《概率统计简明教程》课后习题答案
《概率统计》作业参考答案

3 ∑ i=0
P (B |Ai )P (Ai ) = . . . = 0.02286. P (B |A2 )P (A2 ) = . . . = 0.496. P (B )
(2) 由贝叶斯公式, P (A2 |B ) =
习题一 8. 此题题意不明确, 应给出条件“发送字符AAAA, BBBB, CCCC 的概率各为1/3”, 然后利用全概率公式和贝叶斯公式分别求(1) 和(2).
3
综上, 得 0, y < 0, FY (y ) = y, 0 ≤ y < 1, 1, y ≥ 1. 从而 1, 0 ≤ y < 1, 0, 其它.
′ fY (y ) = FY (y ) =
习题二 8. 解: 已知 X ∼ e(λ), Y = min{X, 2}. (1) 首先, 注意到随机变量Y = min{X, 2} 的取值范围为: 0 ≤ min{X, 2} ≤ 2, 则 FY (y ) = P (Y ≤ y ) = P (min{X, 2} ≤ y ), 1) 当 y < 0 时, P (min{X, 2} ≤ y ) = 0; 2) 当 y ≥ 2 时, P (min{X, 2} ≤ y ) = 1; 3) 当 0 ≤ y < 2 时, P (min{X, 2} ≤ y ) = P (X ≤ y ) = FX (y ) = 1 − e−λy . 综上, 得 0, y < 0, FY ( y ) = 1 − e−λy , 0 ≤ y < 2, 1, y ≥ 2. (2) P (Y = 2) = FY (2) − FY (2−) = 1 − (1 − e−2λ ) = e−2λ . 亦可利用事件的等价 性, P (Y = 2) = P (X ≥ 2) = e−2λ . (3) ∵ FY (2−) = 1 − e−2λ ̸= 1 = FY (2), ∴ FY 不连续, 4
《概率论与数理统计》课后习题答案chapter1

习题1.1解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C B A ,,中的样本点。
解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)}ﻫ{=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。
解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。
试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报;(7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ;ﻩ(2)C AB ;ﻩﻩ(3)C B A C B A C B A ++; (4)BC A C B A C AB ++;(5)C B A ++;(6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++(8)ABC ;(9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。
概率与统计统计课后习题答案

第一章习题解答1.解:(1) Ω={0,1,…,10}; (2) Ω={=i ni|0,1,…,100n },其中n 为小班人数; (3) Ω={√,×√, ××√, ×××√,…},其中√表示击中,×表示未击中; (4) Ω={(y x ,)|22y x +<1}。
2.解:(1)事件C AB 表示该生是三年级男生,但不是运动员; (2)当全学院运动员都是三年级学生时,关系式C ⊂B 是正确的; (3)全学院运动员都是三年级的男生,ABC=C 成立;(4)当全学院女生都在三年级并且三年级学生都是女生时,A =B 成立。
3.解:(1)ABC ;(2)AB C ;(3)C B A ;(4)C B A )(⋃;(5)C B A ⋃⋃; (6)C B C A B A ⋃⋃;(7)C B A ⋃⋃;(8)BC A C B A C AB ⋃⋃ 4.解:因ABC ⊂AB ,则P (ABC )≤P (AB )可知P (ABC )=0 所以A 、B 、C 至少有一个发生的概率为P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (AC )-P (BC )+P (ABC ) =3×1/4-1/8+0 =5/85.解:(1)P (A ∪B )= P (A )+P (B )-P (AB )=0.3+0.8-0.2=0.9)(B A P =P (A )-P (AB )=0.3-0.2=0.1(2)因为P (A ∪B )= P (A )+P (B )-P (AB )≤P (A )+P (B )=α+β, 所以最大值maxP (A ∪B )=min(α+β,1);又P (A )≤P (A ∪B ),P (B )≤P (A ∪B ),故最小值min P (A ∪B )=max(α,β) 6.解:设A 表示事件“最小号码为5”,B 表示事件“最大号码为5”。
统计学简明教程课后习题及答案

第一章一、判断题1、统计学就是数学的一个分支答:错。
统计学与数学都就是研究数量规律的,虽然两者关系非常密切,但有不同的性质特点。
数学撇开具体的对象,以最一般的形式研究数量的联系与空间形式;统计学的数据则总就是与客观的对象联系在一起,特别就是统计学中的应用统计学与各不同领域的实质性学科有着非常密切的联系,就是有具体对象的方法论。
从研究方法瞧,数学的研究方法主要就是逻辑推理与演绎论证的方法,而统计学的方法本质上就是归纳的方法。
