天津市静海县2019-2020学年高考数学二模试卷含解析

合集下载

天津市静海县2019-2020学年高考数学考前模拟卷(2)含解析

天津市静海县2019-2020学年高考数学考前模拟卷(2)含解析

天津市静海县2019-2020学年高考数学考前模拟卷(2)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】【分析】 根据题意得到充分性,验证得出不必要,得到答案.【详解】 ,当时,,充分性; 当,取,验证成立,故不必要. 故选:.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.2.已知1F ,2F 是双曲线222:1x C y a-=()0a >的两个焦点,过点1F 且垂直于x 轴的直线与C 相交于A ,B 两点,若2AB =△2ABF 的内切圆的半径为( )A .23B .3C .23D 23【答案】B【解析】【分析】设左焦点1F 的坐标, 由AB 的弦长可得a 的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF 2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【详解】由双曲线的方程可设左焦点1(,0)F c -,由题意可得222b AB a==, 由1b =,可得2a =所以双曲线的方程为: 2212x y -=所以12(F F ,所以2121122ABF S AB F F =⋅⋅==V 三角形ABF 2的周长为()()22112242C AB AF BF AB a AF a BF a AB =++=++++=+==设内切圆的半径为r ,所以三角形的面积1122S C r r =⋅⋅=⋅=,所以=解得r =故选:B【点睛】 本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.3.已知i 为虚数单位,复数()()12z i i =++,则其共轭复数z =( )A .13i +B .13i -C .13i -+D .13i -- 【答案】B【解析】【分析】先根据复数的乘法计算出z ,然后再根据共轭复数的概念直接写出z 即可.【详解】由()()1213z i i i =++=+,所以其共轭复数13z i =-.故选:B.【点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易.4.复数21i z i =-(i 为虚数单位),则z 等于( )A .3B .C .2D【答案】D【解析】【分析】 利用复数代数形式的乘除运算化简z ,从而求得z ,然后直接利用复数模的公式求解. 【详解】 ()()()()21211111i i i z i i i i i i +===+=-+--+, 所以1z i =--,2z =,故选:D.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.5.函数()()sin f x A x ωϕ=+(0A >,0>ω, 2πϕ<)的部分图象如图所示,则,ωϕ的值分别为( )A .2,0B .2, 4πC .2, 3π-D .2, 6π 【答案】D【解析】【分析】 由题意结合函数的图象,求出周期T ,根据周期公式求出ω,求出A ,根据函数的图象过点16π⎛⎫ ⎪⎝⎭,,求出ϕ,即可求得答案【详解】由函数图象可知:311341264T πππ=-= T π=,21A ω∴==,函数的图象过点16π⎛⎫ ⎪⎝⎭, 1sin 26πϕ⎛⎫∴=⨯+ ⎪⎝⎭,2πϕ<Q ,则6πϕ= 故选D 【点睛】 本题主要考查的是()sin y A x ωϕ=+的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果6.已知π3π,22α⎛⎫∈⎪⎝⎭,()3tan π4α-=-,则sin cos αα+等于( ). A .15± B .15- C .15 D .75- 【答案】B【解析】【分析】由已知条件利用诱导公式得3tan 4α=-,再利用三角函数的平方关系和象限角的符号,即可得到答案. 【详解】由题意得()tan πα-= 3tan 4α=-, 又π3π,22α⎛⎫∈ ⎪⎝⎭,所以π,πcos 0,sin 02ααα⎛⎫∈ ⎪⎝⎭,,结合22sin cos 1αα+=解得34sin ,cos 55αα==-, 所以sin cos αα+ 341555=-=-, 故选B.【点睛】本题考查三角函数的诱导公式、同角三角函数的平方关系以及三角函数的符号与位置关系,属于基础题. 7.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A .36 cm 3B .48 cm 3C .60 cm 3D .72 cm 3【答案】B试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.考点:三视图和几何体的体积. 8.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-【答案】C【解析】【分析】 利用n S 先求出n a ,然后计算出结果.【详解】根据题意,当1n =时,11224S a λ==+,142a λ+∴=, 故当2n ≥时,112n n n n a S S --=-=, Q 数列{}n a 是等比数列,则11a =,故412λ+=, 解得2λ=-,故选C .【点睛】本题主要考查了等比数列前n 项和n S 的表达形式,只要求出数列中的项即可得到结果,较为基础. 9.若复数z 满足()134i z i +=+,则z 对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】利用复数模的计算、复数的除法化简复数z ,再根据复数的几何意义,即可得答案;【详解】 Q ()55(1)5513451222i i z i z i i -+=+=⇒===-+, ∴z 对应的点55(,)22-, ∴z 对应的点位于复平面的第四象限.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.10.定义在R 上的偶函数()f x ,对1x ∀,()2,0x ∈-∞,且12x x ≠,有()()21210f x f x x x ->-成立,已知()ln a f π=,12b f e -⎛⎫= ⎪⎝⎭,21log 6c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .b a c >>B .b c a >>C .c b a >>D .c a b >>【答案】A【解析】【分析】根据偶函数的性质和单调性即可判断.【详解】解:对1x ∀,()2,0x ∈-∞,且12x x ≠,有()()21210f x f x x x ->-()f x 在(),0x ∈-∞上递增因为定义在R 上的偶函数()f x所以()f x 在()0,x ∈+∞上递减 又因为221log log 626=>,1ln 2π<<,1201e -<<所以b a c >>故选:A【点睛】考查偶函数的性质以及单调性的应用,基础题.11.设集合{}12M x x =<≤,{}N x x a =<,若M N M ⋂=,则a 的取值范围是() A .(),1-∞ B .(],1-∞ C .()2,+∞ D .[)2,+∞【答案】C【解析】【分析】由M N M ⋂=得出M N ⊆,利用集合的包含关系可得出实数a 的取值范围.【详解】{}12M x x =<≤Q ,{}N x x a =<且M N M ⋂=,M N ∴⊆,2a ∴>.因此,实数a 的取值范围是()2,+∞.故选:C.【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.12.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙【答案】A【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.二、填空题:本题共4小题,每小题5分,共20分。

