大学物理 波动方程 试题(附答案)

合集下载

大学物理波动练习题

大学物理波动练习题

大学物理波动练习题1、下列哪一种波属于机械波?A.电磁波B.声波C.地震波D.核辐射波2、在机械波的传播过程中,介质中的质点发生的是()A.随波逐流的相对运动B.周期性变化的相对运动C.振幅变化的相对运动D.垂直于波传播方向的相对运动3、下列哪一种说法正确地描述了波动现象的特征?A.波动现象是独立存在的,与振动源无关B.波动现象与振动源无关,只与传播介质有关C.波动现象是振动源和传播介质共同作用的结果D.波动现象只与传播介质有关,与振动源无关4、在波动现象中,下列说法正确的是()A.各质点的起振方向都与振源的起振方向相同B.各质点的振动周期都与振源的振动周期相同C.各质点的振动方向都与振源的振动方向相同D.各质点的振动步调都与振源的振动步调相同二、解答题5.什么是机械波的传播速度?它与介质有关吗?如果有关,是怎样的关系?6.在机械波的形成过程中,介质中的各质点是如何随波迁移的?为什么?1、在以下物理量中,哪个是矢量?A.路程B.速率C.速度D.时间答案:C.速度解释:矢量是具有大小和方向的物理量,而速度是既有大小又有方向的物理量,因此是矢量。

而路程、速率和时间都只有大小,没有方向,因此是标量。

2、下列哪个选项可以表示物体的惯性?A.速度B.质量C.加速度D.动量答案:B.质量解释:惯性是物体抵抗运动状态被改变的性质,是物体的固有属性。

质量是惯性的唯一量度,因此质量可以表示物体的惯性。

速度、加速度和动量都与物体的运动状态有关,但它们都不能直接表示物体的惯性。

3、在以下哪个条件下,物体的运动状态会发生改变?A.受到力的作用B.受到重力C.受到支持力D.受到摩擦力答案:A.受到力的作用解释:物体的运动状态会发生改变,即物体的速度会发生改变,这只有当物体受到力的作用时才会发生。

力是改变物体运动状态的原因。

重力、支持力和摩擦力都是具体的力,但它们并不能独自改变物体的运动状态。

二、填空题4、在物理学中,我们将物体相对于其他物体位置的变化称为______。

昆明理工大学物理习题集(下)第十三章元答案

昆明理工大学物理习题集(下)第十三章元答案

u
u2
(C) y Acos[(t x )] (D) y Acos[(t x) ]
u
u
5、一平面简谐波以波速 u 沿 x 轴正方向传播, O 为坐标原点。已知 P 点的振动方程为
y Acost ,则:[ CC ]
(A) O 点的振动方程为 y Acos(t l / u)
(B)波的表达式为 y Acos[t (l / u) (x / u)]
(A)λ
(B)λ/2
(C)3λ/4
(D)λ/4
12、若在弦线上的驻波表达式是 y 0.20sin 2x cos20t 。则形成该驻波的两个反向进行
的行波为:[ CC ]
(A)
y1
0.10cos[2
(10t
x)
2
]
y2
0.10cos[2
(10t
x)
2
]
(B)
y1
0.10cos[2
(10t
x)
4
S2
C
N
引起的振动
均干涉相消,则 S 2 的初相应为2
2k
3 2
,k
0,1,2,。
8.如图所示,一平面简谐波沿 x 轴正方向传播,波长为 ,若 P1 点处质点的振动方程
为 y1 Acos(2vt ) , 则 P2 点 处 质 点 的 振 动 方 程 为
y2
A c os [2v
2
(L1
L2 )]
]
y2
0.10cos[2
(10t
x)
3 4
]
(C)
y1
0.10
cos[2
(10t
x)
2
]
y2
0.10cos[2

大学物理学振动与波动习题答案

大学物理学振动与波动习题答案
所以

显然f点的速度大于零,所以取负值,解得
tf= -T/12.
从f点到达a点经过的时间为T/4,所以到达a点的时刻为
ta= T/4 +tf= T/6,
其位相为

由图可以确定其他点的时刻,同理可得各点的位相.
4.3如图所示,质量为10g的子弹以速度v= 103m·s-1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N·m-1,木块的质量为4.99kg,不计桌面摩擦,试求:
[解答](1)设物体的简谐振动方程为
x = Acos(ωt + φ),
其中A= 0.12m,角频率ω =2π/T= π.
当t =0时,x= 0.06m,所以
cosφ= 0.5,
因此
φ= ±π/3.
物体的速度为
v= dx/dt= -ωAsin(ωt + φ).
当t =0时,
v= -ωAsinφ,
由于v> 0,所以sinφ< 0,因此
大学物理学(上)
第四,第五章习题答案
第4章振动
P174.
4.1一物体沿x轴做简谐振动,振幅A= 0.12m,周期T= 2s.当t= 0时,物体的位移x= 0.06m,且向x轴正向运动.求:
(1)此简谐振动的表达式;
(2)t=T/4时物体的位置、速度和加速度;
(3)物体从x= -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.
φ= -π/3.
简谐振动的表达式为
x= 0.12cos(πt –π/3).
(2)当t=T/4时物体的位置为
x= 0.12cos(π/2–π/3)
= 0.12cosπ/6 = 0.104(m).