统计学家特别就是应用统计学家需要深入实际,进行调查或试验区取得数据,研究时不仅要运用统计学的方法,而且要掌握某一专门领域的知识,才能得到有意义的成果。
从成果评价标准瞧,数学注意方法推导的严谨性与正确性;统计学则更加注意方法的适用性与操作性。
2、统计学就是一门独立的社会科学。
答、错。
统计学就是横跨社会科学领域与自然科学领域的多学科性的科学。
3、统计学就是一门实质性科学。
答:错。
实质性的科学研究该领域现象的本质关系与变化规律;而统计学则就是为研究认识这些关系与规律提供数量分析的方法。
4、统计学就是一门方法论科学。
答:对统计学就是有关如何测定、收集与分析反映客观现象总体数量的数据,以帮助人们正确认识客观世界数量规律的方法论科学。
5、描述统计就是用文字与图标对客观世界进行描述答:错。
描述统计就是对彩机的数据进行登记、审核、整理、归类,在此基础上进一步计算出各种能反映总体数量特征的综合指标,并用图标的形式表示经过归纳分析而得到的各种有用信息,描述统计不仅仅使用文字与图表来描述,更重要的就是要利用有关统计指标反映客观事物的数量特征。
6、对于有限总体不必应用推断统计方法。
答:错。
一些有限总体,由于各种原因,并不一定能采用全面调查的方法。
例如,某一批电视机就是有限总体,要检验其显像管的寿命,不可能对每一台都进行观察与试验,只能采用抽样调查方法得到样本,并结合推断统计方法估计显像管的寿命。
7、社会经济统计问题都属于有限总体的问题。
概率统计课后习题解答第2章

习题22. 设离散型随机变量X的分布律为 .4,3,2,1,12)( k k ak X P 求(1)常数a ;(2))2( X P .解 (1)由,1)1111( a 得248315a(2(答案有误)3.一颗骰子抛两次,以X 表示两次中所得的最小点数,试求X 的分布律。
解 X 可能取值为1,2,6, ,用二维数组表示两次的点数,则两次中最小点数为1可表示为:(1,1),(1,2),(2,1),(1,3),(3,1),)1,6(),6,1(, , 于是 36/111 X P ,同理可得其余。
4.甲、乙两棋手约定进行10局比赛,以赢的局数多者为胜。
设在每局中甲赢的概率为0.6,乙赢的概率为0.4。
假设各局比赛是相互独立的。
(1)写出甲赢局数的分布律;(2)试分别求甲胜、乙胜、不分胜负的概率。
解 (1)设甲赢局数为X ,则)6.0,10(~B X 。
(2)甲胜概率为 )1,6.0,10,5(1516BINOMDIST X P X P =0.6332乙胜概率为 )1,6.0,10,4(4BINOMDIST X P =0.1662 不分胜负的概率 )0,6.0,10,5(5BINOMDIST X P =0.20075.某人独立地射击,设每次射击的命中率为0.02,射击400次,求至少两次击中目标的概率.解:设击中目标次数为X ,则)02.0,400(~B X 。
方法1:802.0400 np ,利用泊松定理并查泊松分布表得997.0!8282e k X P k k方法2:利用excel 函数)1,01.0,400,1(1112BINOMDIST X P X P=1-0.002835997.06.若每次射击中靶的概率为0.7,求射击10炮,命中3炮的概率,至少中3炮的概率,最可能命中几炮.解:设中靶次数为X ,n =10, p =0.7, X~B (10, 0.7)10,,2,1,3.07.01010 k C k X P k k k733103.07.03C X P ,21013 X P X P X P X P829103.07.0453.07.0103.019103.08.813.03881, 或.3.07.0)3(1010103k k kk C X P又77.010 np , 所以最有可能命中7炮.7.从学校乘汽车到火车站的途中有5个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是52.设X为途中遇到红灯的次数,求X的分布律.解:)4.0,5(~B X8.设离散型随机变量X的分布律是.,2,1,!)( k e k C k X P k讨论常数C 与 应满足的条件解:因为!!11k Ce e k C k k k k)1( e Ce )1( e C ,由.1)1(eC e C 1-1=解得9.设X服从参数 的泊松分布,且P (X=1)=P (X=2),求P (X≥1)及 P (0<X2<3).解: ,,,,k ,!k e k X P k210由 ,21 X P X P 即有!2!12e e , 从而2 .因此22212211)1(!2!21e e e k e k e X P k k k k .11.进行某种试验,设每次试验成功的概率为43,以X表示首次成功所需试验的次数,试求出X取偶数的概率.(原书此处有误)12.盒内有3个黑球和6个白球,从盒内随机地摸取一个球,如果摸到黑球,则不放回,第二次再从盒中摸取一个球,如此下去,直到取到白球为止,记X为抽取次数,求X的分布律及分布函数.解:抽取次数X 的可能取值为1,2,3,4,且32961 X P ,4186932 X P ,1417682933 X P ,841867182934 X P .14. 设连续型随机变量X 的分布函数为e x d e x d cx x bx x a x F ,,1,ln ,1,)(求常数d c b a ,,,和X 的概率密度。
第二版 工程数学-概率统计简明教程-第三章-条件概率与事件的独立性

方案1和方案2的次品率分别为0.3% , 0.1%,求公司产品
的次品的率. 解: P(次品)=P(方案1的产品 且 为次品)+P(方案2,次)
= 40% ×0.3% + 60%×0.1% = 0.0018 问:从产品中随机抽取1件,测试为次品,问此次品是哪种
方案生产出来的可能性大?