天津市静海县2019-2020学年高考数学第二次调研试卷含解析

天津市静海县2019-2020学年高考数学第二次调研试卷含解析

天津市静海县2019-2020学年高考数学第二次调研试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则乘积ab 的值是( ) A .-15 B .-3C .3D .15【答案】B 【解析】17(17)(2)1325i i i i i +++==-+-,∴1,3,3a b ab =-==-,选B . 2.已知函数ln(1),0()11,02x x f x x x +>⎧⎪=⎨+≤⎪⎩,若m n <,且 ()()f m f n =,则n m -的取值范围为( )A .[32ln 2,2)-B .[32ln 2,2]-C .[1,2)e -D .[1,2]e -【答案】A 【解析】分析:作出函数()f x 的图象,利用消元法转化为关于n 的函数,构造函数求得函数的导数,利用导数研究函数的单调性与最值,即可得到结论.详解:作出函数()f x 的图象,如图所示,若m n <,且()()f m f n =, 则当ln(1)1x +=时,得1x e +=,即1x e =-, 则满足01,20n e m <<--<≤,则1ln(1)12n m +=+,即ln(1)2m n =+-,则22ln(1)n m n n -=+-+, 设()22ln(1),01h n n n n e =+-+<≤-,则()21111n h n n n -=+=++', 当()0h n '>,解得11n e <≤-,当()0h n '<,解得01n <<, 当1n =时,函数()h n 取得最小值()1122ln(11)32ln 2h =+-+=-, 当0n =时,()022ln12h =-=;当1n e =-时,()1122ln(11)12h e e e e -=-+--+=-<,所以32ln 2()2h n -<<,即n m -的取值范围是[32ln 2,2)-,故选A.点睛:本题主要考查了分段函数的应用,构造新函数,求解新函数的导数,利用导数研究新函数的单调性和最值是解答本题的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.3.已知向量(3a =r ,b r是单位向量,若3a b -=r r ,则,a b =r r ( )A .6π B .4π C .3π D .23π 【答案】C 【解析】 【分析】设(,)b x y =r,根据题意求出,x y 的值,代入向量夹角公式,即可得答案;【详解】设(,)b x y =r ,∴(13)a b x y -=-r r, Q b r是单位向量,∴221x y +=,Q 3a b -=r r,∴22(1)(3)3x y -+=, 联立方程解得:1,23x y ⎧=-⎪⎪⎨⎪=⎪⎩或1,0,x y =⎧⎨=⎩ 当1,23x y ⎧=-⎪⎪⎨⎪=⎪⎩时,13122cos ,212a b -+<>==⨯r r ;∴,3a b π<>=r r 当1,0,x y =⎧⎨=⎩时,11cos ,212a b <>==⨯r r ;∴,3a b π<>=r r 综上所述:,3a b π<>=r r .故选:C. 【点睛】本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意b r的两种情况.4.已知函数2(0)()ln (0)x x f x x x ⎧≤=⎨>⎩,且关于x 的方程()0f x x a +-=有且只有一个实数根,则实数a 的取值范围( ). A .[0,)+∞ B .(1,)+∞C .(0,)+∞D .[,1)-∞【答案】B 【解析】 【分析】根据条件可知方程()0f x x a +-=有且只有一个实根等价于函数()y f x =的图象与直线y x a =-+只有一个交点,作出图象,数形结合即可. 【详解】解:因为条件等价于函数()y f x =的图象与直线y x a =-+只有一个交点,作出图象如图,由图可知,1a >, 故选:B . 【点睛】本题主要考查函数图象与方程零点之间的关系,数形结合是关键,属于基础题.5.若两个非零向量a r 、b r 满足()()0a b a b +⋅-=r r r r ,且2a b a b +=-r r r r ,则a r 与b r夹角的余弦值为( )A .35B .35±C .12D .12±【答案】A 【解析】 【分析】设平面向量a r 与b r的夹角为θ,由已知条件得出a b =r r ,在等式2a b a b +=-r r r r 两边平方,利用平面向量数量积的运算律可求得cos θ的值,即为所求.【详解】设平面向量a r 与b r的夹角为θ,()()22220a b a b a b a b+⋅-=-=-=r r r r r r r r Q ,可得a b =r r ,在等式2a b a b +=-r r r r 两边平方得22222484a a b b a a b b +⋅+=-⋅+r r r r r r r r ,化简得3cos 5θ=.故选:A. 【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.6.点(,)P x y 为不等式组+4x y y x y ≤⎧⎪≤⎨⎪≥⎩所表示的平面区域上的动点,则+22-y x 的取值范围是( )A .()(),21,-∞-⋃+∞B .(][),11,-∞-+∞UC .()2,1-D .[]2,1-【答案】B 【解析】 【分析】作出不等式对应的平面区域,利用线性规划的知识,利用z 的几何意义即可得到结论. 【详解】不等式组40x y y x y +⎧⎪⎨⎪⎩„„…作出可行域如图:(4,0)A ,(2,2)B ,(0,0)O ,22y z x +=-的几何意义是动点(,)P x y 到(2,2)Q -的斜率,由图象可知QA 的斜率为1,QO 的斜率为:1-, 则22y x +-的取值范围是:(-∞,1][1-U ,)+∞. 故选:B .【点睛】本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键. 7.若直线240x y m ++=经过抛物线22y x =的焦点,则m =( )A .12B .12-C .2D .2-【答案】B 【解析】 【分析】计算抛物线的交点为10,8⎛⎫ ⎪⎝⎭,代入计算得到答案. 【详解】22y x =可化为212x y =,焦点坐标为10,8⎛⎫⎪⎝⎭,故12m =-.故选:B . 【点睛】本题考查了抛物线的焦点,属于简单题.8.在钝角ABC V 中,角,,A B C 所对的边分别为,,a b c ,B 为钝角,若cos sin a A b A =,则sin sin A C +的最大值为( )A B .98C .1D .78【答案】B 【解析】 【分析】首先由正弦定理将边化角可得cos sin A B =,即可得到2A B π=-,再求出3,24B ππ⎛⎫∈⎪⎝⎭,最后根据sin sin sin sin 22A C B B B πππ⎡⎤⎛⎫⎛⎫+=-+--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦求出sin sin A C +的最大值;【详解】解:因为cos sin a A b A =, 所以sin cos sin sin A A B A = 因为sin 0A ≠ 所以cos sin A B =2B π>Q2A B π∴=-02202A B C ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩Q ,即0222022B B B πππππππ⎧<-<⎪⎪⎪<<⎨⎪⎪⎛⎫<--< ⎪⎪⎝⎭⎩,3,24B ππ⎛⎫∴∈ ⎪⎝⎭,cos 2B ⎛⎫∴∈- ⎪ ⎪⎝⎭sin sin sin sin 22A C B B B πππ⎡⎤⎛⎫⎛⎫∴+=-+--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos cos2B B =--22cos cos 1B B =--+2192cos 48B ⎛⎫=-++ ⎪⎝⎭1cos ,042B ⎛⎫∴=-∈- ⎪ ⎪⎝⎭时()max 9sin sin 8A C += 故选:B 【点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题. 9.已知集合{|{|2,}A x N y B x x n n Z =∈===∈,则A B =I ( )A .[0,4]B .{0,2,4}C .{2,4}D .[2,4]【答案】B 【解析】 【分析】计算{}0,1,2,3,4A =,再计算交集得到答案 【详解】{}{|0,1,2,3,4A x N y =∈==,{|2,}B x x n n Z ==∈表示偶数,故{0,2,4}A B =I . 故选:B . 【点睛】本题考查了集合的交集,意在考查学生的计算能力.10.已知抛物线22(0)y px p =>上一点(5,)t 到焦点的距离为6,P Q 、分别为抛物线与圆22(6)1x y -+=上的动点,则PQ 的最小值为( )A 1B .2C .D .1【答案】D 【解析】 【分析】利用抛物线的定义,求得p 的值,由利用两点间距离公式求得PM ,根据二次函数的性质,求得minPM ,由PQ 取得最小值为min1PM -,求得结果.【详解】由抛物线2:2(0)C y px p =>焦点在x 轴上,准线方程2px =-, 则点(5,)t 到焦点的距离为562pd =+=,则2p =, 所以抛物线方程:24y x =,设(,)P x y ,圆22:(6)1M x y -+=,圆心为(6,1),半径为1,则PM ===,当4x =时,PQ 11=, 故选D. 【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.11.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r,120BAC ∠=︒,则||EB =u u u r( )A B .C D .4【答案】A 【解析】 【分析】根据向量的线性运算可得3144EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可. 【详解】因为11131()22244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r u u u r ,所以22229311216441||6EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u ur u u u r u u r u u u r u 229311112()2168216=⨯-⨯⨯⨯-+⨯ 1916=, 所以19||4EB =u u u r, 故选:A 【点睛】本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.12.在ABC ∆中,2AB =,3AC =,60A ∠=︒,O 为ABC ∆的外心,若AO x AB y AC =+u u u r u u u r u u u r,x ,y R ∈,则23x y +=( ) A .2 B .53C .43D .32【答案】B 【解析】 【分析】首先根据题中条件和三角形中几何关系求出x ,y ,即可求出23x y +的值. 【详解】如图所示过O 做三角形三边的垂线,垂足分别为D ,E ,F , 过O 分别做AB ,AC 的平行线NO ,MO ,由题知222294cos 607212AB AC BC BC BC AB AC +-++︒==⇒=⋅⋅则外接圆半径212sin 603BC r ==⋅︒,因为⊥OD AB,所以OD ===, 又因为60DMO ∠=︒,所以2133DM AM =⇒=,43MO AN ==, 由题可知AO xAB y AC AM AN =+=+u u u r u u u r u u u r u u u u r u u u r,所以16AM x AB ==,49AN y AC ==, 所以5233x y +=. 故选:D. 【点睛】本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题. 二、填空题:本题共4小题,每小题5分,共20分。