大学物理波动习题

大学物理波动习题
x0
y 0.10 cos165 (T / 4)
u=330 m/s
165 (T / 4) / 2 O 1 2 3 4 x (m)
-0.10
21、一驻波表达为 y Acos2x cos1。0位0t
于x1 = 1 /8 m的质元P1与位于x2 = 3 /8 m处的
质元P2的振动相位差为__________.
D 的动SS振方12P动程方为2.2程为,两y1列波((AAB在c))oyPys点2(22发t 生AA12相ccoo消)ss干((2,2涉则t,t若S2S12的1)振)
S2
(2
1 )
P
2
(C)
y2
A c os (2t
1)
2
(D) y2 2Acos(2t 0.1 )
r2 r1
9. 某时刻驻波波形曲线如图所示,则 a ,b两点的 为相差是
S 2连线上,S1外侧各点(例如P点)两波引起的
两谐振动的为相差是
(A) 0
(C) / 2
(B)
(D) 3 / 2
B
/4
P
S1
S2
(1
2)
2
r1
r2
动8 方. 如向图均所垂示直,于S1图和面S,2 发为出两波相长干为波源 ,的它简们谐的波振,
P点是两列波相遇区域中的一点,以知 S1P 2
的振动方程为y=Acos(t+),若波速为u,
求此波的波动方程。
解:波速沿负x方向,则波动方程为
y Acos[(t x 1) ]
u
u
x=-1
18、图为t = T / 4 时一平面简谐波的波形 曲线,则其波的表达式为.
y 0.10 cos165 (t x / 330) (SI)

大学物理考试题库第十一章波动

大学物理考试题库第十一章波动

⼤学物理考试题库第⼗⼀章波动第⼗⼀章波动⼀:选择题1. 传播速度100m/s ,频率为50Hz 的平⾯简谐波,在传播⽅向上相距0.5m 的两点的相位差:()A 3πB 13C 4πD 142.⼀平⾯简谐波以速度u 沿x 轴正⽅向传播,在t = t '’ 时波形曲线如图1-2所⽰。

则坐标原点O 的振动⽅程为:( )(A )+-=2)'(cos πt t bua y(B )--=2)'(2cos ππt t bua y(C )++=2)'(cos ππt t bua y(D )--=2)'(cos ππt t bua y3. ⼀平⾯简谐波沿x 轴负⽅向传播,已知x=x 0处质点的振动⽅程为y=Acos(ωt+φ0),若波速为u,则此波的波动⽅程为(A) y=Acos {ω[t - (x 0-x) / u] +φ0 } .(B) y=Acos {ω[t - (x-x 0) / u] +φ0 } . (C) y=Acos {ωt - [ (x 0-x) / u] +φ0 } . (D) y=Acos {ωt + [ (x 0-x) / u] +φ0 } .4、⼀沿X轴反向传播的平⾯余弦波,在 2T t =时的波形如图所⽰,则此谐波的表达式为 [ ].)1002cos(05.0)4()1002cos(05.0)3()1002cos(05.0)2()1002cos(05.0)1(x t y x t y x t y x t y ππωππωππωππω--=+-=-+=++=5. 下列关于波的能量的描述正确的X/m0.05Y/m123图1-2是:A 波的能量212k p E E kA +=B 机械波在介质中传播时,任⼀质元的k E 和p E 均随时间变化,但其相位差恒为2π。

C k E 和p E 同时为零,同时达到最⼤,说明此时能量守恒不成⽴。

D kE 和p E 相位相同,表明波的传播就是能量的传播过程。

大学物理习题及解答(振动与波、波动光学)

大学物理习题及解答(振动与波、波动光学)

1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯10-2 m 。

假如使物体上下振动,且规定向下为正方向。

〔1〕t =0时,物体在平衡位置上方8.0 ⨯10-2 m处,由静止开始向下运动,求运动方程。

〔2〕t = 0时,物体在平衡位置并以0.60m/s 的速度向上运动,求运动方程。

题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。

其中振动的角频率是由弹簧振子系统的固有性质〔振子质量m 与弹簧劲度系数k 〕决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。

解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。

而此时弹簧的伸长量m l 2108.9-⨯=∆。

如此弹簧的劲度系数l mg l F k ∆=∆=//。

系统作简谐运动的角频率为1s 10//-=∆==l g m k ω〔1〕设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。

由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。

如此运动方程为])s 10cos[()m 100.8(121π+⨯=--t x〔2〕t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;如此运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如下列图,试求:〔1〕运动方程;〔2〕点P 对应的相位;〔3〕到达点P 相应位置所需要的时间。

题2分析:由运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。

此题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。

曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比拟方便。

大学物理波动光学综合练习题(含答案)

《大学物理》综合练习(七)——波动光学教学班级: 序 号: 姓 名: 日 期:一、选择题(把正确答案的序号填入括号内)1.如图,由空气中一单色点光源S 发出的光,一束掠入射到平面反射镜M 上,另一束经折射率为n 、厚度为d 的媒质薄片N 后直接射到屏E 上。

如果l AP SA ==,D SP =, 则两相干光束SP 与SAP 在P 点的光程差为:(A) D l −=2δ; (B) 2/)1(2λδ+−−−=d n D l ;(C) d n D l )1(2−−−=δ; (D) 2/2λδ+−=D l 。

解:2/)1(22/])[(2λλδ+−−−=++−−=d n D l nd d D l[ B ]2.如图,折射率为2n 、厚度为e 的透明媒质薄膜上方和下方的透明介质的折射率分别是1n 和3n ,已知321n n n <<。