P(方案1|次品)=0.4×0.003/0.0018=2/3 P(方案2|次品)=0.6×0.001/0.0018=1/3
=0.323
例7 一项血液化验以0.95概率将患者检查为阳性,但0.01 的概率误将健康者检查为阳性。已知该病的患病率为0.5%。 问:如果某人检验为阳性,则他的确患病的概率是多少?
解 记B={阳性},A1={患者}, A2={健康者}.
已知 P( A1) 0.5%, P( A2 ) 99.5%
C22 C62
61 15 15
=第一次在(4新+2旧)中取2新,第二次在(2新+4旧)中取2新
P(A ) 1 6 8 3 6 1 4 15 15 15 15 15 15 25
P( B0
|
A)
16 15 15
4
1 6
25
P(B1 |
A)
83 15 15
4
4 6
25
P( B2
|
A)
n
P(B) P(Ai )P(B | Ai ) i1
全概率公式 若事件 A1, A2, , An 两两互斥,且 P( Ai ) 0 ,1 i n ,
n
令 B BAi 则有 P(B) P( A1B) P( AiB) P( AnB)
i 1
P( A1)P(B | A1) P( An )P(B | An ) .
完整版概率论与数理统计课后习题详细答案__龙永红.pdf
1前言 (3)编写任务记录 (4)练习1-1 (5)练习1-2 (7)练习1-3 (8)练习1-4 (10)练习1-5 (13)习题一 (14)练习2-1 (16)练习2-2 (18)练习2-3 (19)练习2-4 (21)练习2-5 (24)习题二 (28)练习3-1 (31)练习3-2 (36)练习3-3 (41)练习3-4 (45)练习3-5 (49)练习4-1 (51)练习4-2 (51)练习4-3 (52)练习4-4 (54)练习5-1 (55)练习5-2 (56)练习5-3 (59)练习5-4 (60)练习5-5 (61)练习5-6 (63)练习5-7 (65)练习6-2 (65)练习7-1 (66)练习7-2 (66)23节次手写初稿录入校对更正1.1 周玉龙王骁王骁王骁1.2 周玉龙王骁王骁王骁1.3 周玉龙王骁王骁王骁1.4 周玉龙李政宵王骁王骁1.5 周玉龙李政宵王骁王骁习题一周玉龙李政宵王骁王骁2.1 周玉龙王骁王骁王骁2.2 周玉龙王骁王骁王骁2.3 周玉龙孙士慧王骁王骁2.4 周玉龙孙士慧王骁王骁2.5 周玉龙孙士慧王骁王骁习题二周玉龙孙士慧未校对3.1 周玉龙唐艺烨王骁部分校打3.2 周玉龙孙士慧王骁3.3 周玉龙唐艺烨王骁苏英彪3.4 周玉龙许彩灵王骁苏英彪3.5 周玉龙李政宵王骁苏英彪习题三4.1 周玉龙许彩灵王骁林家敏4.2 周玉龙许彩灵王骁林家敏4.3 周玉龙许彩灵王骁凌芝君4.4 周玉龙许彩灵王骁苏英彪习题四5.1 周玉龙唐艺烨王骁苏英彪5.2 周玉龙孙士慧王骁苏英彪5.3 周玉龙孙士慧王骁罗莘5.4 周玉龙孙士慧王骁罗莘5.5 周玉龙许彩灵孙士慧王骁苏英彪5.6 周玉龙许彩灵王骁苏英彪5.7 罗莘苏英彪习题五6.2 李欣苏英彪7.1 罗莘苏英彪7.2 罗莘苏英彪41-11、设样本空间为Ω .(1)Ω ={(i,j)|i=1,2…6;j=1,2...6}(2)Ω =(0,+∞)(3)Ω ={0,1,2,3}(4)Ω =N*2、(1)Ω ={1324,1342,3124,31421423,1432,4123,41322314,2341,3214,32412413,2431,4213,4231};(2)A={1324,1342,1423,1432};(3)B={1324,1342,3124,31421423,1432,4123,4132};(4) A B=B如前给出。
概率统计第三章题解
求(1)X,Y 的边缘分布律; (2)X=3 的条件下,Y 的条件分布律; (3)Y=1 的条件下,X 的条件分布律.