天津市静海县2019-2020学年高考数学模拟试题含解析

天津市静海县2019-2020学年高考数学模拟试题含解析

天津市静海县2019-2020学年高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有( )A .17种B .27种C .37种D .47种【答案】C【解析】【分析】由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.【详解】所有可能的情况有3464=种,其中最大值不是4的情况有3327=种,所以取得小球标号最大值是4的取法有642737-=种,故选:C【点睛】本题考查古典概型,考查补集思想的应用,属于基础题.2.已知定义在R 上的偶函数()f x ,当0x ≥时,22()2x x x f x e +=-,设(ln (ln2a f b f c f ===,则( ) A .b a c >>B .b a c >=C .a c b =>D .c a b >> 【答案】B【解析】【分析】 根据偶函数性质,可判断,a c 关系;由0x ≥时,22()2xx x f x e +=-,求得导函数,并构造函数()1x g x e x =--,由()g x '进而判断函数()f x 在0x ≥时的单调性,即可比较大小.【详解】()f x 为定义在R 上的偶函数,所以(ln ln 22c f f f ⎛⎫⎛⎫==-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以a c =;当0x ≥时,22()2xx x f x e +=-, 则)1(x f x e x =--',令()1x g x e x =--则1()x g x e '=-,当0x ≥时,)0(1x g x e =-≥',则()1x g x e x =--在0x ≥时单调递增,因为000)10(g e =--=,所以1(0)xg x e x --=≥,即)0(1x x f x e =--≥', 则22()2xx x f x e +=-在0x ≥时单调递增,而0<<(f f <,综上可知,(ln 2f f f⎛⎫=< ⎪ ⎪⎝⎭即a c b =<,故选:B.【点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.3.在ABC V 中,已知9AB AC ⋅=uu u r uuu r ,sin cos sin B A C =,6ABC S =V ,P 为线段AB 上的一点,且CA CB CP x y CA CB=⋅+⋅u u u r u u u r u u u r u u u r u u u r ,则11x y +的最小值为( )A .712+B .12C .43D .512+【答案】A【解析】【分析】在ABC V 中,设AB c =,BC a =,AC b =,结合三角形的内角和及和角的正弦公式化简可求cos 0C =,可得2C π=,再由已知条件求得4a =,3b =,5c =,考虑建立以AC 所在的直线为x 轴,以BC 所在的直线为y 轴建立直角坐标系,根据已知条件结合向量的坐标运算求得4312x y +=,然后利用基本不等式可求得11x y+的最小值.【详解】在ABCV中,设AB c=,BC a=,AC b=,sin cos sinB A C=Q,即()sin cos sinA C A C+=,即sin cos cos sin cos sinA C A C A C+=,sin cos0A C∴=,0Aπ<<Q,sin0A∴>,cos0C∴=,0Cπ<<Q,2Cπ∴=,9AB AC⋅=u u u r u u u rQ,即cos9cb A=,又1sin62ABCS bc A==V,sin4tancos3bc A aAbc A b∴===,162ABCS ab==VQ,则12ab=,所以,4312abab⎧=⎪⎨⎪=⎩,解得43ab=⎧⎨=⎩,225c a b∴=+=.以AC所在的直线为x轴,以BC所在的直线为y轴建立如下图所示的平面直角坐标系,则()0,0C、()3,0A、()0,4B,P为线段AB上的一点,则存在实数λ使得()()()3,43,401AP ABλλλλλ==-=-≤≤u u u r u u u r,()33,4CP CA CBλλ∴=+=-u u u r u u u r u u u r,设1CAeCA=u u u ru ru u u r,1CeBCB=u u u ru ru u u r,则121e e==u r u u r,()11,0e∴=u r,()20,1e=u r,()12,CA CBCP x y xe ye x yCA CB=⋅+⋅=+=u u u r u u u ru u u r u r u u rQ u u u r u u u r,334xyλλ=-⎧∴⎨=⎩,消去λ得4312x y+=,134x y∴+=,所以,117737234341234121211x y x y x yx x y y x yy x⎛⎫⎛⎫+=++=++≥⋅=⎪⎪⎝⎭⎝⎭,当且仅当3x y=时,等号成立,因此,11x y +的最小值为7312+. 故选:A.【点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解CA CAu u u r u u u r 是一个单位向量,从而可用x 、y 表示CP u u u r ,建立x 、y 与参数的关系,解决本题的第二个关键点在于由33x λ=-,4y λ=发现4312x y +=为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.4.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A .43 B .916 C .34 D .169【答案】D【解析】【分析】分别求出球和圆柱的体积,然后可得比值.【详解】设圆柱的底面圆半径为r,则r,所以圆柱的体积2126V =π⋅⨯=π.又球的体积32432233V =π⨯=π,所以球的体积与圆柱的体积的比213216369V V ππ==,故选D. 【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.5.在平面直角坐标系xOy 中,锐角θ顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点5P m ⎛⎫ ⎪ ⎪⎝⎭,则sin 24πθ⎛⎫+= ⎪⎝⎭( ) A.10 B.10 C.10 D【答案】A【解析】【分析】根据单位圆以及角度范围,可得m ,然后根据三角函数定义,可得sin ,cos θθ,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【详解】 由题可知:22515m ⎛⎫+= ⎪ ⎪⎝⎭,又θ为锐角 所以0m >,25m = 根据三角函数的定义:255sin ,cos θθ== 所以4sin 22sin cos 5θθθ== 223cos 2cos sin 5θθθ=-=- 由sin 2sin 2cos cos 2sin 444πππθθθ⎛⎫+=+ ⎪⎝⎭ 所以42322sin 2455πθ⎛⎫+=⨯-⨯= ⎪⎝⎭ 故选:A【点睛】 本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.6.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30°,若向弦图内随机抛掷200颗米粒(大小忽略不计,取3 1.732≈),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .64【答案】B【解析】【分析】 设大正方体的边长为x ,从而求得小正方体的边长为3122x x -,设落在小正方形内的米粒数大约为N ,利用概率模拟列方程即可求解。

天津市静海县2019-2020学年高考二诊数学试题含解析

天津市静海县2019-2020学年高考二诊数学试题含解析

天津市静海县2019-2020学年高考二诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若双曲线222:14x y C m-=的焦距为C 的一个焦点到一条渐近线的距离为( )A .2B .4CD .【答案】B【解析】【分析】根据焦距即可求得参数m ,再根据点到直线的距离公式即可求得结果.【详解】因为双曲线222:14x y C m-=的焦距为故可得(224m +=,解得216m =,不妨取4m =;又焦点()F ,其中一条渐近线为2y x =-,由点到直线的距离公式即可求的4d ==.故选:B.【点睛】 本题考查由双曲线的焦距求方程,以及双曲线的几何性质,属综合基础题.2.设a r ,b r ,c r 是非零向量.若1()2a cbc a b c ⋅=⋅=+⋅r r r r r r r ,则( ) A .()0a b c ⋅+=r r rB .()0a b c ⋅-=r r rC .()0a b c +⋅=r r rD .()0a b c -⋅=r r r【答案】D【解析】 试题分析:由题意得:若a c b c ⋅=⋅r r r r ,则()0a b c -⋅=r r r ;若a c b c ⋅=-⋅r r r r ,则由1()2a cbc a b c ⋅=⋅=+⋅r r r r r r r 可知,0a c b c ⋅=⋅=r r r r ,故()0a b c -⋅=r r r 也成立,故选D.考点:平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.3.若()()()20192019012019111x a a x a x -=+++++L ,x ∈R ,则22019122019333a a a ⋅+⋅++⋅L 的值为( )A .201912--B .201912-+C .201912-D .201912+【答案】A【解析】【分析】取1x =-,得到201902a =,取2x =,则2201901220193331a a a a +⋅+⋅++⋅=-L ,计算得到答案. 【详解】取1x =-,得到201902a =;取2x =,则2201901220193331a a a a +⋅+⋅++⋅=-L . 故22019201912201933312a a a ⋅+⋅++⋅=--L . 故选:A .【点睛】本题考查了二项式定理的应用,取1x =-和2x =是解题的关键.4.曲线24x y =在点()2,t 处的切线方程为( )A .1y x =-B .23y x =-C .3y x =-+D .25y x =-+【答案】A【解析】【分析】将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程.【详解】 曲线24x y =,即214y x =, 当2x =时,代入可得21124t =⨯=,所以切点坐标为()2,1, 求得导函数可得12y x '=, 由导数几何意义可知1212k y ='=⨯=, 由点斜式可得切线方程为12y x -=-,即1y x =-,故选:A.【点睛】本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题.5.函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则其图象向左平移6π个单位长度后得到的函数的一条对称轴是( )A .4x π= B .3x π= C .56x π= D .1912x π= 【答案】D【解析】【分析】 由三角函数的周期可得23πω=,由函数图像的变换可得, 平移后得到函数解析式为244sin 39y x π⎛⎫=+ ⎪⎝⎭,再求其对称轴方程即可. 【详解】 解:函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则函数2()4sin 33f x x π⎛⎫=+ ⎪⎝⎭,经过平移后得到函数解析式为2244sin 4sin 36339y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由24()392x k k πππ+=+∈Z , 得3()212x k k ππ=+∈Z ,当1k =时,1912x π=. 故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.6.已知复数1cos23sin 23z i =+o o 和复数2cos37sin37z i =+o o ,则12z z ⋅为A .122-B .12i +C .12+D 12i - 【答案】C【解析】【分析】利用复数的三角形式的乘法运算法则即可得出.【详解】z 1z 2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=122+. 故答案为C .【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.7.过抛物线C 的焦点且与C 的对称轴垂直的直线l 与C 交于A ,B 两点,||4AB =,P 为C 的准线上的一点,则ABP ∆的面积为( )A .1B .2C .4D .8 【答案】C【解析】【分析】设抛物线的解析式22(0)y px p =>,得焦点为,02p F ⎛⎫ ⎪⎝⎭,对称轴为x 轴,准线为2p x =-,这样可设A 点坐标为,22p ⎛⎫⎪⎝⎭,代入抛物线方程可求得p ,而P 到直线AB 的距离为p ,从而可求得三角形面积. 【详解】 设抛物线的解析式22(0)y px p =>, 则焦点为,02p F ⎛⎫ ⎪⎝⎭,对称轴为x 轴,准线为2p x =-, ∵ 直线l 经过抛物线的焦点,A ,B 是l 与C 的交点,又AB x ⊥轴,∴可设A 点坐标为,22p ⎛⎫⎪⎝⎭, 代入22y px =,解得2p =, 又∵点P 在准线上,设过点P 的AB 的垂线与AB 交于点D ,||222p p DP p =+-==, ∴11||||24422ABP S DP AB ∆=⋅=⨯⨯=. 故应选C.【点睛】 本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出A 点坐标,从而求得参数p 的值.本题难度一般.8.已知12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,,A B 是C 的左、右顶点,点P 在过1F 且PAB △为等腰三角形,120ABP ∠=︒,则C 的渐近线方程为( )A .12y x =±B .2y x =±C .y x =D .y =【答案】D【解析】【分析】根据PAB △为等腰三角形,120ABP ∠=︒可求出点P 的坐标,又由1PF 的斜率为34可得出,a c 关系,即可求出渐近线斜率得解.【详解】如图,因为PAB △为等腰三角形,120ABP ∠=︒,所以||||2PB AB a ==,60PBM ∠=︒,||cos602,||sin603P P x PB a a y PB a ∴=⋅︒+==⋅︒=,又1303PF a k -==,2a c ∴=223a b ∴=,解得3ba =,所以双曲线的渐近线方程为3y x =±,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于中档题.9.如图,2AB =是圆O 的一条直径,,C D 为半圆弧的两个三等分点,则()AB AC AD ⋅+=u u u r u u u r u u u r ()A.52B.4C.2D.13+【答案】B【解析】【分析】连接CD、OD,即可得到60CAB DOB︒∠=∠=,1AC=,再根据平面向量的数量积及运算律计算可得;【详解】解:连接CD、OD,CQ,D是半圆弧的两个三等分点,//CD AB∴,且2AB CD=,60CAB DOB︒∠=∠=所以四边形AODC为棱形,1cos1212AC AB AC AB BAC∴=∠=⨯⨯=u u u r u u u r u u u r u u u rg g∴()11222AB AC AD AB AC AC AB AB AC AB⎡⎤⎛⎫⎛⎫+=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g2122AC AB AB=+u u u r u u u r u u u rg.2121242=⨯+⨯=故选:B【点睛】本题考查平面向量的数量积及其运算律的应用,属于基础题.10.公差不为零的等差数列{a n}中,a1+a2+a5=13,且a1、a2、a5成等比数列,则数列{a n}的公差等于( ) A.1 B.2 C.3 D.4【答案】B【解析】【分析】设数列的公差为,0d d≠.由12513a a a++=,125,,a a a成等比数列,列关于1,a d的方程组,即求公差d. 【详解】设数列的公差为,0d d≠,125113,3513a a a a d ++=∴+=Q ①.125,,a a a Q 成等比数列,()()21114a d a a d ∴+=+②,解①②可得2d =.故选:B .【点睛】本题考查等差数列基本量的计算,属于基础题.11.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )A .13B .310C .25D .34【答案】B【解析】【分析】将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x 元,y 元,z 元,记为(,,)x y z ,则基本事件有(1,1,4),(1,4,1) ,(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2),共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为310, 故选:B.【点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型. 12.设双曲线22221y x a b-=(0a >,0b >)的一条渐近线与抛物线213y x =+有且只有一个公共点,且椭圆22221x y a b+=的焦距为2,则双曲线的标准方程为( ) A .22143x y -= B .22143y x -= C .22123x y -= D .22132y x -= 【答案】B【解析】【分析】设双曲线的渐近线方程为y kx =,与抛物线方程联立,利用0∆=,求出k 的值,得到a b的值,求出,a b 关系,进而判断,a b 大小,结合椭圆22221x y a b+=的焦距为2,即可求出结论. 【详解】设双曲线的渐近线方程为y kx =, 代入抛物线方程得2103x kx -+=,依题意240,3k k ∆=-==,a ab b ∴==>, ∴椭圆22221x y a b+=的焦距2=, 22222411,3,433b b b b a -====, 双曲线的标准方程为22143y x -=. 故选:B.【点睛】本题考查椭圆和双曲线的标准方程、双曲线的简单几何性质,要注意双曲线焦点位置,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