如果用波长为λ的单色平行光垂直入射到该薄膜上,则从上下两表面3题1图 题2图反射的光束的光程差是(A) e n 22; (B) 2/22λ−e n ;(C) 2/322λ−e n ; (D) 222/2n e n λ−。

解:两反射面均有半波损失,e n 22=δ。

[ A ]3.设在双缝干涉实验中,屏幕E 上的P 点是亮条纹,如将缝2S 盖住,并在21S S 连线的垂直平分面处放一反射镜M (如图),则此时:(A) P 点处为暗条纹;(B) P 点处仍然是亮条纹;(C)无干涉条纹; (D)无法确定P 点是亮条纹还是暗条纹。

解:光在M 处发射有半波损失,故P 点处为暗条纹。

[ A ]4.用波长为λ的平行单色光垂直照射图示装置观察空气层上下表面反射光形成的等厚干涉条纹。

以下各图画出可能出现的暗条纹的形状和位置。

试判断哪一图是实际观察到的干涉暗条纹。

题3图解:λλλδ42247max =+⨯= 4max =k (明),故图(C )正确。

[ C ]5.在迈克尔耳逊干涉仪的一条光路中,放入一折射率为n 、厚度为d 的透明薄片,放入前后两条光路的光程差的改变量为(A) d n )1(−; (B) nd ; (C) d n )1(2−; (D) nd 2。

波动习题及答案

1 一列平面简谐波以波速 u 沿 x 轴正方向传播,波长为。 已知在x0=处的质元振动表达式为 y A cos( t ) 2 试写出波动方程。
2 设有一平面简谐波频率为,振幅为A以波速u沿x轴正向传播, 已知波线上距原点为d的B点的振动方程为
yB A cos(2t 0 )
答:全部对。
15
一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹,若已知此光栅缝宽 与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第 级和第 级谱线。
解:∵a=b,故有缺级。
由 a sin k / ,
(a b) sin k
k 2 / k
时缺级
a b
0
D
k=(n – 1)e/λ = 6.96 ≈7
零级明纹移到原第 7 级明纹处 …
13
例12-7 在双缝装置中,用一折射率为n的薄云母片覆盖其中 一条缝,这时屏幕上的第7条明纹恰好移到屏幕中央零级明纹缝 隙处,如果入射光的波长为,则这云母片的厚度为 (A)n-1, (B)7 C)7n, (D)(n-1/7) 解:因为
a

k 2k /
K/=1,则k=2,即第二级缺级 故应为第一级和第三级谱线。
16
已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad,它们都发出波长 为5500Å的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?
解:
1.22

D
5.500107 D 1.22 1.22 0.139m 6 4.8410
,试问: (1)油滴外围(最薄处)区域对应于亮区还是暗 区,为什么? (2)如果总共可以观察到5条明纹,且中心为明 纹,问中心点油膜厚为多少?

