直线,,,321lll相交,设交点为,,B C D,则点,,B C D在直线4l上,从而在平面α内,因此,直线,,,321lll各有两点在平面α内,即这三条直线在平面α内,故四直线4321,,,llll在同一平内.βP E D C B A D C BA1963年普通高等学校招生全国统一考试数学参考答案 1.解:tan cos 0θθ=∴≠ , ∴cos sin 1tan cos sin 1tan θθθθθθ--=++3==-+. 2.解:(1)2)3(1|31|22=+=+i ,tan θ=3πθ=.(2)由图可知,复数i 31+沿反时针方向转1500后,得到的复数为2(cos210sin 210)i i ︒+︒=.3.解:∵AD :BD =4:1, ∴AD =54AB ,BD =51AB , 又∵AB =1,∴AD =54,BD =51.在直角△ACD 中, ∵CD ⊥AB ,∴CD 2=AD ·BD =,254 ∴CD =52.4.证:如图,点P 是二面角CD αβ--内一点,PA ⊥平面α于点A ,PB ⊥平面β于点B ,∴PA ⊥CD ,PB ⊥CD .∴CD 垂直于由PA , PB 所决定的平面. 5.解:101lg23.28101lg23.28-=-101 1.3670=-⨯____138.067013910.0670=-=+-____139.9330=,lg 0.9330,8.570x x ==,∴10113923.28108.570--=⨯1398.57010-=⨯.6.解:由sin 3sin cos 20x x x -+=得, 2cos 2sin cos 20x x x ⋅+=,即 cos 2(2sin 1)0x x +=.由cos 20x =得,222x k ππ=±,即4x k ππ=±(k Z ∈);由2sin 10x +=,得1sin 2x =-,即 1(1)()(1)66k k x k k ππππ+=+--=+-(k Z ∈).7.解:由2(1)3(2)⨯+得222530x xy y --=,即 (3)(2)0x y x y -+=,∴3x y =,或2yx =-.将3x y =代入(1)得2y x =±= 将2yx =-代入(1)得2,1y x =±= ,经检验得原方程组的解为11x y ⎧=⎪⎪⎨⎪=⎪⎩ 或221,2.x y =⎧⎨=-⎩ 8.解:(1)没有重复数字的五位数共有72056=P (个). (2)由这六个数组成的五位数要为偶数,其末位数字只能是2和4,故末位数的取法有12C 种,当末位数字取定后,其余四位数字的取法只有4445P C ⋅种偶数的个数为240444512=⋅⋅P C C (个). (3)五位数要为3的倍数,必须组成它的数字的和是3的倍数,这里只有1,3,4,7,9五个数字的和是3的倍数,故共有 120!555==P (个). 9.证:由图可知AE 2=AC ·AD ,BF 2=BD ·BC ,∵AC =BD ,AD =BC ,∴AE 2=BF 2,AE =BF又OE OF =,90AEO BFO ∠=∠=︒, ∴△AOE ≌△BOF . 10. 证:(1)如图,过球心O 与直圆锥底面的中心1O 作一平面与圆锥和球的截面,则△SAB 为等腰三角形. 联OB ,则1OBO θ∠=. 设圆锥母线长为l , 底面半径为R ,则 cos 2l R θ⋅=,即θ=2cos Rl .又11tan OBO R ∠=,即1tan R θ=, ∴1tan cos 2l θθ=⋅,∴11tan cos 2tan l R θθθ+=+⋅11(1)tan cos 2θθ=+ 11cos 2tan cos 2θθθ+=⋅22212cos tan cos sin θθθθ=⋅- 22122tan 1tan tan (1tan )g θθθθ=⋅=--. (2)由条件及(1)得圆锥的全面积()S R l R π=+212tan tan (1tan )πθθθ=⋅⋅- 222tan (1tan )πθθ=-. (3)由(2)得222tan (1tan )S πθθ=-22228tan (1tan )2ππθθ≥=⎛⎫+- ⎪⎝⎭,当且仅当arctan 2θ=,即tan 2θ=(舍去负值),∴arctan2θ= ∴当θ取值22arctg=θ时,圆锥的全面积最小.注:本题可用配方法等方法求解.βPDBA1964年普通高等学校招生全国统一考试数学参考答案1.解:原式=32==.2.解:设乙的速度为v ,则甲的速度为v a +.在直角PBD ∆中,10cot PD v β=⋅; 在直角PAD ∆中,10()cot PD v a α=+, ∴10cot 10()cot v v a βα⋅=+,∴cot cot cot a v αβα=-∴cot cot 10cot cot cot a PD v αβββα==-10cos cos .sin()αβαβ=-3.