解: (1)X,Y 的边缘分布律见上表. 即
P { X 3, Y k } (2) P{Y k | X 3} , k 0,1,2,3 P { X 3}
K
0
X 和 Y 的联合分布律为
X
0 0 1/8
1 3/8 0
2 3/8 0
3 0 1/8
Y 1
3
3.盒子里装有 3 只黑球,2 只白球,2 只红球,在其中 任取 4 只球,以 X 表示取到黑球的只数,以 Y 表示取到红 球的只数.求 X 和 Y 的联合分布律. 解 X 的可能取值为 0,1,3,Y 的可能取值为 0,1,
由于 X 和 Y 相互独立,因此 X 和 Y 的联合概率密度为
1 1 e 2 , 0 x 1, y 0 f ( x , y ) f X ( x ) fY ( y ) 2 0, 其它
(2)设含有 a 的二次方程为a 2 2 Xa Y 0 ,试求 a 有 实根的概率.
概率统计第三章题解概率统计概率统计简明教程应用概率统计概率统计简明教程pdf概率统计学概率统计pdf理工科概率统计pdf概率统计讲义习题解答概率统计视频
三、习题解答 1.在一箱子中装有 12 只开关,其中 2 只是次品,在其
中取两次,每次任取一只,考虑两种试验: (1)放回抽样, (2)不放回抽样.我们定义随机变量 X、Y 如下:
)dx
1 2 ((1) (0))
=0.1445
14. 设 X 和 Y 是两个相互独立的随机变量,其概率密 度分别为
(1)确定常数k; (2)求P{X<1,Y<3}; (3)求 P{X<1.5};(4)求 P{X+Y 4 }.
概率论与数理统计教程第二版课后答案
概率论与数理统计教程第二版课后答案概率论与数理统计教程第二版是一本广泛使用的教材,主要介绍概率论和数理统计的基本概念、理论和方法。
它包含了大量的练习题,帮助学生巩固知识和提升技能。
本文将为教程中的一些课后题提供答案,以帮助学生对自己的学习进行反思和检验。
第一章:概率论的基本概念1. 在骰子的所有可能结果中,出现奇数的概率是多少?答案:在骰子的所有可能结果中,出现奇数的结果有1、3和5,共有3个结果。
骰子的总共可能结果为6。
因此,出现奇数的概率为3/6,即1/2。
第二章:随机变量及其分布1. 设随机变量X的分布函数为F(x) = (0, x<0; 1-x^2, 0≤x<1; 1, x≥1),求X的密度函数。
答案:对于连续型随机变量,其密度函数是分布函数的导数。
因此,求导得到密度函数:f(x) = dF(x)/dx = 2x,其中0≤x<1。
第三章:数理统计的基本概念1. 在对一个正态总体的均值进行统计推断时,样本均值和样本方差是哪两个常用的统计量?答案:在对正态总体的均值进行统计推断时,常用的两个统计量是样本均值和样本方差。
第四章:参数估计方法1. 在极大似然估计中,参数的估计值是否总能满足无偏性?答案:在极大似然估计中,参数的估计值不一定满足无偏性。
极大似然估计是一种一致性估计方法,即当样本容量趋于无穷大时,估计值趋于真实参数的概率为1。
但并不保证估计值在有限样本容量时的无偏性。
第五章:假设检验1. 什么是拒绝域,如何确定拒绝域?答案:拒绝域是在假设检验中,根据样本观测值的取值范围来决定是否拒绝原假设。
确定拒绝域需要设置显著性水平,即拒绝原假设的概率。
一般使用临界值法或p值法来确定拒绝域。
第六章:方差分析与回归分析1. 请解释何为因变量和自变量?答案:在回归分析中,因变量是需要被解释或预测的变量,也称为被解释变量。
而自变量是用来解释或预测因变量的变量,也称为解释变量。
这只是教程中一小部分题目的答案,通过解答这些题目,可以帮助学生更好地理解概率论和数理统计的概念、方法和应用。
概率统计简明教程 第四章 随机变量的数字特征
129第四章 随机变量的数字特征在前面两章中我们讨论了随机变量的概率分布,这是关于随机变量统计规律的一种完整描述,然而在实际问题中,确定一个随机变量的分布往往不是一件容易的事,况且许多问题并不需要考虑随机变量的全面情况,只需知道它的某些特征数值.例如,在测量某种零件的长度时,测得的长度是一个随机变量,它有自己的分布,但是人们关心的往往是这些零件的平均长度以及测量结果的精确程度;再如,检查一批棉花的质量,既要考虑棉花纤维的平均长度,又要考虑纤维长度与平均长度的偏离程度,平均长度越大,偏离程度越小,质量越好.这些与随机变量有关的数值,我们称之为随机变量的数字特征,在概率论与数理统计中起着重要的作用.本章主要介绍随机变量的数学期望、方差、矩以及两个随机变量的协方差和相关系数.§1 数学期望1.1 数学期望的概念在实际问题中,我们常常需要知道某一随机变量的平均值,怎样合理地规定随机变量的的平均值呢?先看下面的一个实例.例1.1 设有一批钢筋共10根,它们的抗拉强度指标为110,135,140的各有一根;120和130的各有两根;125的有三根.