(完整版)大学物理波动光学的题目库及答案.docx

实用标准文案一、选择题:(每题3 分)1、在真空中波长为的单色光,在折射率为n 的透明介质中从 A 沿某路径传播到B,若A、 B 两点相位差为 3,则此路径 AB 的光程为(A) 1.5.(B) 1.5n.(C) 1.5 n.(D) 3.[]2、在相同的时间内,一束波长为的单色光在空气中和在玻璃中(A)传播的路程相等,走过的光程相等.(B)传播的路程相等,走过的光程不相等.(C)传播的路程不相等,走过的光程相等.(D)传播的路程不相等,走过的光程不相等.3、如图, S1、S2是两个相干光源,它们到P 点的距离分别为 r 12111和 r.路径 S P 垂直穿过一块厚度为t ,折射率为 n的介质板,路径S2P 垂直穿过厚度为 t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A)(r2n2t 2 ) (r1 n1t1 )S1S2[]t1r1t2Pn1r2n2(B)[ r2( n21)t2 ][ r1 (n1 1)t2 ](C)(r2n2t 2 )(r1n1 t1 )(D)n2 t2n1t1[]4、真空中波长为的单色光,在折射率为n 的均匀透明媒质中,从 A 点沿某一路径传播到 B 点,路径的长度为l. A、 B 两点光振动相位差记为,则(A) l = 3 / 2,=3.(B) l= 3 / (2n),=3n.(C) l = 3 / (2 n),=3.(D) l= 3n / 2,=3n.5、如图所示,波长为的平行单色光垂直入射在折射率为n2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为 e,而且 n1> n2> n3,则两束反射光在相遇点的相位差为(A) 4n e /.(B) 2n e /.22(C) (4n2 e /.(D) (2n2 e /.[]6、如图所示,折射率为n 、厚度为 e 的透明介质薄膜2的上方和下方的透明介质的折射率分别为n1和 n3,已知 n1<n2< n3.若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2 n2 e.(B) 2 n2 e-/ 2 .(C) 2 n2 e-.(D) 2 n2 e-/ (2n2).7、如图所示,折射率为n 、厚度为 e 的透明介质薄膜的2上方和下方的透明介质的折射率分别为n1和 n3,已知 n1< n2>n .若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜3上、下两表面反射的光束(用①与②示意 )的光程差是(A) 2 n e.(B) 2 n e- / 2.22[]n1n2e n3① ②n1n2en3[]① ②n1n2e实用标准文案[]8 在双缝干涉实验中,两缝间距为d,双缝与屏幕的距离为 D (D>>d ) ,单色光波长为,屏幕上相邻明条纹之间的距离为(A) D/d .(B)d/D .(C) D/(2 d).(D) d/(2D ).[]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A)使屏靠近双缝.(B)使两缝的间距变小.(C)把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.[]10、在双缝干涉实验中,光的波长为600 nm ( 1 nm= 10-9 m) ,双缝间距为 2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm .(B) 0.9 mm .(C) 1.2 mm(D) 3.1 mm .[]11、在双缝干涉实验中,12距离相等,若单色光源 S 到两缝 S、S则观察屏上中央明条纹位于图中O 处.现将光源 S 向下移动到示意S1图中的S 位置,则S O(A)中央明条纹也向下移动,且条纹间距不变.S S2(B)中央明条纹向上移动,且条纹间距不变.(C) 中央明条纹向下移动,且条纹间距增大.(D)中央明条纹向上移动,且条纹间距增大.[]12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A)向下平移,且间距不变.(B) 向上平移,且间距不变.(C) 不移动,但间距改变.(D)向上平移,且间距改变.[]13、在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为 D (D >> d).波长为的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2 D / d.(B) d / D.(C) dD /.(D) D /d.[]14 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d,双缝到屏的距离为D (D >> d) ,所用单色光在真空中的波长为,则屏上干涉条纹中相邻的明纹之间的距离是(A) D / (nd)(B) n D /d.(C) d / (nD ).(D) D / (2 nd).[]15、一束波长为的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A).(B)/ (4 n).(C).(D) / (2n) .[]实用标准文案们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为,则反射光形成的干涉条纹中暗环半径r k的表达式为(A) r k =k R .(B) r k =k R / n .(C) r k =kn R .(D) r k =k / nR .[]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为 d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n- 1 ) d.(B) 2 nd.(C) 2 ( n- 1 ) d+ / 2 .(D) nd.(E) ( n- 1 ) d.[]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长,则薄膜的厚度是(A) / 2.(B)/ (2 n).(C) / n.(D).[]2 n119、在单缝夫琅禾费衍射实验中,波长为的单色光垂直入射在宽度为a= 4的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2个.(B) 4个.(C) 6 个.(D) 8个.20、一束波长为的平行单色光垂直入射到一单缝 AB 上,装置如图.在屏幕 D 上形成衍射图样,如果 P 是中央亮纹一侧第一个暗纹所在的位置,则[]L DAPBC 的长度为(A).(B).(C) 3 / 2 .(D) 2.[]BCf屏21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S,则 S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A)振动振幅之和.(B)光强之和.(C) 振动振幅之和的平方.(D)振动的相干叠加.[]22、波长为的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为 =± / 6,则缝宽的大小为(A).(B).(C) 2 .(D) 3.[]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A)对应的衍射角变小.(B)对应的衍射角变大.(C)对应的衍射角也不变.(D)光强也不变.[]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上.所用单色光波长为=500 nm ,则单缝宽度为(A) 2.5 × 10-m.(B) 1.0 × 10m.实用标准文案25、一单色平行光束垂直照射在宽度为 1.0 mm 的单缝上, 在缝后放一焦距为 2.0 m 的会聚透镜. 已知位于透镜焦平面处的屏幕上的中央明条纹宽度为 2.0 mm ,则入射光波长约 为 (1nm=10 - 9m)(A) 100 nm (B) 400 nm(C) 500 nm(D) 600 nm[ ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小. (B) 宽度变大.(C) 宽度不变,且中心强度也不变. (D) 宽度不变,但中心强度增大.[ ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小; (B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小.[ ]28、在单缝夫琅禾费衍射实验中波长为 的单色光垂直入射到单缝上.对应于衍射角为 30°的方向上,若单缝处波面可分成 3 个半波带,则缝宽度 a 等于(A) .(B) 1.5 .(C) 2 .(D) 3 .[ ]29、在如图所示的单缝夫琅禾费衍射装置中,设LC中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的 3,同时使入射的单色光的波长变为原来的 3 /a24,则屏幕 C 上单缝衍射条纹中央明纹的宽度x 将变为原来的f(A) 3 / 4 倍.(B) 2 / 3 倍. y(C) 9 / 8 倍. (D) 1 / 2 倍.Ox(E) 2 倍.[]30、测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉.(B) 牛顿环 .(C) 单缝衍射.(D) 光栅衍射.