解方程,014=+x 并证明它的四个根为一个正方形的四个顶点解:,sin cos 14ππi x +=-= ∴22cossin44k k x i ππππ++=+,0,1,2,3.k=1cossin44x i ππ=+=233cos sin44x i ππ=+=,355cos sin44x i ππ=+=,477cossin 4422x i iππ=+=-. 在复平面内(x 为实轴,y 为虚轴)分别用,,,A B C D 四点来表示四个根1234,,,x x x x (如图)即22A ⎛⎫ ⎪⎪⎝⎭,22B ⎛- ⎝⎭,22C ⎛-- ⎝⎭,22D ⎛- ⎝⎭. ∵,A B 关于y 轴对称,,A D 关于x 轴对称,∴∠A =900,同理,90B C D ∠=∠=∠=︒,且|AB |=|BC |=|CD |=|DA |=.2 ∴ABCD 是正方形,而,,,A B C D 是顶点. 4.证:设R 为△ABC 的外接圆的半径,则由正弦定理得,2sin ,2sin ,2sin a R b R c R αβγ===,∴由余弦定理得222cos 2b c a bcα+-=222224(sin sin sin )42sin sin R R βγαβγ+-=⋅⋅ 222sin sin sin 2sin sin βγαβγ+-=⋅. 5.解:设方程的三根为,,αββ,且0β>,则由根与系数的关系及题设有22222, (1)23,(2), (3)2 6. (4)m n αβαββαβαβ+=-⎧⎪+=-⎪⎨=-⎪⎪+=⎩ 由(4)-2·(2)得2412,(5)ααβ-=(1)式平方得22244,(6)m ααββ++=(5)+(6)得2222(2)12m αβ+=+,即22612m ⋅=+, ∴0m =.由(1)得02=+βα,即2αβ=-,代入(4)得266β=,1β=,或1β≠-(舍去),2α=-. 由(3)得2(2)12n αβ=-=--⋅=,∴0,2m n ==.6.解:将圆台补成圆锥体(如图).设其顶点为S ,SD x =,则103015x r x R ==+,即)(60cm x =. 又因AB 弧的长为 230()l R cm ππ==, 而90()l SA cm θθ=⋅=,∴,3090πθ=3πθ=,∴△SAB 为等边三角形,AB =90(cm ),即AB 间的距离为90cm.7.证:1)先证,,,A B C D 四点共面.设通过直线1111A B C D 而垂直于平面M 的平面为P .则因1AA ⊥平面M ,而1A 又在直线1111A B C D上,所以点A 在平面 P 内,同理点,,B C D 均在平面P 内,即 ,,,A B C D 四点共面.2)证ABCD 是一个平行四边形.若AB 与CD 相交于E ,则其在平面N 内的射影22A B 与22C D 也相交于2E ,此与22A B ∥22C D 的假设相违,∴AB ∥CD ,同理AD ∥BC . ∴ABCD 是一个平行四边形. 8.解:(1)设圆1O ,圆2O 的半径分别为1R ,2R ,则由图知 190CEO ∠=︒, 22CE O E R ==∴.211R CO =同理.222R AO =∴2211AC AO O O CO =++1212)()R R R R =+++121)()R R =+.又∵AB =1,∴AC =2.∴121)()R R +=∴122R R +== (2)两圆面积之和22221212()S R R R R πππ=+=+2211[(2)]R R π=+2211[22(2(2]R R π=-+2132(2R π⎛=-+ ⎝,∴当122R -=,即12R R =时S 取小. ∵1R 的最大值为1R =21,这时2R 为最小值,其值为2R=13(222-= 又当2R =21时,1R 有最小值1R =223-, ∴当1R =21(此时2R =223-)或1R =223-(此时2R =21)时,S 有最大值. 机动题 解:(1)如图,ABCD 为矩形.设AB =a ,AD b =. 作直角△12O O G ,则有()212R R +[][]221212()()b R R a R R =-++-+,解得12R R +=(a +b ).2ab ± ∵12R R a b +<+ ,∴12R R +=(a +b ).2ab - ∴两圆面积之和2212S R R ππ=+212(R π⎡=⎢⎣⎦∴当1R =,即12R R =时,S有最小值;当1R 或212R =min(b a ,)时,S 有最大值. (2)如图,球1O 和球2O 外切,球1O 和以1C 为顶点的三面角的三个面相切,球2O 和以A 为顶点的三面角的三个面相切(设棱长为1).同前类似可计算出:22AO =111C O =,1232R R +=. 两球的体积和33331212444()333V R R R R πππ=+=+22213)R ⎫⎡⎤⎪--⎬⎢⎥⎪⎪⎣⎦⎩⎭2213R ⎤⎛⎥=+ ⎢⎥⎝⎭⎝⎭⎣⎦当1R =,即12R R =时V 有最小值;当2111,22R R ===,或121,2R R ==V 有最大值.注:在(1)中的b a ,必须限制为,2b a b ≤<否则在矩形内之二圆无法相切.C B AAB 1965年普通高等学校招生全国统一考试数学参考答案1.