显然它们的平均抗拉强度指标绝对不是10根钢筋所取到的6个不同抗拉强度:110,120,125,130,135,140的算术平均,而是以取这些值的次数与试验总次数的比值(取到这些值的频率)为权重的加权平均,即平均抗拉强度1(110120212531302135140)10=+⨯+⨯+⨯++⨯123211110120125130135140101010101010=⨯+⨯+⨯+⨯+⨯+⨯ 126=.从上例可以看出,对于一个离散型随机变量X ,其可能取值为12,,,n x x x ,如果将这n 个数相加后除n 作为“均值”是不对的.因为X取各个值的频率是不同的,对频率大的取值,该值出现的机会就大,也就是在计算取值的平均时其权数大.如果用概率替换频率,用取值的概率作为一种“权数”做加权计算平均值是十分合理的.经以上分析,我们可以给出离散型随机变量数学期望的一般定义.1301.离散型随机变量的数学期望定义 1.1 设X 为一离散型随机变量,其分布律为{}k kP X x p ==(1,2,k = ),若级数1k k k x p ∞=∑绝对收敛,则称此级数之和为随机变量X的数学期望,简称期望或均值.记为()E X ,即1()kk k E X xp ∞==∑ (1.1)例 1.2. 某人从n 把钥匙中任取一把去试房门,打不开则除去,另取一把再试直至房门打开.已知钥匙中只有一把能够把房门打开,求试开次数的数学期望.解 设试开次数为X ,则分布律为1{},1,2,,P X k k n n=== ,从而111(1)1()22nk n n n E X k nn =++=⋅=⋅=∑. 例1.3 设随机变量(,)X B n p ,求()E X .解 因为{}C (1)k k n kk n p P X k p p -===- (0,1,,)k n = ,11!()C (1)(1)(1)!()!n n nk kn kk n kk nk k k n E X kp k p p p p k n k --=====-=---∑∑∑11(1)11(1)!(1)(1)![1(1)]![(1)]nk n k k n n np pp k n k np p p np----=--=-----=+-=∑例1.4 设随机变量()X P λ ,求()E X . 解 因为()X P λ ,有131{}!kP X k ek λλ-==0,1,2,,k = ()因此11()!(1)!k k k k E X eeee k k λλλλλλλλλ-∞∞---=====⋅=-∑∑.我们可以类似地给出连续型随机变量数学期望的定义,只要把分布律中的概率k p 改为概率密度()f x ,将求和改为求积分即可.因此,我们有下面的定义.2 . 连续型随机变量的数学期望定义1.2 设X 为一连续型随机变量,其概率密度为()f x ,若广义积分()d xf x x +∞-∞⎰绝对收敛,则称广义积分()d xf x x +∞-∞⎰的值为连续型随机变量X 的数学期望或均值,记为()E X ,即 ()()d E X xf x x +∞-∞=⎰. (1.2)例1.5 设随机变量X 的概率密度为2,01()0,x x f x <<⎧=⎨⎩,其他,求()E X .解 依题意,得,102()()d 2d 3E X xf x x x x x +∞-∞==⋅=⎰⎰.例1.6 设随机变量X 服从区间(,)a b 上的均匀分布,求()E X . 解 依题意,X 的概率密度为1,()0,a x b f x b a⎧<<⎪=-⎨⎪⎩,其他, 因此1321()()d d 2b aa b E X xf x x x x b a+∞-∞+==⋅=-⎰⎰.例1.7 设随机变量X 服从λ为参数的指数分布,求()E X . 解 依题意, X 的概率密度为e ,0,()0,0x x f x x λλ-⎧>=⎨≤⎩,因此1()()d ed xE X xf x x x x λλλ+∞+∞--∞==⋅=⎰⎰.例1.8 设随机变量X 服从正态分布2(,)N μσ,求()E X .解 由于22()21()x f x m s--= ()x -?<+因此()()d E X xf x x x+∞+∞-∞-∞==⎰⎰22()2d x x m s--22()()ed tx t t t 令m s m s+---==+22ed tt m +--==.例1.9 已知二维随机变量(,)X Y 的概率密度为(34)12e ,0,0,(,)0,x y x y f x y -+⎧>>=⎨⎩其他,求()E X .解 由第三章例3.2的结果关于X 的边缘概率密度为33e ,0,()0,0x X x f x x -⎧>=⎨≤⎩,133即(3)X E ,因此1()3E X =.1.2 随机变量函数的数学期望定理1.1 设随机变量Y 是随机变量X 的函数, ()Y g X =(其中g 为一元连续函数).