天津市静海县2019-2020学年中考数学第二次调研试卷含解析

天津市静海县2019-2020学年中考数学第二次调研试卷含解析

天津市静海县2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是()人数 3 4 2 1分数80 85 90 95A.85和82.5 B.85.5和85 C.85和85 D.85.5和802.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是()A.29.8×109B.2.98×109C.2.98×1010D.0.298×10103.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )A.2.8×105B.2.8×106C.28×105D.0.28×1074.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()A.B.C.D.5.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A.0.5×10﹣4B.5×10﹣4C.5×10﹣5D.50×10﹣36.计算22783-⨯的结果是()A.3B.43C.53D.237.化简(﹣a2)•a5所得的结果是( )A.a7B.﹣a7C.a10D.﹣a108.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A.B.C .D .9.下列运算正确的是( ) A .(a ﹣3)2=a 2﹣9B .(12)﹣1=2 C .x+y=xy D .x 6÷x 2=x 310.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在ky x=的图象上,且点B 在以O 点为圆心,OA 为半径的O e 上,则k 的值为( )A .34-B .1-C .32-D .2-11.下列运算正确的是( ) A .a 2+a 3=a 5B .(a 3)2÷a 6=1 C .a 2•a 3=a 6D .(+)2=512.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y 米与他们从学校出发的时间x 分钟的函数关系图,则甲的家和乙的家相距_____米.14.如图,在直角三角形ABC 中,∠ACB=90°,CA=4,点P 是半圆弧AC 的中点,连接BP ,线段即把图形APCB (指半圆和三角形ABC 组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.15.用一条长 60 cm 的绳子围成一个面积为 2162cm 的矩形.设矩形的一边长为 x cm ,则可列方程为______.16.将数轴按如图所示从某一点开始折出一个等边三角形ABC ,设点A 表示的数为x ﹣3,点B 表示的数为2x+1,点C 表示的数为﹣4,若将△ABC 向右滚动,则x 的值等于_____,数字2012对应的点将与△ABC 的顶点_____重合.17.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y =kx+b 与直线y =mx+2相交于点A(32-,-1),则不等式mx+2<kx+b <0的解集为____.18.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D ,C ,若∠ACB=30°,AB=3,则阴影部分的面积是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,Rt ABC ∆中,90ACB ∠=︒,CE AB ⊥于E ,BC mAC nDC ==,D 为BC 边上一点.(1)当2m =时,直接写出CE BE = ,AEBE= . (2)如图1,当2m =,3n =时,连DE 并延长交CA 延长线于F ,求证:32EF DE =. (3)如图2,连AD 交CE 于G ,当AD BD =且32CG AE =时,求m n的值. 20.(6分)重百江津商场销售AB 两种商品,售出1件A 种商品和4件B 种商品所得利润为600元,售出3件A 商品和5件B 种商品所得利润为1100元.求每件A 种商品和每件B 种商品售出后所得利润分别为多少元?由于需求量大A 、B 两种商品很快售完,重百商场决定再次购进A 、B 两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A 种商品? 21.(6分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?22.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23. (1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)23.(8分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元)。