[]31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b)为下列哪种情况时(a 代表每条缝的宽度 ), k=3、 6、 9 等级次的主极大均不出现?(A) a + b=2 a .(C) a + b=4 a .(B) a +b=3 a . (A) a + b=6 a .[]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光.(B) 绿光.(C) 黄光.(D) 红光.[]实用标准文案使屏幕上出现更高级次的主极大,应该(A)换一个光栅常数较小的光栅.(B)换一个光栅常数较大的光栅.(C)将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动.[]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0 × 10- 1 mm.(B) 1.0 × 10- 1 mm.(C) 1.0 × 10- 2 mm.(D) 1.0 × 10-3mm .[]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度 a 和相邻两缝间不透光部分宽度 b 的关系为1(B) a=b .(A) a= b.2(C) a= 2b.(D) a= 3 b.[]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A)干涉条纹的间距不变,但明纹的亮度加强.(B)干涉条纹的间距不变,但明纹的亮度减弱.(C)干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹.[]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0/ 4.(C) 3 I0 / 8.(D) 3I 0 / 4 .[]38、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I为(A) I0/ 4 2.(B)I0 / 4.(C) I 0 / 2.(D) 2 I0/ 2.[]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0 / 4.(C) 3 I 0 / 8.(D) 3 I 0/ 4.[]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A)在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[]二、填空题:(每题 4 分)实用标准文案41、若一双缝装置的两个缝分别被折射率为n 1和 n2的两块厚度均为 e 的透明介质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差=_____________________________ .42、波长为的单色光垂直照射如图所示的透明薄膜.膜厚度为 e,两束反射光的光程差=n1= 1.00__________________________ .n2= 1.30en3= 1.5043、用波长为的单色光垂直照射置于空气中的厚度为 e 折射率为 1.5的透明薄膜,两束反射光的光程差= ________________________ .44、波长为的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为 e,折射率为 n,透明薄膜放在折射率为n1的媒质中, n1< n,则上下两表面反射的两束反射光在相遇处的相位差= __________________ .45、单色平行光垂直入射到双缝上.观察屏上 P 点到两缝的距离分别为 r1和 r 2.设双缝和屏之间充满折射率为n 的媒质,则 P 点处二相干光线的光程差为________________ .n1ne n1S1r1pdr 2S246、在双缝干涉实验中,两缝分别被折射率为12的透明nn和 n薄膜遮盖,二者的厚度均为e.波长为的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差= _______________________ .47、如图所示,波长为的平行单色光斜入射到S1距离为 d 的双缝上,入射角为.在图中的屏中央 O 处( S1O S2 O ),两束相干光的相位差为dO ________________ .S248、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.49 、一双缝干涉装置,在空气中观察时干涉条纹间距为 1.0 mm .若整个装置放在水中,干涉条纹的间距将为____________________ mm. ( 设水的折射率为4/3 )实用标准文案屏的距离 D =1.2 m,若测得屏上相邻明条纹间距为x= 1.5 mm ,则双缝的间距 d= __________________________ .51、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距___________ ;若使单色光波长减小,则干涉条纹间距_________________ .52、把双缝干涉实验装置放在折射率为n 的媒质中,双缝到观察屏的距离为D,两缝之间的距离为 d (d<<D ),入射光在真空中的波长为,则屏上干涉条纹中相邻明纹的间距是 _______________________ .53、在双缝干涉实验中,双缝间距为d,双缝到屏的距离为 D (D >>d),测得中央零级明纹与第五级明之间的距离为x,则入射光的波长为_________________ .54 、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为 D ,则屏上相邻明纹的间距为 _______________.55、用= 600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑 )暗环对应的空气膜厚度为_______________________ m. (1 nm=10 -9 m)56、在空气中有一劈形透明膜,其劈尖角= 1.0×10- 4nm 的单色rad,在波长= 700光垂直照射下,测得两相邻干涉明条纹间距l = 0.25cm,由此可知此透明材料的折射率n =______________________ . (1 nm=10 -9 m)57、用波长为的单色光垂直照射折射率为n2的劈形膜 (如图 )图中各部分折射率的关系是n1< n2< n3.观察反射光的干涉条纹,n1n2从劈形膜顶开始向右数第 5 条暗条纹中心所对n3应的厚度 e= ____________________ .58、用波长为的单色光垂直照射如图所示的、折射率为n的n12劈形膜 (n1> n2, n3> n2 ),观察反射光干涉.从劈形膜顶n2n3开始,第 2 条明条纹对应的膜厚度e= ___________________ .59、用波长为的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l,则劈尖角= _______________ .60、用波长为的单色光垂直照射如图示的劈形膜(n > n > n),观n1123察反射光干涉.从劈形膜尖顶开始算起,第 2 条明条纹中心所对应的膜n2厚度 e= ___________________________ .n361 、已知在迈克耳孙干涉仪中使用波长为的单色光.在干涉仪的可动反射镜移动距离 d 的过程中,干涉条纹将移动________________ 条.实用标准文案62、在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为 d 的透明薄片.插入这块薄片使这条光路的光程改变了_______________ .63 、在迈克耳孙干涉仪的可动反射镜移动了距离 d 的过程中,若观察到干涉条纹移动了 N 条,则所用光波的波长=______________ .64、波长为 600 nm 的单色平行光,垂直入射到缝宽为a= 0.60 mm 的单缝上,缝后有一焦距 f = 60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为 __________ ,两个第三级暗纹之间的距离为____________ . (1 nm= 10﹣9m)65、 He -Ne 激光器发出=632.8 nm (1nm=10 -9m)的平行光束,垂直照射到一单缝上,在距单缝 3 m 远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是 10 cm,则单缝的宽度 a=________ .66、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是______________________________ 纹.67、平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半, P 点处将是 ______________ 级 __________________ 纹.68、波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30 °,单缝处的波面可划分为 ______________ 个半波带.69、惠更斯引入__________________ 的概念提出了惠更斯原理,菲涅耳再用______________ 的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.70、惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的 _________________ ,决定了 P 点的合振动及光强.71、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长500 nm (1 nm = 10 9 m),则单缝宽度为 _____________________m .72、在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的 2 倍,则中央明条纹边缘对应的衍射角=______________________ .73、在单缝夫琅禾费衍射实验中波长为的单色光垂直入射在宽度为a=2 的单缝上,对应于衍射角为 30方向,单缝处的波面可分成的半波带数目为________ 个.