(1)X 是离散型随机变量,概率分布律为{}k k P X x p ==, 1,2,k = ,则当无穷级数1()k k k g x p ∞=∑绝对收敛时,则随机变量Y 的数学期望为1()[()]()kk k E Y E g X g xp ∞===∑; (1.3)(2)X 是连续型随机变量,其概率密度为()f x ,则当广义积分()()d g x f x x +-ò绝对收敛时,则随机变量Y 的数学期望为()[()]()()d E Y E g X g x f x x +∞-∞==⎰.(1.4) 这一定理的重要意义在于,求随机变量()Y g X =的数学期望时,只需利用X 的分布律或概率密度就可以了,无需求Y 的分布,这给我们计算随机变量函数的数学期望提供了极大的方便.定理的证明超出了本书的范围,下面我们仅就连续型随机变量,且()Y g X =单调的情形给出证明.证明 第二章定理4.2给出了随机变量Y 的概率密度[()](),()0,X Y f h y h y y f y αβ⎧⎪⎨⎪⎩'<<=,其他.其中)(x f X 为随机变量X 概率密度,函数)(x g y =是处处可导的严格单134调函数,它的反函数为)(y h x =,则有()()d Y E Y yf y y +∞-∞=⎰[()]|()|d X yf f y h y y βα'=⎰.当()0h y '>时()E Y [()]()d ()()d X X yf f y h y y g x f x x βα+∞-∞'==⎰⎰,当()0h y '<时()E Y [()]()d ()()d X X yf f y h y y g x f x x βα-∞+∞'=-=-⎰⎰()()d X g x f x x +∞-∞=⎰.例1.10 设离散型随机变量X 的分布律为求随机变量232Y X =-的数学期望.解 依题意,可得,22()[3(1)2]0.1(302)0.3E Y =⨯--⨯+⨯-⨯2(312)0.4+⨯-⨯2(322)0.2+⨯-⨯1.9=.例1.11 随机变量X (0,1)N ,求2Y X =的数学期望. 解 依题意,可得22()()()d E Y E X x f x x +∞-∞==⎰222d xxx +∞--∞=⎰22dexx+∞--∞=⎰2222e e dx xx x+∞+∞---∞-∞⎛⎫⎪=-⎪⎭⎰22e d1xx+∞--∞==⎰例 1.12 国际市场每年对我国某种商品的需求量是随机变量X(单位:吨),它服从[2000,4000]上的均匀分布,已知每售出1吨商品,可挣得外汇3万元;若售不出去而积压,则每吨商品需花费库存费等共1万元,问需要组织多少货源,才能使国家受益期望最大?解设组织货源t吨,[2000,4000]tÎ,受益为随机变量Y(单位:万元),按照题意Y是需求X的函数3(),,()3,,X t X X tY g Xt X t当当ì--<ïï==íï³ïîX的概率密度为1,20004000()20000,xf xìïï#ï=íïïïî其它.由(1.4),得()[()]()()dE Y E g X g x f x x+-==ò400020001{[3()]d3d}2000ttx t x x t x=--+蝌21[2140008000000]2000t t=-+-当3500t=时()E Y达到最大值,也就是说组织货源3500吨时国家的期望受益最大.135136例1.13 柯西分布211()1f x xπ=+()x -∞<<+∞的数学期望由于21||d (1)x x x π+∞-∞=+∞+⎰,所以不存在.上述的定理可以推广到两个或两个以上随机变量的函数上去,我们有下面的定理.定理 1.2 设随机变量Z 是随机变量(,)X Y 的函数,(,)Z g X Y =,其中g 为二元连续函数,则(1)如果(,)X Y 为二维离散型随机变量,其分布律为ij j i p y Y x X P ===},{ ,1,2,i j = ,且11(,)ijij j i g x yp ∞∞==∑∑绝对收敛,则随机变量(,)Z g X Y =的数学期望为11()[(,)](,)ijij j i E Z E g X Y g x yp ∞∞====∑∑; (1.5)(2)如果(,)X Y 为二维连续型随机变量时,概率密度为(,)f x y ,且(,)(,)d d g x y f x y x y +∞+∞-∞-∞⎰⎰绝对收敛,则随机变量(,)Z g X Y =的数学期望为()[(,)](,)(,)d d E Z E g X Y g x y f x y x y +∞+∞-∞-∞==⎰⎰. (1.6)例1.14 设二维离散型随机变量(,)X Y 的分布律为137求()E XY 和()E Z ,其中max(,)Z X Y =.解 依题意,可得()000.1010.3100.4110.20.2E XY =⨯⨯+⨯⨯+⨯⨯+⨯⨯=; ()00.110.90.9E Z =⨯+⨯=.