天津市静海县2019-2020学年高考第二次大联考数学试卷含解析

天津市静海县2019-2020学年高考第二次大联考数学试卷含解析

天津市静海县2019-2020学年高考第二次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x<1},B={x|31x <},则 A .{|0}A B x x =<I B .A B R =U C .{|1}A B x x =>U D .A B =∅I【答案】A 【解析】∵集合{|31}x B x =< ∴{}|0B x x =< ∵集合{|1}A x x =<∴{}|0A B x x ⋂=<,{}|1A B x x ⋃=< 故选A 2.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()A .B .C .D .【答案】A 【解析】 【分析】 由直线过椭圆的左焦点,得到左焦点为,且,再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解. 【详解】 由题意,直线经过椭圆的左焦点,令,解得,所以,即椭圆的左焦点为,且① 直线交轴于,所以,,因为,所以,所以,又由点在椭圆上,得 ②由,可得,解得,所以,所以椭圆的离心率为.故选A. 【点睛】本题考查了椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).3.某人用随机模拟的方法估计无理数e 的值,做法如下:首先在平面直角坐标系中,过点()1,0A 作x 轴的垂线与曲线xy e =相交于点B ,过B 作y 轴的垂线与y 轴相交于点C (如图),然后向矩形OABC 内投入M 粒豆子,并统计出这些豆子在曲线xy e =上方的有N 粒()N M <,则无理数e 的估计值是( )A .NM N-B .MM N-C .M NN- D .M N【答案】D 【解析】【分析】利用定积分计算出矩形OABC 中位于曲线x y e =上方区域的面积,进而利用几何概型的概率公式得出关于e 的等式,解出e 的表达式即可. 【详解】在函数xy e =的解析式中,令1x =,可得y e =,则点()1,B e ,直线BC 的方程为y e =,矩形OABC 中位于曲线xy e =上方区域的面积为()()1101xxS e e dx ex e =-=-=⎰,矩形OABC 的面积为1e e ⨯=, 由几何概型的概率公式得1N M e =,所以,M e N=. 故选:D. 【点睛】本题考查利用随机模拟的思想估算e 的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.4.若函数()ln f x x =满足()()f a f b =,且0a b <<,则224442a b a b+-+的最小值是( )A .0B .1C .32D .【答案】A 【解析】 【分析】由()()f a f b =推导出1b a =,且01a <<,将所求代数式变形为2244244222a b a b a b a b+-+=-++,利用基本不等式求得2a b +的取值范围,再利用函数的单调性可得出其最小值. 【详解】Q 函数()ln f x x =满足()()f a f b =,()()22ln ln a b ∴=,即()()ln ln ln ln 0a b a b -+=,0a b Q <<,ln ln a b ∴<,ln ln 0a b ∴+=,即()ln 01ab ab =⇒=,21ab a ∴=>,则01a <<,由基本不等式得122a b a a +=+≥=12a =时,等号成立.()()()()222224428442442222222a b ab a b a b a b a b a b a b a b+--+-+-+===-++++Q ,由于函数42x y x=-在区间)⎡+∞⎣上为增函数,所以,当2a b +=时,224442a b a b +-+取得最小值02=.故选:A. 【点睛】本题考查代数式最值的计算,涉及对数运算性质、基本不等式以及函数单调性的应用,考查计算能力,属于中等题.5.已知函数()sin3cos3f x x x =-,给出下列四个结论:①函数()f x 的值域是⎡⎣;②函数4f x π⎛⎫+ ⎪⎝⎭为奇函数;③函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦单调递减;④若对任意x ∈R ,都有()()()12f x f x f x ≤≤成立,则12x x -的最小值为3π;其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】 【分析】化()f x )4x π-可判断①,求出4f x π⎛⎫+ ⎪⎝⎭的解析式可判断②,由,32x ππ⎡⎤∈⎢⎥⎣⎦得353[,]444x πππ-∈,结合正弦函数得图象即可判断③,由()()()12f x f x f x ≤≤得12min 2Tx x -=可判断④.【详解】由题意,())4f x x π=-,所以()f x ∈⎡⎣,故①正确;4f x π⎛⎫+= ⎪⎝⎭)]44x ππ+-=)2x π+=x 为偶函数,故②错误;当,32x ππ⎡⎤∈⎢⎥⎣⎦时,353[,]444x πππ-∈,()f x 单调递减,故③正确;若对任意x ∈R ,都有 ()()()12f x f x f x ≤≤成立,则1x 为最小值点,2x 为最大值点,则12x x -的最小值为23T π=,故④正确. 故选:C. 【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.6.已知集合M ={x|﹣1<x <2},N ={x|x (x+3)≤0},则M∩N =( ) A .[﹣3,2) B .(﹣3,2) C .(﹣1,0] D .(﹣1,0)【答案】C 【解析】 【分析】先化简N ={x|x (x+3)≤0}={x|-3≤x≤0},再根据M ={x|﹣1<x <2},求两集合的交集. 【详解】因为N ={x|x (x+3)≤0}={x|-3≤x≤0}, 又因为M ={x|﹣1<x <2}, 所以M∩N ={x|﹣1<x≤0}. 故选:C 【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.7.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC ∆的面为S ,且()22a b c =+-,则sin 4C π⎛⎫+= ⎪⎝⎭( )A .1B .2C D 【答案】D 【解析】 【分析】根据三角形的面积公式以及余弦定理进行化简求出C 的值,然后利用两角和差的正弦公式进行求解即可. 【详解】解:由()22a b c =+-,得2221sin 22ab C a b c ab =+-+,∵ 2222cos a b c ab C +-=,∴ sin 2cos 2C ab C ab =+,cos 1C C -=即2sin 16C π⎛⎫-= ⎪⎝⎭,则1sin 62C π⎛⎫-= ⎪⎝⎭,∵ 0C π<<, ∴ 5666C πππ-<-<, ∴ 66C ππ-=,即3C π=,则sin sin sin cos cos sin 4343434C πππππππ⎛⎫⎛⎫+=+=+= ⎪ ⎪⎝⎭⎝⎭12 故选D . 【点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出C 的值以及利用两角和差的正弦公式进行计算是解决本题的关键.8.在等腰直角三角形ABC 中,,2C CA π∠==,D 为AB 的中点,将它沿CD 翻折,使点A 与点B间的距离为ABCD 的外接球的表面积为( ).A .5πB .C .12πD .20π【答案】D 【解析】 【分析】如图,将四面体ABCD 放到直三棱柱中,求四面体的外接球的半径转化为求三棱柱外接球的半径,然后确定球心在上下底面外接圆圆心连线中点,这样根据几何关系,求外接球的半径. 【详解】ABC ∆中,易知4AB =,2CD AD BD ===翻折后AB =(222221cos 2222ADB +-∴∠==-⨯⨯ ,120ADB ∴∠=o ,设ADB ∆外接圆的半径为r ,24r == ,2r ∴= , 如图:易得CD ⊥平面ABD ,将四面体ABCD 放到直三棱柱中,则球心在上下底面外接圆圆心连线中点,设几何体外接球的半径为R ,222221215R r =+=+= ,∴ 四面体ABCD 的外接球的表面积为2420S R ππ==.【点睛】本题考查几何体的外接球的表面积,意在考查空间想象能力,和计算能力,属于中档题型,求几何体的外接球的半径时,一般可以用补形法,因正方体,长方体的外接球半径容易求,可以将一些特殊的几何体补形为正方体或长方体,比如三条侧棱两两垂直的三棱锥,或是构造直角三角形法,确定球心的位置,构造关于外接球半径的方程求解.9.已知等差数列{a n},则“a2>a1”是“数列{a n}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{a n}中,若a2>a1,则d>0,即数列{a n}为单调递增数列,若数列{a n}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{a n}为单调递增数列”充分必要条件,故选C.考点:必要条件、充分条件与充要条件的判断.10.已知函数31,0()(),0x xf xg x x⎧+>=⎨<⎩是奇函数,则((1))g f-的值为()A.-10 B.-9 C.-7 D.1 【答案】B【解析】根据分段函数表达式,先求得()1f -的值,然后结合()f x 的奇偶性,求得((1))g f -的值. 【详解】因为函数3,0()(),0x x x f x g x x ⎧+≥=⎨<⎩是奇函数,所以(1)(1)2f f -=-=-,((1))(2)(2)(2)10g f g f f -=-=-=-=-.故选:B 【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.11.在平面直角坐标系xOy 中,已知角θ的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边落在直线2y x =上,则3sin 22πθ⎛⎫+= ⎪⎝⎭( ) A .45B .45-C .35D .35-【答案】C 【解析】 【分析】利用诱导公式以及二倍角公式,将3sin 22πθ⎛⎫+⎪⎝⎭化简为关于tan θ的形式,结合终边所在的直线可知tan θ的值,从而可求3sin 22πθ⎛⎫+⎪⎝⎭的值. 【详解】因为222222223sin cos tan 1sin 2cos 2sin cos 2sin cos tan 1πθθθθθθθθθθ--⎛⎫+=-=-== ⎪++⎝⎭,且tan 2θ=, 所以3413sin 22415πθ-⎛⎫+== ⎪+⎝⎭. 故选:C. 【点睛】本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解22sin cos m n θθ+值的两种方法:(1)分别求解出sin ,cos θθ的值,再求出结果;(2)将22sin cos m n θθ+变形为222222sin cos tan sin cos tan 1m n m nθθθθθθ++=++,利用tan θ的值求出结果.12.若[]0,1x ∈时,|2|0x e x a --≥,则a 的取值范围为( ) A .[]1,1- B .[]2,2e e --C .[]2e,1-D .[]2ln 22,1-【答案】D 【解析】 【分析】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,xxf x x e x x e =-=+,然后分别求出()()max min ,f xg x 即可得a 的取值范围.【详解】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,xxf x x e x x e =-=+, ()2x f x e '=-Q 在[]0,1单调递减,且()ln 20f '=, ()f x ∴在()0,ln 2上单调递增,在()ln 2,1上单调递减, ()()max ln 22ln 22a f x f ∴≥==-,又()g 2xx x e =+在[]0,1单调递增,()()min 01a g x g ∴≤==,∴a 的取值范围为[]2ln 22,1-.故选:D 【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.二、填空题:本题共4小题,每小题5分,共20分。

【附5套中考模拟试卷】天津市静海县2019-2020学年中考数学二模试卷含解析

14.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.
15.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.
16.如图所示,P为∠α的边OA上一点,且P点的坐标为(3,4),则sinα+cosα=_____.
17.若圆锥的母线长为4cm,其侧面积 ,则圆锥底面半径为cm.
24.(10分)计算:
(1)(2 )2﹣|﹣4|+3﹣1×6+20;
(2) .
25.(10分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段 (点A,B的对应点分别为 ).画出线段 ;将线段 绕点 逆时针旋转90°得到线段 .画出线段 ;以 为顶点的四边形 的面积是个平方单位.
18.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y= (x<0)的图象经过菱形OABC中心E点,则k的值为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆 心作圆,分别交BA,CB,DC的延长线于点E,F,G.
26.(12分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过 上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:∠G=∠CEF;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tanG = ,AH=3 ,求EM的值.
(1)求点D沿三条圆弧运动到点G所经过的路线长;