解:二视图表示的是一 个正六棱锥,其棱长为a 2, 底面边长为a ,∴底面积2323a S = 棱锥的高,3a h =∴正六棱锥的体积23113332V Sh a ===.2.解:设经过x 小时后, 甲船在C 处追上以船, 则22BC x =(里) 26AC x =(里)由正弦定理得sin sin BC ACCAB ABC=∠∠,即2226sin(4948)sin(1804948)x xα=''︒-︒-︒,∴22sin 4948sin(4948)26α'⋅︒'︒-=,两边取对数得lgsin(4948)α'︒-lg22lgsin 4948lg26 1.8104'=+︒-=,9484015α''︒-=︒,∴49484015933α'''=︒-︒=︒. 3. 解:A ,B 两地之间的球面距离为过A ,B 所作的大圆的圆弧的长,设其长为l ,且设θ=∠AOB , 过A ,B 作平面1O AB NS ⊥(极轴), 此平面与球面交成圆1O . 设其半径为r ,由已知, 1AO B β∠=.设C ,D 分别为赤道平面上与点A ,B 同经度之两点,则由已知得, AOC BOD α∠=∠=. 在过A ,B 的大圆上有180R l πθ=.由此可知,只需求出θ即可.在圆1O 中,线段AB=2sin 2AB r β=.又在过A ,C 的大圆中,1190,OO A OAO α∠=︒∠=, ∴αcos R r =,代入上式,可得线段2cos sin2AB R βα=.在AOB ∆中,线段2sin ,2AB R θ=∴2sin2θR =,2sincos 2βαR∴2arcsin(cos sin)2βθα=.由此可得A ,B 两地之间的球面距离为2arcsin(cos sin ).1802R l πβα=此处之角度以度为单位. 4.证:(1)|sin 2||2sin cos |x x x =⋅2|sin ||cos |x x =⋅.∵|cos |1x ≤,∴|sin 2|2|sin |x x ≤. (2)当n =1时,结论显然成立. 假设当(1)n k k =>时结论成立,即 .|sin ||sin |x k kx ≤ 当1n k =+时,|sin(1)||sin cos cos sin |k x kx x kx x +=⋅+⋅ |sin cos ||cos sin |kx x kx x ≤⋅+⋅ |sin ||cos ||cos ||sin |kx x kx x =⋅+⋅ |sin ||sin |(1)|sin |k x x k x ≤+=+, 这就是说当1n k =+时,结论成立, ∴当n 为任意正整数时,结论均成立. 5.解:曲线C 是椭圆,中心在(1,1)-,其长轴平行于y 轴,短轴平行于x 轴(如图).设直线1l 过点P (4,2)-且垂直于直线l ,与曲线C 相交于点A ,B ,1l 的方程为2(4)y x +=--,即2y x =-+.解方程组22(1)(1)1,242,x y y x ⎧+-+=⎪⎨⎪=-+⎩得 12211,1,3 3.5;3x x y y ⎧=⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩∴直线1l 与曲线C 的交点为 15(,),(1,3)33A B -. 6.解:设α是它们的公共根,则2230, (1)4(1)0.(2)a p a p αα⎧+-=⎨---=⎩由(1)+3⨯(2)得241230p p ααα+--=,即 (4)(3)0p αα+-=,解得3α=或4pα=-.当3α=时,将3α=代入(1)得2p =-;当4p α=-时,将4pα=-代入(1)得210p +=,p 不存在.∴当p =-2时,方程032=-+px x 与方程x x 42-0)1(=--p 有一公共根3.7.解:(1) ∵111222(,),(,)P x y P x y , ∴12PP 的中点为)2,2(21211y y x x M ++, ∴点3P 的横坐标,8)(22212y y y x +== 纵坐标221y y y +=.123PP P S ∆=1122212121112()182x y x y y y y y ++211221121|()22x x x y x y y y -=-++ 21212()|8y y y y -++2222121221121|()2222y y y y y y y y -=-++ 21212()|8y y y y -++22121212121|||42()()|16y y y y y y y y =-⋅-+++ |)(|||16122121y y y y --⋅-=3121||16y y =-. (2)∵1P 的坐标为11(,)x y , 3P 的坐标为)2,8)((21221y y y y ++, ∴13PP 的中点为)43,1625(212221212y y y y y y M +++,点1Q 的横坐标,32)3(22212y y y x +== 纵坐标.4321y