例1.15 设二维连续型随机变量(,)X Y 的概率密度为212,01,(,)0,y y x f x y ⎧≤≤≤=⎨⎩其他,求(1)()E XY ;(2)2()E X .解 (1)由公式(1.6)得,121()(,)d d d (12)d 2xE X Y xy f x y x y x x y y y +∞+∞-∞-∞===⎰⎰⎰⎰,(2)将2X 看成是函数(,)Z g X Y =的特殊情况,从而利用公式(1.6)进行求解,即122222()(,)d d d 12d 3xE X x f x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.需要说明的是:本题在求解2()E X 时,也可以先求出(,)X Y 关于X 的边缘概率密度,再利用公式22()()d X E X x f x x +∞-∞=⎰,求解2()E X (请读者自行完成).例 1.16 一商店经销某种商品,每周进货量X 与顾客对商品的需求量Y 是相互独立的随机变量,且都服从[10,20]上的均匀分布,商店每售出一单位商品可得利润1000元,若需求量超过进货量,商店可从其它商店调剂供应,这时每单位商品获利润500元,计算经销此商品每周所获得平均利润.解 设Z 表示商店每周所获利润,依题意1000,,(,)1000500(),,Y Y X Z g X Y X Y X Y X ì£ïï==íï+->ïî138由于(,)X Y 的概率密度为1,1020,1020(,)1000,x y f x y ,其他,ìïï##ï=íïïïî所以20201010()(,)(,)d d E Z g x y f x y x y =蝌20202010101011d 1000d d 500()d 100100yyyy xyx y x =?+蝌蝌202021010310(20)d 5(1050)d 2y y y y y y =-+--蝌 200005150014166.673=+椿(元).1.3 数学期望的性质设C 为常数,随机变量X ,Y 的数学期望都存在.关于数学期望有如下性质成立:性质1.则()E X C =; 性质2.()()E CX CE X =; 性质3.()()()E X Y E X E Y +=+;性质4. 如果随机变量X 和Y 相互独立,则()()()E XY E X E Y =. 这里只就连续型随机变量的情形对性质3和性质4给出证明,对于离散型随机变量情况,请读者自行完成.证明:设二维连续型随机变量(,)X Y 的概率密度为(,)f x y ,(,)X Y 关于X 和关于Y 的边缘概率密度为()X f x 和()Y f y ,则有()()(,)d d E X Y x y f x y x y +∞+∞-∞-∞+=+⎰⎰(,)d d xf x y x y +∞+∞-∞-∞=⎰⎰(,)d d yf x y x y +∞+∞-∞-∞+⎰⎰139(,)d d x f x y y x +∞+∞-∞-∞⎡⎤=⎢⎥⎣⎦⎰⎰(,)d d y f x y x y +∞+∞-∞-∞⎡⎤+⎢⎥⎣⎦⎰⎰()d X xf x x +∞-∞=⎰()d Y yf y y +∞-∞+⎰()()E X E Y =+.如果X 和Y 相互独立,则(,)f x y =()X f x ()Y f y ,有()(,)d d E XY xyf x y x y +∞+∞-∞-∞=⎰⎰()()d d X Y xyf x f y x y +∞-∞=⎰ ()d ()d X Y xf x x yf y y +∞+∞-∞-∞=⋅⎰⎰()E XY =例1.17 设两个随机变量X 和Y ,设2()E X 和2()E Y 都存在,证明: 222[()]()()E XY E X E Y ≤ (1.7) 这一不等式称为柯西—许瓦兹(Cauchy Schwarz -)不等式证明 对于任意实数t ,令2()[()]g t E X tY =+ 由数学期望的性质,有2222[()](2)E X tY E X tXY t Y +=++ 222()2()()E X tE XY t E Y =++ 因此 222()()2()()g t E X tE XY t E Y =++由于()0g t ≥,上述关于t 的二次函数的判别式小于或等于0.即 2224[()]4()()0E XY E X E Y ∆=-≤140因此 222[()]()()E XY E X E Y ≤例1.18 设随机变量X 和Y 相互独立,且各自的概率密度为33,0,()0,x X e x f x -⎧>=⎨⎩其他, 44,0,()0,y Y e y f y -⎧>=⎨⎩其他, 求()E XY .解 由性质3得()()()E XY E X E Y =()d ()d X Y xf x x yf y y +∞+∞-∞-∞=⨯⎰⎰3403d 4d xyxex ye y +∞+∞--=⨯⎰⎰1113412=⨯=.