实用标准文案74、如图所示在单缝的夫琅禾费衍射中波1.5长为 的单色光垂直入射在单缝上.若对应于 A会聚在 P 点的衍射光线在缝宽 a 处的波阵面恰1C 好分成 3 个半波带,图中 AC CD DB ,a2D 则光线 1 和 2 在 P 点的B3 4P相位差为 ______________ .75、在单缝夫琅禾费衍射实验中, 波长为 的单色光垂直入射在宽度 a=5 的单缝上.对应于衍射角 的方向上若单缝处波面恰好可分成 5 个半波带,则衍射角 =______________________________ .76、在如图所示的单缝夫琅禾费衍射装置示意图LC中,用波长为 的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则 A由单缝边缘的 A 、 B 两点分别到Pa达 P 点的衍射光线光程差是__________ .Bf77、测量未知单缝宽度 a 的一种方法是:用已知波长 的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为 l ( 实验上应保证 D ≈ 103a ,或 D 为几米 ),则由单缝衍射的原理可标出 a 与 ,D ,l 的关系为a =______________________ .78、某单色光垂直入射到一个每毫米有 800 条刻线的光栅上,如果第一级谱线的 衍射角为 30°,则入射光的波长应为 _________________ .79、在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的____________ 相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称 为 ______________ 晶体.80、光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是__________ 波.三、计算题: (每题 10 分)81、在双缝干涉实验中,所用单色光的波长为600 nm ,双缝间距为 1.2 mm 双缝与屏相距 500 mm ,求相邻干涉明条纹的间距.82、在双缝干涉实验中,双缝与屏间的距离 D = 1.2 m ,双缝间距 d = 0.45 mm ,若测得屏上干涉条纹相邻明条纹间距为 1.5 mm ,求光源发出的单色光的波长 .83、用波长为 500 nm (1 nm=10 - 9 m) 的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边 l = 1.56 cm 的 A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角 ;(2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?实用标准文案84、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R= 400 cm.用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是 0.30 cm .A(1)求入射光的波长.O(2)设图中 OA= 1.00 cm ,求在半径为 OA 的范围内可观察到的明环数目.85、用白光垂直照射置于空气中的厚度为0.50 m 的玻璃片.玻璃片的折射率为 1.50.在可见光范围内(400 nm ~ 760 nm) 哪些波长的反射光有最大限度的增强?(1 nm=10 -9 m)86、两块长度 10cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10 -9 m)87、一平面衍射光栅宽 2 cm,共有 8000条缝,用钠黄光 (589.3 nm) 垂直入射,试求出可能出现的各个主极大对应的衍射角.(1nm=10 -9m)88、如图,P1、P2为偏振化方向相互平行的两个偏振片.光I强为 I 0的平行自然光垂直入射在P1上.I2P 1 P3 P 2(1) 求通过 P 后的光强 I .(2) 如果在 P1、P2之间插入第三个偏振片P3,(如图中虚线所示)并测得最后光强I= I 03的偏振化方向与1的偏振化方向之间的夹角(设为锐角 )./ 32 ,求: P P89、三个偏振片123顺序叠在一起,13的偏振化方向保持相互垂直,P1P、 P 、 P P 、 P与 P2的偏振化方向的夹角为,P2可以入射光线为轴转动.今以强度为I0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1)求穿过三个偏振片后的透射光强度I与角的函数关系式;(2)试定性画出在P2转动一周的过程中透射光强I 随角变化的函数曲线.90、两个偏振片P1、 P2叠在一起,一束单色线偏振光垂直入射到P1上,其光矢量振动方向与 P1的偏振化方向之间的夹角固定为30°.当连续穿过 P1、 P2后的出射光强为最大出射光强的 1 / 4 时, P1、P2的偏振化方向夹角是多大?91、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为60 o,一束光强为 I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成 30°角.(1)求透过每个偏振片后的光束强度;(2)若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.92、将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成 45 和 90 角.(1)强度为 I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2)如果将第二个偏振片抽走,情况又如何?实用标准文案93、如图所示,媒质Ⅰ为空气(n1= 1.00) ,Ⅱ为玻璃 (n2= 1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以ii角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光,Ⅰ(1)入射角 i 是多大?r(2)图中玻璃上表面处折射角是多大?Ⅱ(3)在图中玻璃板下表面处的反射光是否也是线偏振I光?94、在水 (折射率 n1= 1.33) 和一种玻璃 ( 折射率 n2= 1.56 的交界面上,自然光从水中射向玻璃,求起偏角 i 0.若自然光从玻璃中射向水,再求此时的起偏角i0.95、一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水 (折射率为 1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.96、一束自然光以起偏角 i0= 48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为 1.56 ,求:(1)该液体的折射率.(2)折射角.97、一束自然光自空气入射到水(折射率为 1.33)表面上,若反射光是线偏振光,(1)此入射光的入射角为多大?(2)折射角为多大?98、一束自然光自水(折射率为 1.33) 中入射到玻璃表面上(如图 ).水当入射角为 49.5°时,反射光为线偏振光,求玻璃的折射率.玻璃99、一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为 1.00,求布儒斯特角.100、一束自然光自空气入射到水面上,若水相对空气的折射率为 1.33 ,求布儒斯特角.实用标准文案大学物理------波动光学参考答案一、选择题01-05 ACBCA06-10 ABABB11-15 BBDAB16-20 BADBB 21-25 DCBCC26-30 ABD DD31-35 BDBDB36-40 BABAC二、填空题41.( n1n2 )e or(n2n1 )e ;42. 2.60e ;43. 3.0e+λ/2or 3.0e-λ/2;44.( 4ne1)or(4ne1); 45. n( r2r1 ) ;46. 2 (n2n1 )e;47. 2 d sin/;48. (1)使两缝间距变小,(2)使屏与两缝间距变大;49.0.75 ; 50.0.45mm;51.变小,变小; 52.D; 53.dx; 54. D ;dn5D N55. 1.2 m ;56. 1.40 ;57.9; 58.3;59.rad ;60.;4n24n22nl2n2 61.2d /; 62. 2(n1)d ;63.2d / N ; 64. 1.2mm , 3.6mm;65.7.6010 2 mm ;66.6,第一级明纹;67.4,第一,暗;68. 4 ;69.子波,子波相干叠加;70.相干叠加;71.106 m ;72.30 0;73.2 ;74.;75.300;76. 2 ; 77. 2 D / l ;78.625nm;79.传播速度,单轴; 80. 波动,横波。