y y +=同理,点2Q 的横坐标212(3)32y y x +=,纵坐标.4321y y y += ∴131PPQ ∆的面积+232P PQ ∆的面积=128)(14332)3(121212212122111y y y y y y y y y x ++++的绝对值+114332)3(128)(21222122121221y x y y y y y y y y ++++的绝对值2212121|[2()(3)]16y y y y y =+-+ 12121212()(3)[2()(3)]8y y y y y y y y ++++-+2221212[(3)4()]|4y y y y y ++-+ 2212121|[2()(3)]16y y y y y ++-+ 12121212()(3)[2()(3)]8y y y y y y y y ++++-+2221212[(3)4()]|4y y y y y ++-+ 222112122111|||()||||()|128128y y y y y y y y =-⋅-+-⋅- 3121||64y y =-. (3)线段12PP 与抛物线所围成的图形的面积123131232()PP P PP Q P P Q S S S S ∆∆∆=+++ 333121212111||||||1664256y y y y y y =-+-+-+ 3123121||116||11214y y y y -==--.8.附加题(1)已知c b a ,,为实数,证明c b a ,,均为正整数的充要条件是0,0,0.a b c ab bc ca abc ++>⎧⎪++>⎨⎪>⎩(2)已知方程023=+++r qx px x 的三根γβα,,都是实数,证明γβα,,是一个三角形的三边的充要条件是30,0,048.p q r p pq r <><⎧⎨>-⎩证明:(1)条件的必要性是显然的. ∵,0,0,0>>>c b a∴0>++c b a ,0>++ca bc ab , .0>abc .下面证明条件的充分性:设c b a ,,是三次方程320x px qx r +++=的三个根,则由根与系数的关系及已知条件有0,0,0,p a b c q ab bc ca r abc -=++>⎧⎪=++>⎨⎪-=>⎩即 .0,0,0<><r q p∴三次方程023=+++r qx px x 的系数正负相间,∴方程无负根,即方程的根均非负; 又由0>abc 可知,方程无零根, ∴0,0,0a b c >>>.(2)由(1)的证明可知,γβα,,均为正数的充要条件是0,0,0p q r <><, ∴问题转化为证明γβα,,为三角形三条边的充要条件为r pq p 843->. 条件的必要性:若γβα,,为三角形的三边,则由三角形的性质必有,,αβγβγαγαβ+>+>+>, ∴0,0αβγβγα+->+->,0γαβ+->,∴))()((βαγαγβγβα-+-+-+ (2)(2)(2)p p p αβγ=------ (2)(2)(2)p p p αβγ=-+++a 32[2()p p αβγ=-+++ 4()8]p βγγααβαβγ++++33(248)p p pq r =--+- 3480p pq r =-+>, 即r pq p 843->.条件的充分性:若r pq p 843->,则 ,0843>+-r pq p 3()αβγ-+++4()()80αβγαββγγααβγ++++->, ()(222αβγαββγγα++++222)80αβγαβγ---->, 2[()][()αβγβγ++--22()]80αβγααβγ++-->, 322()()ααβγαβγ-+++- 2()()0βγβγ-+->,22()()()0ααβγβγαβγ-+++--->, 22()[()]0αβγαβγ-++-->,()()()0αβγαβγαβγ-+++--+>.此式中至少有一因式大于0,今设,0>++-γβα则必有()()0αβγαβγ+--+>.如果,0,0<+-<-+γβαγβα 两式相加得02<a ,即0<α, 此与0>α相矛盾. ∴,0>++-γβα,0,0>+->-+γβαγβα 即⎪⎩⎪⎨⎧>+>+>+,,,βγαγβααγβ 即γβα,,可作为一个三角形的三条边.综上所证可知,方程023=+++r qx px x 的三根γβα,,为一个三角形的三条边的充要条件是⎩⎨⎧-><><.840,0,03r pq p r q p1966年普通高等学校招生全国统一考试数学参考答案1.解:从12只灯泡中,选5只,如果其中有1只绿灯泡,4只红灯泡,那么,选法的种数为1457175C C =.如果其中有2只绿灯泡,3只红灯泡,那么,选法的种数为2357350C C =.∴一共有175+350=525种选法. 2.解:如图,已知8AD =, 10,6BC CD ==. 用1,O O 表示上、下 底面的中心,,E F 表 示,AD BC 的中点.连接11,,,OO EF OE O F ,则1OO FE 为直角梯形.