★试卷3套汇总★天津市静海县2020年高考数学经典试题

2019-2020学年高考数学模拟试卷 一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知m ,n 是两条不重合的直线,α是一个平面,则下列命题中正确的是( )A .若//m α,//n α,则//m nB .若//m α,n ⊂α,则//m nC .若m n ⊥,m α⊥,则//n αD .若m α⊥,//n α,则m n ⊥ 2.若函数()2x f x e mx =-有且只有4个不同的零点,则实数m 的取值范围是( )A .2,4e ⎡⎫+∞⎪⎢⎣⎭B .2,4e ⎛⎫+∞ ⎪⎝⎭C .2,4e ⎛⎫-∞ ⎪⎝⎭D .2,4e ⎛⎤-∞ ⎥⎝⎦ 3.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(),x y ;再统计两数能与1构成钝角三角形三边的数对(),x y 的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( )A .4a mB .2a m +C .2a m m +D .42a m m+ 4.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对5.己知四棱锥-S ABCD 中,四边形ABCD 为等腰梯形,//AD BC ,120BAD ︒∠=,ΔSAD 是等边三角形,且23SA AB ==P 在四棱锥-S ABCD 的外接球面上运动,记点P 到平面ABCD 的距离为d ,若平面SAD ⊥平面ABCD ,则d 的最大值为( )A 131B 132C 151D 1526.函数2()ln(1)x xe ef x x --=+在[3,3]-的图象大致为( )A .B .C .D .7.集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为( ) A .4B .6C .8D .12 8.在311(21)x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为( ) A .1 B .2 C .3 D .79.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是( )A .该市总有 15000 户低收入家庭B .在该市从业人员中,低收入家庭共有1800户C .在该市无业人员中,低收入家庭有4350户D .在该市大于18岁在读学生中,低收入家庭有 800 户10.若直线240x y m ++=经过抛物线22y x =的焦点,则m =( )A .12B .12-C .2D .2-11.一艘海轮从A 处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .6 2海里B .63海里C .82海里D .83海里12.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .25二、填空题:本题共4小题,每小题5分,共20分。

天津市静海县2019-2020学年高考数学教学质量调研试卷含解析

天津市静海县2019-2020学年高考数学教学质量调研试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i 是虚数单位,若17(,)2i a bi a b R i +=+∈-,则乘积ab 的值是( ) A .-15B .-3C .3D .15【答案】B【解析】 17(17)(2)1325i i i i i +++==-+-,∴1,3,3a b ab =-==-,选B . 2.已知向量()()1,3,2a m b ==-v v ,,且()a b b +⊥v v v ,则m=( )A .−8B .−6C .6D .8【答案】D【解析】【分析】 由已知向量的坐标求出a b +r r 的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-r r r r ,又()a b b +⊥r r r ,∴3×4+(﹣2)×(m ﹣2)=0,解得m =1.故选D .【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.3.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x 的值为( )A .3B .3.4C .3.8D .4【答案】D【解析】【分析】根据三视图即可求得几何体表面积,即可解得未知数.【详解】由图可知,该几何体是由一个长宽高分别为,3,1x 和 一个底面半径为12,高为5.4x -的圆柱组合而成. 该几何体的表面积为()()233 5.442.2x x x π+++⋅-=,解得4x =,故选:D.【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.4.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )A .13B .310C .25D .34【答案】B【解析】【分析】将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x 元,y 元,z 元,记为(,,)x y z ,则基本事件有(1,1,4),(1,4,1) ,(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2),共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为310, 故选:B.【点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.5.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为176,320,则输出的a 为( )A .16B .18C .20D .15【答案】A【解析】【分析】 根据题意可知最后计算的结果为a b ,的最大公约数.【详解】输入的a ,b 分别为176,320,根据流程图可知最后计算的结果为a b ,的最大公约数,按流程图计算320-176=144,176-144=32,144-32=112,112-32=80,80-32=48,48-32=16,32-16=16,易得176和320的最大公约数为16,故选:A.【点睛】本题考查的是利用更相减损术求两个数的最大公约数,难度较易.6.若0,0x y >>,则“222x y xy +=”的一个充分不必要条件是A .x y =B .2x y =C .2x =且1y =D .x y =或1y =【答案】C【解析】 0,0x y >>,∴222x y xy +≥2x y = 时取等号.故“2,x =且1y = ”是“222x y xy +=的充分不必要条件.选C .7.在ABC ∆中,30C =︒,2cos 3A =-,152AC =,则AC 边上的高为( )A .5B .2C .5D .152【答案】C【解析】【分析】结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得BC 边长,由此求得AC 边上的高.【详解】过B 作BD CA ⊥,交CA 的延长线于D .由于2cos 3A =-,所以A 为钝角,且25sin 1cos 3A A =-=,所以()()sin sin sin CBA CBA A C π∠=-∠=+5321152sin cos cos sin 32326A C A C -=+=⨯-⨯=.在三角形ABC 中,由正弦定理得sin sin a b AB =,即1525152-=-,所以25BC =.在Rt BCD ∆中有1sin 2552BD BC C ==⨯=,即AC 边上的高为5. 故选:C【点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.8.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(),0F c ,若F 到直线20bx ay -=2,则E 的离心率为( ) A .32 B .12 C .22 D .23【答案】A【解析】【分析】由已知可得到直线20bx ay -=的倾斜角为45o ,有21b a=,再利用222a b c =+即可解决.由F 到直线20bx ay -=的距离为2c ,得直线20bx ay -=的倾斜角为45o ,所以21b a=, 即()2224a ca -=,解得32e =. 故选:A.【点睛】 本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于,,a b c 的方程或不等式,本题是一道容易题.9.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .140D .120【答案】C【解析】【分析】【详解】 试题分析:由题意得,自习时间不少于22.5小时的频率为(0.160.080.04) 2.50.7++⨯=,故自习时间不少于22.5小时的频率为0.7200140⨯=,故选C.考点:频率分布直方图及其应用.10.函数()()()22214f x x x x =--的图象可能是( )A .B .C .D .【解析】【分析】先判断函数()y f x =的奇偶性,以及该函数在区间()0,1上的函数值符号,结合排除法可得出正确选项.【详解】函数()y f x =的定义域为R ,()()()()()()()2222221414f x x x x x x x f x ⎡⎤⎡⎤-=-⋅--⋅--=--=⎣⎦⎣⎦,该函数为偶函数,排除B 、D 选项;当01x <<时,()()()222140f x xx x =-->,排除C 选项. 故选:A.【点睛】本题考查根据函数的解析式辨别函数的图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题.11.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )A .30i >?B .40i >?C .50i >?D .60i >?【答案】B【解析】【分析】 由30020010203040=++++,则输出为300,即可得出判断框的答案【详解】由30020010203040=++++,则输出的值为300,401050i =+=,故判断框中应填40i >? 故选:B .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.12.定义,,a a b a b b a b ≥⎧⊗=⎨<⎩,已知函数21()2sin f x x =-,21()2cos g x x =-,则函数()()()F x f x g x =⊗的最小值为( )A .23B .1C .43D .2【答案】A【解析】【分析】根据分段函数的定义得()()F x f x ≥,()()F x g x ≥,则2()()()F x f x g x ≥+,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得()()F x f x ≥,()()F x g x ≥,则2()()()F x f x g x ≥+,22222211111()()()[(2sin )(2cos )]2sin 2cos 32sin 2cos f x g x x x x x x x+=+=+-+-----222212cos 2sin 14(2)(232sin 2cos 33x x x x --=++≥+=--(当且仅当222cos 2sin x x --222sin 2cos x x-=-,即221sin cos 2x x ==时“=”成立.此时,2()()3f x g x ==,42()3F x ∴≥,()F x ∴的最小值为23, 故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出2()()()F x f x g x ≥+,再由基本不等式求得最值,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