重庆理工大学振动、波动部分答案(新)

大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A 其中,其中;。

*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。

练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。

若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。

2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。

3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。

已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
x
x
点处质点的振动速度 v 与时间 t 的关系曲线为: [ A ] v
ωA
Y
v
t (s )
1
u
P
0 0 .5
2
0
− ωA
1
2
A
0
t (s )
x
0
− ωA
v
0 .5
(A )
ωA
1
t (s )
2
(B)
v
0
1
(C )
(D )
π⎞ π⎞ ⎛ 2π ⎛ y P = Acos⎜ t − ⎟ = A cos⎜ π t − ⎟ 2⎠ 2⎠ ⎝ T ⎝
(SI)
φ O
2A / 2
A
y
又 λ = 200 m ,波动方程为
(2) 将 x =100m 代入上式,得该处的振动方程
5 ⎞ ⎛ y100 = A cos ⎜ 500πt + π ⎟ 4 ⎠ ⎝
ww
w. z
hi
na
nc
dy100 5 ⎞ ⎛ = −500πA sin⎜ 500πt + π ⎟ (SI) dt 4 ⎠ ⎝ 3 ⎞ ⎛ 将 x=-100m 代入上式, 得该处的振动方程 y −100 = A cos⎜ 500π t − π ⎟ 4 ⎠ ⎝ dy −100 3 ⎞ ⎛ = −500π A sin⎜ 500π t − π ⎟ (SI) 振动速度表达式为 v −100 = dt 4 ⎠ ⎝
《大学物理》AII 作业
No.2 波动方程
解:拉力恒定,则波速 u =
u T 恒定, λ = 。 ν 越大, λ 越小; 反之 ν 越小, λ 越大。 µ ν
na
3. 一简谐横波沿 Ox 轴传播。若 Ox 轴上 P 1 和 P 2 两点相距 λ /8 (其中 λ 为该波的波长 ), ω 则在波的传播过程中,这两点振动速度的 � [ C ] (A)方向总是相同; (B)方向总是相反; A1 (C)方向有时相同,有时相反; (D)大小总是不相等。 � t
x 处质点的振动位移。
om
2
t (s )
x
。在波的传播
4. 一简谐波沿 BP 方向传播,它在 B 点引起的振动方程为 y1 = A1 cos 2π t 。另一简谐波沿
CP 方向传播, 它在 C 点引起的振动方程为 y 2 = A2 cos(2π t + π ) 。 P 点与 B 点相距 0.40m,与 C 点相距 0.5m(如图)。波速均为 u=
A2
5. 一简谐波沿 Ox 轴正方向传播,t=0 时刻波形曲线如左下图所示,其周期为 2s。则 P
om
O
� A2
一、选择题 1. 把一根十分长的绳子拉成水平,用手握其一端。维持拉力恒定,使绳端在垂直于绳子 的方向上作简谐振动,则 [ B ] (A) 振动频率越高,波长越长。 (B) 振动频率越低,波长越长。 (C) 振动频率越高,波速越大。 (D) 振动频率越低,波速越大。
w. z
4. 图示为一沿 x 轴正向传播的平面简谐波在 t=0 时刻的波形。若振动以余弦函数表示, 且此题各点振动初相取 − π 到 π 之间的值,则 y [ A ] (A) 1 点的初位相为 ϕ1 = 0 。
hi
∆x λ 8 π 解:P1 和 P 2 两点位相差, ∆ϕ = 2π = 2π = λ λ 4 这两点的振动速度方向有时相同,有时相反。
nc