从E 点作1O F 的垂线,垂足为G ,EG 就是正四棱台的高.EF ==EG ==,∴110080)3V =++=. 3.解法一:如图,在ABD ∆中,,,AB a BAD BDA θααβ=∠=-∠=-,由正弦定理得sin()sin()BD aθααβ=--,即asin()sin()a BD θααβ-=-.在BCD ∆中,,CBD BCD θβπθ∠=-∠=-, 由正弦定理,得sin()sin()CD BDθβπθ=--,即 sin()sin BD CD θβθ-=,∴sin()sin()sin sin()a CD θαθβθαβ--=-..解法二:如图, 从D 点作AC 的垂线与AC 的延长线交于点E ,设DE h =.在直角三角形ADE 中,tan()ha BEθα=-+,即tan()hBE a θα=--.在直角三角形BDE 中, tan()h BE θβ=- ,即tan()tan()hh a θβθα⎡⎤=--⎢⎥-⎣⎦,∴tan()tan()tan()tan()a h θβθαθβθα--=---.在直角三角形CDE 中,[]tan()tan()sin sin tan()tan()h a CD θβθαθθθβθα--==--- .4.已知双曲线的方程为221696418890x y x y -++-=.(1)求它的两个焦点的坐标.(2)一个圆通过这两个焦点并且与x 轴交于两点,这两点的距离是8.求这个圆的方程.解:(1)已知方程变形得2216(2)9(1)144x y +--=,即22(2)(1)1916x y +--=.令2,1x x y y ''+=-=,得221916x y ''-=, ∴这条双曲线的两个焦点在新坐标系中的坐标分别为(5,0),(5,0)-,且双曲线的两个焦点在旧坐标系中的坐标分别为 12(7,1),(3,1)F F -.(2)如图, 12,F F 为双曲线的两个焦点,为圆与x 轴的两个交点, C 为圆心.因为过C 点与x 轴垂直的直线必平分线段12F F ,且平分线段AB ,所以C 点的横坐标为7322-+=-,且4AM BM ==. 设圆心坐标为(2,)C t -,半径为r ,则在AMC Rt ∆中,2216r t =+. 由圆C 经过焦点12,F F 得()2222(7)(1)r t =---+-,即22226r t t =-+,∴2216226t t t +=-+, ∴5t =,∴r =∴圆的方程为22(2)(5)41x y ++-=.5. 解:设0,0u v ,则221,1x u y v =-=-, ∴原方程组可转化为22223, (1)2()180.(2)u v u v u v +=⎧⎨-++=⎩ 由(2)得2222()4180u v u v u v -+++=,即2240u v uv +=,0uv =,或40uv =-<(舍去).解方程组3,0u v uv +=⎧⎨=⎩得0,3u v ==,或3,0u v ==,即1,8,x y =-⎧⎨=⎩或9,1.x y =⎧⎨=-⎩检验知原方程组的解是1,8,x y =-⎧⎨=⎩9,1.x y =⎧⎨=-⎩ 注:本题的解法较多,在此不一一列举. 6.解: (1)为边长可这三个数中,任意两个数的和大于第三个数即可.∵,,a b c 是三角形是△ABC 的三边, ∴b c a +>,∴2b c b c a =++>+>,>同理可证>>∴以为边长可以作一个三角形.(2)∵是三角形A B C '''∆的三边长,∴cos A '=.(3)不失一般性可以认为a b c ≥≥,并且至少有一个不等号成立.由于较大的数的算术≥ 如果△ABC 与A B C '∆相似,那么△ABC 中的大边与A B C '''∆中的大边必为对应边,由相似三角形对应边成比例得==a b c ==. 这与△ABC 不是正三角形相矛盾.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大毛毛虫★倾情搜集★精品资料
大毛毛虫★倾情搜集★精品资料
1956年普通高等学校招生全国统一考试
数学
1.甲、利用对数性质计算lg2 5+lg2·lg50.
解:原式=lg2 5+lg2(lg5+1)=lg5(lg5+lg2)+lg2=lg5+lg2=1.
乙、设m是实数,求证方程2x2-(4m-1)x-m2-m=0的两根必定都是
实数
证:二次方程当其判别式不小于零时,它的两根为实数
由.124)(24)]14([222mmmm
.0,02m
故原方程的两根均为实数
丙、设M是△ABC的边AC的中点,过M作直线交AB于E,过B作
直线平行于ME交AC于F求证△AEF的面积等于△ABC的面积的一半
证:连MB,
则△AEF的面积=△AEM的面积+△MEF的面积
=△AEM的面积+△MEB的面积
=△ABM的面积=21·△ABC的面积(三角形的中线
BM二等分△ABC的面积)
丁、一个三角形三边长分别为3尺,4尺及37尺,求这个三角形
的最大角的度数
解:该三角形的最大边长为37,所以它所对的角最大,设此角
为,由余弦定理可得

