2016-2017学年高中数学苏教版必修5学业分层测评:第二
2018-2019学年高中数学苏教版必修5学业分层测评:第一章 解三角形 1

学业分层测评(一)(建议用时:45分钟)学业达标]一、填空题1.在△ABC 中,a =5,b =3,C =120°,则sin A ∶sinB 的值是________.【解析】 由正弦定理可知,sin A ∶sin B =a ∶b =5∶3.【答案】 5∶32.在△ABC 中,若A =75°,B =60°,c =2,则b =________.【解析】 在△ABC 中,C =180°-A -B =45°,∴b ===.c sin Bsin C 2sin 60°sin 45°6【答案】63.在△ABC 中,若=,则C 的值为________. sin Aa cos C c 【解析】 由正弦定理可知,=,sin Aa sin Cc 又=,sin Aa cos Cc ∴=,sin Cc cos Cc 即tan C =1,0°<C <180°,∴C =45°.【答案】 45°(或π4)4.(2015·北京高考)在△ABC 中,a =3,b =,∠A =,则62π3∠B =________.【解析】 在△ABC 中,根据正弦定理=,有=,可得asin A bsin B 3sin2π36sin B sin B =.因为∠A 为钝角,所以∠B =.22π4【答案】 π45.在△ABC 中,已知a =4,b =4,A =60°,则c =________.32【导学号:91730002】【解析】 由=,得sin B =sin A =×=.asin A bsin B ba 42433222∵b <a ,∴B =45°,C =180°-A -B =75°,∴c =a =4×sin Csin A 3sin 75°sin 60°=2(+).26【答案】 2(+)266.在△ABC 中,已知a =18,b =16,A =150°,则满足条件的三角形有________个.【解析】 A =150°>90°,∵a >b ,∴满足条件的三角形有1个.【答案】 17.在△ABC 中,B =45°,C =60°,c =1,则最短边的长为________.【解析】 易得A =75°,∴B 为最小角,即b 为最短边,∴由=,得b =.csin C bsin B 63【答案】 638.(2016·苏州高二检测)在△ABC 中,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =________.【解析】 由A ∶B ∶C =1∶2∶3,可知A =,B =,C =.π6π3π2∴a ∶b ∶c =sin A ∶sin B ∶sin C =∶∶11232=1∶∶2.3【答案】 1∶23二、解答题9.在△ABC 中,若a =2,A =30°,讨论当b 为何值时(或在什么范围内),3三角形有一解,有两解或无解?【解】 当a <b sin 30°,即b >4时, 无解;3当a ≥b 或a =b sin A ,即b ≤2或b =4时,有一解;33当b sin A <a <b ,即2<b <4时,有两解.3310.在△ABC 中,b =2a ,B =A +60°,求角A .【解】 根据正弦定理=,把b =2a 代入得=,asin A bsin B asin A 2asin B ∴sin B =2sin A .又∵B =A +60°,∴sin(A +60°)=2sin A ,展开得-sin A +cos A =0,3232∴sin(A -30°)=0,解得A =30°.能力提升]1.(2016·南通高二检测)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =b ,则角A 等于________.3【解析】 由正弦定理可得,2a sin B =b 可化为2sin A sin B =sin B ,33又sin B ≠0,即sin A =,又△ABC 为锐角三角形,得A =.32π3【答案】 π32.(2014·广东高考)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cos C +c cos B =2b ,则=________.ab 【解析】 因为b cos C +c cos B =2b ,所以sin B cos C +sin C cos B =2sin B ,故sin(B +C )=2sin B .故sin A =2sin B ,则a =2b ,即=2.ab 【答案】 23.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是____________.【导学号:91730003】【解析】 因为三角形有两解,所以a sin B <b <a ,即x <2<x ,∴2<x <2.222【答案】 (2,2)24.在△ABC 中,a cos =b cos ,判断△ABC 的形状.(π2-A)(π2-B )【解】 法一 ∵a cos =b cos ,(π2-A )(π2-B )∴a sin A =b sin B .由正弦定理可得a ·=b ·,a2R b2R∴a 2=b 2,即a =b ,∴△ABC 为等腰三角形.法二 ∵a cos =b cos ,(π2-A)(π2-B )∴a sin A =b sin B .由正弦定理可得2R sin 2A =2R sin 2B ,即sin A =sin B .∴A =B .(A +B =π不合题意舍去)故△ABC 为等腰三角形.。