天津市静海县2019-2020学年高考数学考前模拟卷(1)含解析

天津市静海县2019-2020学年高考数学考前模拟卷(1)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( )2.236≈≈≈) A .22个 B .24个C .26个D .28个【答案】C 【解析】 【分析】计算球心连线形成的正四面体相对棱的距离为,得到最上层球面上的点距离桶底最远为)()101n +-cm ,得到不等式)101100n +-≤,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切, 这样,相邻的四个球的球心连线构成棱长为10cm 的正面体,易求正四面体相对棱的距离为,每装两个球称为“一层”,这样装n 层球,则最上层球面上的点距离桶底最远为)()101n +-cm ,若想要盖上盖子,则需要满足)101100n +-≤,解得113.726n ≤+≈, 所以最多可以装13层球,即最多可以装26个球. 故选:C 【点睛】本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.2.一个正三角形的三个顶点都在双曲线221x ay +=的右支上,且其中一个顶点在双曲线的右顶点,则实数a 的取值范围是( )A .()3,+∞B .)+∞C .(,-∞D .(),3-∞-【答案】D 【解析】 【分析】因为双曲线分左右支,所以0a <,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为(1t +,)(0)t >,将其代入双曲线可解得. 【详解】因为双曲线分左右支,所以0a<,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为(1t+)(0) t>,将其代入双曲线方程得:22(1))1t a++=,即2113ta-=+,由0t>得3a<-.故选:D.【点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平.3.在各项均为正数的等比数列{}n a中,若563a a=,则3132310log log loga a a+++=L()A.31log5+B.6 C.4 D.5【答案】D【解析】【分析】由对数运算法则和等比数列的性质计算.【详解】由题意313231031210log log log log()a a a a a a+++=L L53563563log()5log()5log35a a a a====.故选:D.【点睛】本题考查等比数列的性质,考查对数的运算法则.掌握等比数列的性质是解题关键.4.在平面直角坐标系xOy中,已知点()0,2A-,()1,0N,若动点M满足MAMO=,则·OM ONu u u u r u u u r的取值范围是()A.[]0,2B.0,⎡⎣C.[]22-,D.-⎡⎣【答案】D【解析】【分析】设出M的坐标为(,)x y,依据题目条件,求出点M的轨迹方程22(2)8x y+-=,写出点M的参数方程,则·osOM ONθ=u u u u r u u u r,根据余弦函数自身的范围,可求得·OM ONu u u u r u u u r结果.【详解】 设(,)M x y ,则∵MA MO=,()0,2A -=∴2222(2)2()x y x y ++=+∴22(2)8x y +-=为点M 的轨迹方程∴点M的参数方程为2x y θθ⎧=⎪⎨=+⎪⎩(θ为参数)则由向量的坐标表达式有:·os OM ON θ=u u u u r u u u r又∵cos [1,1]θ∈-∴·[OM ON θ=∈-u u u u r u u u r故选:D 【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法5.已知函数()sin()f x x ωθ=+,其中0>ω,0,2πθ⎛⎫∈ ⎪⎝⎭,其图象关于直线6x π=对称,对满足()()122f x f x -=的1x ,2x ,有12min 2x x π-=,将函数()f x 的图象向左平移6π个单位长度得到函数()g x 的图象,则函数()g x 的单调递减区间是()A .()2,6k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B .(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ C .()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】B 【解析】 【分析】根据已知得到函数()f x 两个对称轴的距离也即是半周期,由此求得ω的值,结合其对称轴,求得θ的值,进而求得()f x 解析式.根据图像变换的知识求得()g x 的解析式,再利用三角函数求单调区间的方法,求得()g x 的单调递减区间. 【详解】解:已知函数()sin()f x x ωθ=+,其中0>ω,00,2π⎛⎫∈ ⎪⎝⎭,其图像关于直线6x π=对称,对满足()()122f x f x -=的1x ,2x ,有12min1222x x ππω-==⋅,∴2ω=. 再根据其图像关于直线6x π=对称,可得262k ππθπ⨯+=+,k ∈Z .∴6πθ=,∴()sin 26f x x π⎛⎫=+⎪⎝⎭. 将函数()f x 的图像向左平移6π个单位长度得到函数()sin 2cos 236g x x x ππ⎛⎫=++= ⎪⎝⎭的图像. 令222k x k πππ≤≤+,求得2k x k πππ≤≤+,则函数()g x 的单调递减区间是,2k k πππ⎡⎤+⎢⎥⎣⎦,k ∈Z ,故选B. 【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.6.台球是一项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国台湾地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD ,在点E ,F 处各放一个目标球,表演者先将母球放在点A 处,通过击打母球,使其依次撞击点E ,F 处的目标球,最后停在点C 处,若AE=50cm .EF=40cm .FC=30cm ,∠AEF=∠CFE=60°,则该正方形的边长为( )A .2cmB .2cmC .50cmD .6cm【答案】D 【解析】【分析】过点,E F 做正方形边的垂线,如图,设AEM α∠=,利用直线三角形中的边角关系,将,AB BC 用α表示出来,根据AB BC =,列方程求出α,进而可得正方形的边长. 【详解】过点,E F 做正方形边的垂线,如图,设AEM α∠=,则CFQ α∠=,60MEF QFE α∠=∠=-o,则()sin sin 60sin AB AM MN NB AE EF FC ααα=++=+-+o()3350sin 40sin 6030sin 40sin 2ααααα⎛⎫=+-+= ⎪ ⎪⎝⎭o,()cos cos cos 60CB BP PC AE FC EF ααα=+=+--o ()3350cos 30cos 40cos 6040cos 2ααααα⎛⎫=+--= ⎪ ⎪⎝⎭o 因为AB CB =,则333340sin cos 40cos 2222αααα⎛⎫⎛⎫+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,整理化简得sin 23cos αα=,又22sin cos 1αα+=, 得31sin 22α-=,31cos 22α+= 33333340sin 4020622222222AB αα⎛⎫⎛⎫∴=+=⨯= ⎪ ⎪ ⎝⎭⎝即该正方形的边长为206cm . 故选:D. 【点睛】本题考查直角三角形中的边角关系,关键是要构造直角三角形,是中档题. 7.已知()y f x =是定义在R 上的奇函数,且当0x >时,2()3f x x x=+-.若0x ≤,则()0f x ≤的解集是( )A .[2,1]--B .(,2][1,0]-∞-⋃-C .(,2][1,0)-∞-⋃-D .(,2)(1,0]-∞-⋃-【答案】B 【解析】 【分析】利用函数奇偶性可求得()f x 在0x <时的解析式和()0f ,进而构造出不等式求得结果. 【详解】()f x Q 为定义在R 上的奇函数,()00f ∴=.当0x <时,0x ->,()23f x x x∴-=---, ()f x Q 为奇函数,()()()230f x f x x x x∴=--=++<,由0230x x x <⎧⎪⎨++≤⎪⎩得:2x -≤或10x -≤<; 综上所述:若0x ≤,则()0f x ≤的解集为(][],21,0-∞--U . 故选:B . 【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在0x =处有意义时,()00f =的情况.8.已知实数0a b <<,则下列说法正确的是( ) A .c c a b> B .22ac bc < C .lna lnb < D .11()()22ab<【答案】C 【解析】 【分析】A B 、利用不等式性质可判断,C D 、利用对数函数和指数函数的单调性判断.【详解】解:对于,A Q 实数0a b <<, 11,c ca b a b∴>> ,0c ≤不成立 对于0B c =.不成立.对于C .利用对数函数ln y x =单调递增性质,即可得出.对于.D 指数函数1()2xy =单调递减性质,因此不成立. 故选:C . 【点睛】利用不等式性质比较大小.要注意不等式性质成立的前提条件.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.9.已知a ,b 为两条不同直线,α,β,γ为三个不同平面,下列命题:①若//αβ,//αγ,则//βγ;②若//a α,//a β,则//αβ;③若αγ⊥,βγ⊥,则αβ⊥;④若a α⊥,b α⊥,则//a b .其中正确命题序号为( ) A .②③ B .②③④C .①④D .①②③【答案】C 【解析】 【分析】根据直线与平面,平面与平面的位置关系进行判断即可. 【详解】根据面面平行的性质以及判定定理可得,若//αβ,//αγ,则//βγ,故①正确; 若//a α,//a β,平面,αβ可能相交,故②错误; 若αγ⊥,βγ⊥,则,αβ可能平行,故③错误; 由线面垂直的性质可得,④正确; 故选:C 【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.10.已知1F 、2F 分别为双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,过1F 的直线l 交C 于A 、B 两点,O 为坐标原点,若1OA BF ⊥,22||||AF BF =,则C 的离心率为( )A .2B .CD【答案】D 【解析】 【分析】作出图象,取AB 中点E ,连接EF 2,设F 1A =x ,根据双曲线定义可得x =2a ,再由勾股定理可得到c 2=7a 2,进而得到e 的值 【详解】解:取AB 中点E ,连接EF 2,则由已知可得BF 1⊥EF 2,F 1A =AE =EB , 设F 1A =x ,则由双曲线定义可得AF 2=2a+x ,BF 1﹣BF 2=3x ﹣2a ﹣x =2a , 所以x =2a ,则EF 2=23a ,由勾股定理可得(4a )2+(23a )2=(2c )2, 所以c 2=7a 2, 则e 7ca== 故选:D .【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题.对于圆锥曲线中求离心率的问题,关键是列出含有,,a b c 中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.11.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A 3B .51)-C .45D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案. 【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x y x xPM P P M x F xQP xx-+-+====+≥-, 当4x x=,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力. 12.函数()256f x x x =-+ )A .{2x x ≤或}3x ≥B .{3x x ≤-或}2x ≥- C .{}23x x ≤≤ D .{}32x x -≤≤-【答案】A 【解析】 【分析】根据偶次根式被开方数非负可得出关于x 的不等式,即可解得函数()y f x =的定义域. 【详解】由题意可得2560x x -+≥,解得2x ≤或3x ≥. 因此,函数()y f x =的定义域为{2x x ≤或}3x ≥. 故选:A. 【点睛】本题考查具体函数定义域的求解,考查计算能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津市静海县2019-2020学年高考数学二模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知(1,2)a =r ,(,3)b m m =+r ,(2,1)c m =--r ,若//a b r r ,则b c ⋅=r r( ) A .7- B .3-C .3D .7【答案】B 【解析】 【分析】由平行求出参数m ,再由数量积的坐标运算计算. 【详解】由//a b r r,得2(3)0m m -+=,则3m =,(3,6)b =r ,(1,1)c =-r ,所以363b c ⋅=-=-r r.故选:B . 【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键. 2.复数z 满足()11i z i +=-,则z =( )A .1i -B .1i +C .22- D .22+ 【答案】C 【解析】 【分析】利用复数模与除法运算即可得到结果. 【详解】解: )()())1111111222i i i z ii i i ---=====-+++-, 故选:C 【点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.3.已知集合{}1,2,3,4,5,6U =,{}13,5A =,,{}2,3,4B =,则集合()U B A =U ð( )A .{}1,2,6B .{}1,3,6C .{}1,6D .{}6【答案】D 【解析】根据集合的混合运算,即可容易求得结果. 【详解】{}1,2,3,4,5A B ⋃=Q ,故可得()U B A =U ð{}6.故选:D. 【点睛】本题考查集合的混合运算,属基础题.4.已知集合{}2230A x x x =--≤{}2B x x =<,则A B =I ( ) A .()1,3 B .(]1,3C .[)1,2-D .()1,2-【答案】C 【解析】 【分析】解不等式得出集合A ,根据交集的定义写出A∩B . 【详解】集合A ={x|x 2﹣2x ﹣3≤0}={x|﹣1≤x ≤3},={x x<2}B ,{|1<2}A B x x ∴⋂=≤﹣故选C . 【点睛】本题考查了解不等式与交集的运算问题,是基础题. 5.函数52sin ()([,0)(0,])33x xx xf x x -+=∈-ππ-U 的大致图象为A .B .C .D .【答案】A 【解析】因为5()2sin()52sin ()()3333x x x xx x x xf x f x ---+-+-===--,所以函数()f x 是偶函数,排除B 、D , 又5()033f π-πππ=>-,排除C ,故选A . 6.关于函数()cos cos 2f x x x =+,有下列三个结论:①π是()f x 的一个周期;②()f x 在35,44ππ⎡⎤⎢⎥⎣⎦上单调递增;③()f x 的值域为[]22-,.则上述结论中,正确的个数为() A .0 B .1C .2D .3【答案】B 【解析】 【分析】利用三角函数的性质,逐个判断即可求出. 【详解】①因为()()f x f x π=+,所以π是()f x 的一个周期,①正确;②因为()2fπ=,5242f π⎛⎫=< ⎪⎝⎭,所以()f x 在35,44ππ⎡⎤⎢⎥⎣⎦上不单调递增,②错误;③因为()()f x f x -=,所以()f x 是偶函数,又π是()f x 的一个周期,所以可以只考虑0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的值域.当0,2x π⎡⎤∈⎢⎥⎣⎦时,[]cos 0,1t x =∈, 22()cos cos 2cos cos22cos cos 121f x x x x x x x t t =+=+=+-=+-221y t t =+-在[]0,1上单调递增,所以[]()1,2f x ∈-,()f x 的值域为[]1,2-,③错误;综上,正确的个数只有一个,故选B . 【点睛】本题主要考查三角函数的性质应用.7.已知焦点为F 的抛物线2:4C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为( ) A .1y x =+或1y x =--B .1122y x =+或1122y x =-- C .22y x =+或22y x =--D .22y x =-+【答案】A过M 作MP 与准线垂直,垂足为P ,利用抛物线的定义可得11cos cos MA MA MF MP AMP MAF===∠∠,要使||||MA MF 最大,则MAF ∠应最大,此时AM 与抛物线C 相切,再用判别式或导数计算即可. 【详解】过M 作MP 与准线垂直,垂足为P ,11cos cos MA MA MF MP AMP MAF===∠∠, 则当||||MA MF 取得最大值时,MAF ∠最大,此时AM 与抛物线C 相切, 易知此时直线AM 的斜率存在,设切线方程为(1)y k x =+,则2(1)4y k x y x =+⎧⎨=⎩.则221616011k k k ∆=-===±,,,则直线AM 的方程为(1)y x=?.故选:A. 【点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题. 8.设(),1,a b ∈+∞,则“a b > ”是“log 1a b <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据充分条件和必要条件的定义结合对数的运算进行判断即可. 【详解】∵a ,b ∈(1,+∞), ∴a >b ⇒log a b <1,log a b <1⇒a >b ,∴a >b 是log a b <1的充分必要条件, 故选C . 【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键. 9.已知复数z 满足(3)1i z i +=+,则z 的虚部为( ) A .i - B .iC .–1D .1【答案】C 【解析】 【分析】利用复数的四则运算可得2z i =--,即可得答案. 【详解】∵(3)1i z i +=+,∴131iz i i++==-, ∴2z i =--,∴复数z 的虚部为1-. 故选:C. 【点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.10.已知纯虚数z 满足()122i z ai -=+,其中i 为虚数单位,则实数a 等于( ) A .1- B .1C .2-D .2【答案】B 【解析】 【分析】先根据复数的除法表示出z ,然后根据z 是纯虚数求解出对应的a 的值即可. 【详解】因为()122i z ai -=+,所以()()()()()21222421212125ai i a a iai z i i i ++-+++===--+, 又因为z 是纯虚数,所以220a -=,所以1a =. 故选:B. 【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数z a bi =+为纯虚数,则有0,0a b =≠.11.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( ) A .18种 B .36种 C .54种 D .72种【答案】B 【解析】 【分析】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得. 【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有234336C A =种.故选:B . 【点睛】本题考查排列组合,属于基础题.12.已知,,,m n l αβαβαβ⊥⊂⊂=I ,则“m ⊥n”是“m ⊥l”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】构造长方体ABCD ﹣A 1B 1C 1D 1,令平面α为面ADD 1A 1,底面ABCD 为β,然后再在这两个面中根据题意恰当的选取直线为m ,n 即可进行判断. 【详解】如图,取长方体ABCD ﹣A 1B 1C 1D 1,令平面α为面ADD 1A 1,底面ABCD 为β,直线AD =直线l 。