dy ) a < 0 ;此时 x =20cm 处的 b 质点振动状态 dt
⎡ ⎛ x⎞ ⎤ y = 0.1 cos⎢ 7π ⎜ t − ⎟ + ϕ ⎥ ⎣ ⎝ u⎠ ⎦
ww
⎡ ⎛ ⎤ dy x⎞ = −0.7 sin ⎢7π ⎜ t − ⎟ + ϕ ⎥ dt ⎣ ⎝ u⎠ ⎦
由 y a = 0,
三、计算题
hi
1. 一平面简谐波沿 x 轴正向传播,振幅 A =10cm,圆频率 ω = 7π rad ⋅ s −1 ,当 t=1.0 s 时,
x=10cm 处的 a 质点振动状态为 y a = 0, (
w. z
为 yb = 5.0cm, (
dy )b > 0 。设该波波长 λ > 10cm ,求波的表达式。 dt
om
t(s )
1 2 3 4
t(s )
y (m )
u
10 5 15
20 25
x(m )
解:(1)由于 P 点向下运动,可以判定波向 (-x)传播。根据旋转矢量图可知 O 点振动初相
ϕ=
π π⎞ ⎛ ,所以 O 点的振动方程为 y0 = A cos⎜ 500πt + ⎟ 4 4⎠ ⎝
⎡ ⎛ x ⎞ π⎤ y = A cos⎢ 2π ⎜ 250t + ⎟+ ⎥ 200 ⎝ ⎠ 4⎦ ⎣
振动速度表达式为 v100 =
he .c
om
(SI) (SI)
he .c
A2
1
t2 � A1
u
1 (B) 0 点的初位相为 ϕ 0 = − π 。 2 (C) 2 点的初位相为 ϕ 2 = 0 。
1
2
3 4
ww
(D) 3 点的初位相为 ϕ 3 = 0 。
� A0
� A3 O �
解:t=0 时,各点旋转矢量位置如图所示,可见
� A1
π π ϕ 1 = 0, ϕ 0 = , ϕ 2 = − , ϕ 3 = π 2 2
(
)
,代入(1)式,得 ϕ
,所以波的
(SI)
y (cm ) 2. 一列平面简谐波在介质中以波速 u = 5m⋅ s-1 沿 x 轴正向 2 传播,原点 O 处质元的振动曲线如图所示。 (1) 画出 x =25m 处质元的振动曲线。 0 2 (2) 画出 t=3s 时的波形曲线。
解: (1)O 点振动方程为
dy dt
a
π ⎛ 0.1 ⎞ < 0 ,得 7π ⎜1 − ⎟+ϕ = u ⎠ 2 ⎝
om
x

ν
y = 0. 05, 由 b
(1)、(2)两式相减,得 表达式为
dy dt
> 0 ,得 7π ⎜1 −
b
⎛ ⎝
π 0.2 ⎞ ⎟ +ϕ = − u ⎠ 3
=− 17 π 3
…… (2)
u = 0.84 m ⋅ s −1
的 表 达 式 为




na
L1 + L2 +ϕ)。 λ 2π (L1 + x ) 与 P1 点状态相同的 x 点满足 2πvt + ϕ = 2πvt − + ϕ + 2kπ λ ∴ x = kλ − L1 , k = ±1,±2,⋯。
代入 r = L1 + L2 得 y 2 = Acos( 2πνt − 2π
hi
⎛π ⎞ y = 2 × 10 −2 cos⎜ t − 3π ⎟ ⎝2 ⎠
(SI) (2
2 ×10
−2
ww
w. z
曲线如图(1)所示。 (2)将 t=3s 代入波动方程,得波形方程
0
πx ⎞ ⎛ y = 2 × 10 −2 cos⎜ π − ⎟ ,波形曲线如图(2)所示。 10 ⎠ ⎝
3. 如图所示为一平面简谐波在 t=0 时刻的波形图,设此简谐波的频率为 250Hz,且此时 质点 P 的运动方向向下,求 y(m ) (1) 该波的波动方程; 2A/ 2 P (2) 在距原点 O 为 100m 处质点的振动方程与 O 振动速度表达式。 x(m ) 100m −A
0.20m⋅s -1。则两波在 P 的相位差为 0 。
C
. .
r2
.
P
r1
解:由振动方程可知ν = 1 ,所以 λ = u = 0.2 (m ) ,两波在 P 点
B
引起的位相差为 ∆ϕ = ϕ 2 − ϕ1 − 2π
r2 − r1 0. 5 − 0. 4 = π − 2π =0 λ 0. 2
5. 如图所示,一平面简谐波沿 Ox 轴正方向传播,波长为 λ ,若 P 1 点处质点的振动方程 为 y1 = A cos (2π vt + ϕ ) ,则 P2 点处质 点的振动方 程为
nc
0
2. 在下面几种说法中,正确的说法是: [ C ] (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的。 (B) 波源振动的速度与波速相同。 (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后。 (D) 在波传播方向上的任一点的振动相位总是比波源的相位超前。 解:波动的周期在数值上等于波源振动的周期;波源振动的速度与波速完全不同;在波 传播的方向上,质点振动的位相依次落后,所以任一点的振动相位都落后于波源的相位。
nc
he .c
4
x ⎞ ⎛ 17 ⎞ ⎤ πx π ⎞ ⎡ ⎛ ⎛ y = 0.1cos ⎢ 7π ⎜ t − + ⎟ ⎟ + ⎜ − π ⎟ ⎥ = 0.1cos ⎜ 7π t − 0 . 84 3 0 . 12 3⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎣ ⎦
将 x=25m 代入上式,得该处振动方程
0
− 2 ×10 − 2
P 点的振动速度
t=0 时, v = ω A = π A ,可见为曲线(A) 。
曲线(虚线),由图可见,A 点将向下运动,B 点和 C 点将向上运动。
hi
二、填空题 1. 一个余弦横波以速度 u 沿 x 轴正向传播, t 时刻波形曲线如图所示。 试分别指出图中 A 、 B、 C 各质点在该时刻的运动方向。 A 向下 ; y B 向上 ;C 向上 。 u A B 解: 由波传播的方向可以画出下一时刻 t + dt 的波形
相关文档
最新文档