2016-2017学年高中数学人教b版高一必修4学业分层测评6_诱导公式(一)、(二)_word版含

学业分层测评(六)(建议用时:45分钟)[学业达标]一、选择题1.(2016·包头高一月考)sin 25π6的值为( ) A.12 B.22 C.-12D.-32【解析】 sin 25π6=sin ⎝ ⎛⎭⎪⎫4π+π6=sin π6=12,故选A.【答案】 A2.给出下列函数值:①sin(-1 000°);②cos ⎝ ⎛⎭⎪⎫-π4;③tan 2,其中符号为负的个数为( )A.0B.1C.2D.3【解析】 ①sin(-1 000°)=sin(-360°×3+80°)=sin 80°>0; ②cos ⎝ ⎛⎭⎪⎫-π4=cos π4=22>0;③∵π2<2<π,∴tan 2<0.【答案】 B3.记cos(-80°)=k ,那么tan 440°=( ) A.1-k 2k B.-1-k 2k C.k1-k 2D.-k1-k 2【解析】 ∵cos(-80°)=cos 80°=k ,∴sin 80°=1-cos 280°=1-k 2,tan 440°=tan(360°+80°)=tan 80°=sin 80°cos 80°=1-k 2k ,故选A.【答案】 A4.(2016·潍坊高一检测)已知sin ⎝ ⎛⎭⎪⎫56π-α=a ,则sin ⎝ ⎛⎭⎪⎫α+76π=( ) 【导学号:72010017】A.aB.-aC.±aD.不确定【解析】 ∵⎝ ⎛⎭⎪⎫5π6-α+⎝ ⎛⎭⎪⎫α+76π=2π,∴sin ⎝ ⎛⎭⎪⎫α+76π=sin ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫5π6-α =sin ⎝ ⎛⎭⎪⎫α-5π6=-sin ⎝ ⎛⎭⎪⎫5π6-α=-a .故选B.【答案】 B5.1-2sin (2π+2)cos (2π-2)=( ) A.sin 2-cos 2 B.sin 2+cos 2 C.±(sin 2-cos 2)D.cos 2-sin 2【解析】 原式=1-2sin 2cos 2=(sin 2-cos 2)2=|sin 2-cos 2|.而sin 2>cos 2,故应选A. 【答案】 A 二、填空题6.cos 1 110°的值为________.【解析】 cos 1 110°=cos(3×360°+30°)=cos 30°=32. 【答案】 327.若420°角的终边所在直线上有一点(-4,a ),则a 的值为________.【解析】 由三角函数定义知,tan 420°=-a 4,又tan 420°=tan(360°+60°)=tan 60°=3, ∴-a4=3,∴a =-4 3. 【答案】 -4 38.(2015·北京高一检测)化简: cos (2π+α)sin (4π-α)tan (-α-2π)cos 2(-α)=________.【解析】 原式=cos αsin (-α)tan (-α)cos 2α=cos αsin (-α)-tan αcos 2 α=cos α(-sin α)-sin αcos α·cos 2α=1.【答案】 1二、解答题 9.求下列各式的值:(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°); (2)sin ⎝ ⎛⎭⎪⎫-116π+cos 125π·tan 4π.【解】 (1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°) =a 2sin 90°+b 2tan 45°-2ab cos 0° =a 2+b 2-2ab =(a -b )2. (2)sin ⎝ ⎛⎭⎪⎫-116π+cos 125π·tan 4π =sin ⎝ ⎛⎭⎪⎫-2π+π6+cos 125π·tan 0=sin π6+0=12.10.化简:sin 2(α-2π)cos (2π+α)cot (-α-2π)tan (2π-α)cos 3(-α-4π).【解】 原式=sin 2α·cos α·cot (-α)tan (-α)cos 3(-α)=sin 2αcos α·cos α⎝ ⎛⎭⎪⎫-sin αcos α·cos 3α·sin (-α) =sin 2α·cos 2αsin 2α·cos 2α =1.[能力提升]1.设f (α)=2sin (2π-α)cos (2π+α)-cos (-α)1+sin 2α+sin (2π+α)-cos 2(4π-α),则f ⎝ ⎛⎭⎪⎫-236π的值为( )A.33B.