例1.19 将n 个球随机放入M 个盒子中去,设每个球放入各盒子是等可能的,求有球盒子数X 的期望.解 令随机变量1,1,2,,0,i i X i M i ⎧==⎨⎩ 第个盒子有球,第个盒子无球,显然有 1Mi i X X ==∑.对于第i 个盒子而言,每只球不放入其中的概率为11M ⎛⎫-⎪⎝⎭,n 个球都不放入的概率为11nM ⎛⎫- ⎪⎝⎭,因此1{0}1ni P X M ⎛⎫==- ⎪⎝⎭1{1}11n i P X M ⎛⎫==-- ⎪⎝⎭141由于 1()1{1}0{0}11ni i i E X P X P X M ⎛⎫=⨯=+⨯==-- ⎪⎝⎭由数学期望的性质,可以得到11()()11nMi i E X E X M M =⎛⎫⎛⎫==-- ⎪ ⎪ ⎪⎝⎭⎝⎭∑.§2 方差2.1 方差及其计算公式数学期望体现了随机变量所有可能取值的平均值,是随机变量最重要的数字特征之一.但在许多问题中只知道这一点是不够的,还需要知道与其数学期望之间的偏离程度.在概率论中,这个偏离程度通常用2{[()]}E X E X -来表示,我们有下面关于方差的定义. 定义2.1 设X 为一随机变量,如果随机变量2[()]X E X -的数学期望存在,则称之为X 的方差,记为()D X ,即2{[()]}D X E X E X =-() (2.1)称X 的标准差或均方差,记作()X σ .由定义2.1可知,随机变量X 的方差反应了X 与其数学期望()E X 的偏离程度,如果X 取值集中在()E X 附近,则方差()D X 较小;如果X 取值比较分散,方差()D X 较大.不难看出,方差()D X 实质上是随机变量X 函数2[()]X E X -的数学期望.如果X 是离散型随机变量,其概率分布律为 {}k k P X x p ==, 1,2,k = ,142则有 221{[()]}[()].kk k D X E X E X xE X p ∞==-=-∑()如果X 连续型随机变量,其概率密度为()f x ,则有22{[()]}[()]()d .D X E X E X x E X f x x +∞-∞=-=-⎰()根据数学期望的性质,可得2{[()]}D X E X E X ()=-22{2()[()]}E X X E X E X =-?22()2()()[()]E X E X E X E X =-?22()[()]E X E X =- .即 22()()[()]D X E X E X =- (2.2) 这是计算随机变量方差常用的公式例2.1 设离散型随机变量X 的分布律为求D X ().解 因为(1)0.100.310.420.20.7E X =-⨯+⨯+⨯+⨯=(), 22222()(1)0.100.310.420.2 1.3E X =-⨯+⨯+⨯+⨯=,222()[()] 1.30.70.81D X E X E X =-=-=().例2.2 设(,)X B n p ,求D X ().解 ()E X np =,令1q p =-,143220()C nk k n kn k E X k p q-==å1![(1)]!()!nk n kk n k k k p qk n k -==-+-å22(2)(2)1(1)(2)!(1)(1)!()!nk n k k n n n k p pqk n k ----=--=---å1!(1)!()!nkn kk n p qk n k -=+--å22(2)(2)2(2)!(1)()(2)!()!nk n k k n n n ppqE X k n k ----=-=-+--å2(1)n n p np =-+,所以 22222()[()](1)D X E X E X n n p np n p npq ()=-=-+-=.例2.3 设()X P λ ,求D X ().解 ()E X l =2201ee()[(1)1]!(1)!k k k k E X kk k k lll l --ゥ====-+-邋2221ee(2)!(1)!k kk k k k lllll-ゥ--==×=? --邋2l l =+所以 22().D X ()l l ll =+-=例2.4 设随机变量X 服从几何分布()X G p ,即 1{},1,2,k P X k pqk -===144其中01,1p q p <<=-,求(),().E X D X解 1111()k k k k E X kpqp kq∞∞--====∑∑由于1,011k k q q q∞==<<-∑,对此级数逐项求导,得1001d dd d k kk k k k q qkqq q ∞∞∞-===⎛⎫==⎪⎝⎭∑∑∑,因此121d 11d 1(1)k k kqq q q ∞-=⎛⎫== ⎪--⎝⎭∑, 从而211()(1)E X p q p=⋅=-。