若令AD 1=m ,AB =n ,则m ⊥n ,但m 不垂直于l若m ⊥l ,由平面ABCD ⊥平面11ADD A 可知,直线m 垂直于平面β,所以m 垂直于平面β内的任意一条直线n∴m ⊥n 是m ⊥l 的必要不充分条件. 故选:B .【点睛】本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m⊥n⇒m⊥l?和m⊥l⇒m⊥n?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.二、填空题:本题共4小题,每小题5分,共20分。

13.已知关于x的方程1|sin|sin2a x x+=在区间[0,2]π上恰有两个解,则实数a的取值范围是________ 【答案】31(,)22-【解析】【分析】先换元,令sint x=,将原方程转化为12a t t+=,利用参变分离法转化为研究两函数的图像交点,观察图像,即可求出.【详解】因为关于x的方程1|sin|sin2a x x+=在区间[0,2]π上恰有两个解,令sint x=,所以方程12a t t+=在()()1,00,1t∈-U上只有一解,即有1120121210ttttatttt⎧-⎪<<-⎪⎪==⎨⎪-⎪-<<⎪-⎩,直线y a=与12tyt-=在()()1,00,1t∈-U的图像有一个交点,由图可知,实数a的取值范围是31[,)22-,但是当32a=-时,还有一个根1t=,所以此时共有3个根. 综上实数a的取值范围是31(,)22-.【点睛】本题主要考查学生运用转化与化归思想的能力,方程有解问题转化成两函数的图像有交点问题,是常见的转化方式.14.已知函数221,1()(1),1x x f x x x ⎧-+≤=⎨->⎩函数()()()g x f x f x =+-,则不等式()2g x ≤的解集为____.【答案】[2,2]- 【解析】()()23,11,111,1x x f x x x x x ⎧+<-⎪⎪=--≤≤⎨⎪->⎪⎩,()()23,11,111,1x x f x x x x x ⎧->⎪⎪-=+-≤≤⎨⎪+<-⎪⎩,所以()2234,12,1134,1x x x g x x x x x ⎧++<-⎪=-≤≤⎨⎪-+>⎩, 所以()2g x ≤的解集为[]22-,。

相关文档
最新文档