-33C.3D.- 3【解析】 f (α)=2sin (-α)cos α-cos α1+sin 2α+sin α-cos 2α=-cos α(2sin α+1)sin α(2sin α+1)=-1tan α,∴f ⎝ ⎛⎭⎪⎫-236π=-1tan ⎝ ⎛⎭⎪⎫-236π=-1tan π6=- 3.【答案】 D2.已知cos ⎝ ⎛⎭⎪⎫π3-α=13,则cos ⎝ ⎛⎭⎪⎫5π3+α+sin 2⎝ ⎛⎭⎪⎫α-π3的值为( )A.59 B.119 C.-59D.-119【解析】 ∵cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫α-π3=13, ∴sin 2⎝ ⎛⎭⎪⎫α-π3=1-cos 2⎝ ⎛⎭⎪⎫α-π3 =1-19=89,∴cos ⎝ ⎛⎭⎪⎫53π+α+sin 2⎝ ⎛⎭⎪⎫α-π3=cos ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫π3-α+sin 2⎝ ⎛⎭⎪⎫α-π3=cos ⎝ ⎛⎭⎪⎫π3-α+sin 2⎝ ⎛⎭⎪⎫α-π3=13+89=119.【答案】 B3.设f (x )=⎩⎨⎧sin πx ,x <0,f (x -1)+1,x ≥0,g (x )=⎩⎪⎨⎪⎧cos πx ,x <12,g (x -1)+1,x ≥12,则g ⎝ ⎛⎭⎪⎫14+f ⎝ ⎛⎭⎪⎫23+g ⎝ ⎛⎭⎪⎫56+f ⎝ ⎛⎭⎪⎫34=________.【解析】 原式=cos π4+f ⎝ ⎛⎭⎪⎫-13+1+g ⎝ ⎛⎭⎪⎫-16+1+f ⎝ ⎛⎭⎪⎫-14+1=22+sin ⎝ ⎛⎭⎪⎫-π3+cos ⎝ ⎛⎭⎪⎫-π6+sin ⎝ ⎛⎭⎪⎫-π4+3=22-32+32-22+3=3. 【答案】 34.设函数f (x )=a sin(πx +a )-b cos(πx -b )+c tan(πx +c ),其中a ,b ,c ∈R 且abc ≠0,且有f (2 012)=-1,求f (2 016)的值.【解】 f (2 012)=a sin(2 012π+a )-b cos(2 012π-b )+c tan(2 012π+c ) =a sin a -b cos b +c tan c ,而f(2 016)=a sin(2 016π+a)-b cos(2 016π-b)+c tan(2 016π+c) =a sin a-b cos b+c tan c,∴f(2 016)=f(2 012)=-1.。
苏教版必修5高中数学2.2.1《等差数列的概念及通项公式》练习题

苏教版必修5高中数学2.2.1《等差数列的概念及通项公式》练习题2.2.1 等差数列的概念及通项公式1.如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列叫做等差数列.这个常数叫做等差数列的公差.2.如果数列{an}是公差为d的等差数列,则a2=a1+d;a3=a2+d=a1+2d. 3.等差数列的通项公式为an=a1+(n-1)d.4.等差数列{an}中,an=a1+(n-1)d=a2+(n-2)d=a3+(n-3)d,因此等差数列的通项公式又可以推广到an=am+(n-m)d(n>m).5.由an=am+(n-m)d,得d=连线的斜率.6.如果在a与b之间插入一个数A,使a,A,b成等差数列,那么A可以用a,b表示为A=an-am,则d就是坐标平面内两点A(n,an),B(m,am)n-ma+b2,A称为a,b 的等差中项.7.如果数列{an}的通项公式an=a・n+b,则该数列是公差为a的等差数列. 8.等差数列的性质.若{an}是等差数列,公差为d,则:(1)an,an-1,…,a2,a1亦构成等差数列,公差为-d; (2)ak,ak+m,ak+2m,…(m∈N)也构成等差数列,公差为md;(3)λa1+μ,λa2+μ,…,λan+μ,…(λ,μ是常数)也构成等差数列,公差为λd; (4)an=am+(n-m)d(m,n∈N)是等差数列通项公式的推广,它揭示了等差数列中任意两项之间的关系,还可变形为d=***an-am; n-m(5)若m,n,k,l∈N,且m+n=k+l,则am+an=ak+al,即序号之和相等,则它们项的和相等,例如:a1+an=a2+an-1=… ?基础巩固一、选择题1.等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为(B)A.1 B.2 C.3 D.4a1+a5解析:由等差中项的性质知a3==5,又a4=7,∴公差d=a4-a3=7-5=2.22.在-1和8之间插入两个数a,b,使这四个数成等差数列,则(A)A.a=2,b=5 B.a=-2,b=5 C.a=2,b=-5 D.a=-2,b=-5解析:考查项数与d之间关系.3.首项为-20的等差数列,从第10项起开始为正数,则公差d的取值范围是(C)A.d> B.d≤ C.