.1206018021432)37(43cos222


A
B

C
F

E
M
大毛毛虫★倾情搜集★精品资料

大毛毛虫★倾情搜集★精品资料

戊、设0762xxtgtg是方程和的两根
求证:)cos()sin(
证:由根与系数关系可知:

)cos()sin(11)(.7,6



tgtgtgtgtgtgtgtgtg因

2.解方程组

.0)4)(3(,0127)()1(:)2(136)1(12722yxyx
yxyxyxyxyx式可得由解






.6,10;10,6;21919,21919;21919
,21919,.6,10,10,6,0120322,136)16()2()4(.21919,21919055182,136)9()2()3()4(16,16,04)3(9,9,0344332211222222yxyxyxyx

yx
xxxxyxxxxxxyyxyxxyyxyx其解为综上即得代入将

即得代入将
由此可得




经检验,这四组解均为原方程组的解
3.设P为等边△ABC外接圆的BC上的一点,求证:PA2=AB2+PB·PC
证:在△ABP和△ADB中,
∠BAP=∠DAB为公用角,
又∠APB=∠ACB=∠ABD=600
△ABP∽△ADB,

A

BPC
大毛毛虫★倾情搜集★精品资料

大毛毛虫★倾情搜集★精品资料
AB2=PA·AD…………(1)
同理可证△BPD∽△APC,
,PCPAPDPB
∴PB·PC=PA·PD…………(2)
(1)、(2)式左、右两边分别相加,则得
AB2+PB·PC=PA(AD+PD)=PA2,
∴PA2=AB2+PB·PC
4.有一个四棱柱,底面是菱形ABCD,∠A'AB=∠A'AD(如图)
求证:平面A'ACC'垂直于底面ABCD
证:设底面是菱形ABCD的对角线相交于O,联结A'D,A'O,A'B
在△A'AB与△A'AD中,
∵A'A=A'A,∠A'AB=∠A'AD,AB=AD,
△A'AB≌△A'AD,∴A'B=A'D,
△A'BD为等腰三角形
又∵O为DB的中点,∴A'O⊥DB
由菱形性质,DB⊥AC,∴DB垂直于底面A'ACC'
但底面ABCD是经过DB的
故 平面A'ACC'垂直于底面ABCD
5.若三角形的三个角成等差级数,则其中有一个角一定是600;
若这样的三角形的三边又成等比级数,则三个角都是600,试证明之
证(1,)设△ABC的三个角为A、B、C,由题意可得
B-A=C-B,∴2B=A+C
但∵A+B+C=1800,即3B=1800,B=600.

A
B
C
D
A'
B'

C'
D'

O
大毛毛虫★倾情搜集★精品资料

大毛毛虫★倾情搜集★精品资料
证(2),由(1)已知△ABC必有一个角为600,今设∠B=600.
∵△ABC的三边cba,,成等比级数,
∴.2acb
又由余弦定理可得,2,cos2222222accabBaccab

60,,60.0)(,02222CA
BCBAB
cacaacca

故△ABC为等边三角形,即其三个内角均为600.

相关文档
最新文档