<d≤ D.≤d<?a10>0,??-20+9d>0,20?5即?即<d≤.2??a9≤0,??-20+8d≤0,92209522095220952解析:由题意知?4.已知a,b,c成等差数列,则二次函数y=ax+2bx+c的图象与x轴的交点的个数为(D)A.1个 B.0个 C.2个 D.1个或2个解析:∵Δ=(2b)-4ac=(a+c)-4ac,∴Δ=(a-c)≥0.∴A与x轴的交点至少有1个.故选D.5.(2021・重庆卷)在等差数列{an}中,a1=2,a3+a5=10,则a7=(B)222A.5 B.8 C.10 D.14解析:设出等差数列的公差求解或利用等差数列的性质求解.方法一设等差数列的公差为d,则a3+a5=2a1+6d=4+6d=10,所以d=1,a7=a1+6d=2+6=8.方法二由等差数列的性质可得a1+a7=a3+a5=10,又a1=2,所以a7=8. 二、填空题6.在等差数列{an}中,a3+a7=37,则a2+a4+a6+a8=________.解析:根据等差数列的性质,a2+a8=a4+a6=a3+a7=37. ∴原式=37+37=74. 答案:747.(2021・广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.解析:由a3+a8=10得a1+2d+a1+7d=10,即2a1+9d=10, 3a5+a7=3(a1+4d)+a1+6d=4a1+18d=2(2a1+9d)=20.答案:208.在等差数列{an}中,a3=50,a5=30,则a7=________.解析:2a5=a3+a7,∴a7=2a5-a3=2×30-50=10. 答案:10 三、解答题9.在等差数列{an}中,已知a1+a6=12,a4=7. (1)求a9;(2)求此数列在101与1 000之间共有多少项.解析:(1)设首项为a1,公差为d,则2a1+5d=12, a1+3d=7,解得a1=1,d=2,∴a9=a4+5d=7+5×2=17.(2)由(1)知,an=2n-1,由101<an<1 000知 101<2n-1<1 000, 1 001∴51<n<. 2∴共有项数为500-51=449.111110.已知数列{an}中,a1=,=+,求an.2an+1an3111?1?111n+5解析:由=+知??是首项为2,公差为的等差数列,∴=2+(n-1)×=. an+1an3?an?3an33∴an=3*(n∈N). n+5?能力升级一、选择题11.数列{an}的首项为3,{bn}为等差数列,且bn=an+1-an(n∈N),若b3=-2,b10=12,则a8=(B)A.0 B.3 C.8 D.11解析:由b3=-2和b10=12得b1=-6,d=2,∴bn=2n-8,即an+1-an=2n-8,由叠加法得(a2-a1)+(a3-a2)+(a4-a3)+…+(a8-a7)=-6-4-2+0+2+4+6=0.∴a8=a1=3.12.等差数列{an}中,前三项依次为:151,,,则a101等于(D) x+16xx*12A.50 B.13 332C.24 D.83解析:由11511+=2×解得x=2,故知等差数列{an}的首项为,公差d=,故a101x+1x6x31211262=a1+100d=+100×==8. 3123313.已知数列-1,a1,a2,-4与数列1,b1,b2,b3,-5各自成等差数列,则等于(B)11A. B. 4211C.- D.-24解析:设数列-1,a1,a2,-4的公差是d,则a2-a1=d==-2,故知-4-(-1)-5+1=-1,b2=4-12a2-a1b2a2-a11=. b22二、填空题14.设数列{an},{bn}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=________. 21-714解析:∵{an},{bn}都是等差数列,∴{an+bn}也是等差数列,其公差为==7.22∴a5+b5=7+(5-1)×7=35. 答案:3515.已知递增的等差数列{an}满足a1=1,a3=a2-4,则an=________.解析:利用等差数列的通项公式求解.设等差数列公差为d,则由a3=a2-4,得1+2d=(1+d)-4,∴d=4.∴d=±2.由于该数列为递增数列,∴d=2.∴an=1+(n-1)×2=2n-1(n∈N).答案:2n-1(n∈N) 三、解答题16.等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求数列{an}的通项公式.解析:由题设条件可得*2222??a1+a1+3d+a1+6d=15,? ?(a1+d)(a1+3d)(a1+5d)=45,???a1=-1,??d=2??a1=11,??d=-2.解得?或?*∴数列{an}的通项公式为an=2n-3或an=13-2n,n∈N. 17.已知111222,,是等差数列,求证:a,b,c是等差数列. b+cc+aa+b112+=, b+ca+bc +a证明:由已知条件,得∴2b+a+c2=. (b+c)(a+b)c+a∴(2b+a+c)(a+c)=2(b+c)(a+b).∴a+c=2b,即a,b,c是等差数列.222222感谢您的阅读,祝您生活愉快。
【高中】高中数学第2章数列2322等比数列的性质学案苏教版必修5

【关键字】高中第2课时等比数列的性质1.掌握等比数列的性质,能应用其性质解题.(重点)2.了解等比数列与指数函数的关系.(重点)[基础·初探]教材整理1 等比数列与指数函数的关系阅读教材P53,完成下列问题.如果数列{an}是等比数列,则an=a1qn-1(a1≠0,q≠0),故q≠1时点(n,an)均在函数y=a1qx-1的图象上.若等比数列{an}的通项公式an=2n+p,则p=________.【解析】结合等比数列{an}的图象特点,可知p=0.【答案】0教材整理2 等比数列的性质阅读教材P54第12题,P55第14题,第16题,完成下列问题.等比数列的性质(1)如果m+n=k+l,则有am·an=ak·al.(2)如果m+n=2k,则有am·an=a.(3)在等比数列{an}中,每隔k项(k∈N*)取出一项,按原来的顺序排列,所得的新数列仍为等比数列.(4)如果{an},{bn}均为等比数列,且公比分别为q1,q2,那么数列,{an·bn},,{|an|}仍是等比数列,且公比分别为,q1q2,,|q1|.(5)等比数列的项的对称性:在有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积,即a1·an=a2·an-1=ak·an-k+1=….1.在等比数列{an}中,若a5=1,则a2·a8=________.【解析】a2·a8=a=1.【答案】 12.在等比数列{an}中,a2=3,a6=27,则a4=________.【解析】∵a1a2,a3a4,a5a6成等比数列,∴(a3a4)2=(a1a2)·(a5a6)=3×27=81,∴a3a4=±9.【答案】±9[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_________________________________________________解惑:_________________________________________________疑问2:_________________________________________________解惑:_________________________________________________疑问3:_________________________________________________解惑:_________________________________________________疑问4:_________________________________________________解惑:_________________________________________________[小组合作型]在等比数列(1)若a11=243,求的值;(2)若an>0,且a6=32,求log1+log2+…+log8的值.【精彩点拨】利用等比数列的性质,若m+n=p+q=2k(m,n,p,q,k∈N*),则am·an=ap·aq=a求解.【自主解答】(1)∵a3,a5,a7,a9,a11成等比数列,∴a3a5a7a9a11=a=243=35,∴a7=3.又==a7,∴=3.(2)log1+log2+…+log8=log1·a2·…·a8=log2(a1·a8)4=log2(a3a6)4=log2324=log2220=20.等比数列中的项的序号若成等差数列,则对应的项依次成等比数列,有关等比数列的计算问题,应充分发挥项的“下标”的“指引”作用,以使运算简便.[再练一题]1.(1)在各项均为正数的等比数列{a n}中,a3·a9=4,a6·a10+a3·a5=41,求a4+a8的值;(2)在等比数列{a n}中,a5,a9是方程7x2-18x+7=0的两个根,求a7.【解】(1)∵{a n}为等比数列,且3+9=4+8,6+10=2×8,3+5=2×4,∴a3·a9=a4·a8=4,a6·a10=a28,a3·a5=a24,∴a 6·a 10+a 3·a 5=a 28+a 24=41,又a 4·a 8=4, ∴(a 4+a 8)2=41+2×4=49,且a n >0, ∴a 4+a 8=7.(2)∴a 5,a 9是方程7x 2-18x +7=0的两个根, ∴⎩⎪⎨⎪⎧a 5+a 9=187,a 5·a 9=1,∴a 5>0,a 9>0.又∵a 27=a 5·a 9=1,且a 7=a 5·q 2>0,∴a 7=1.灵活设项求解等比数列有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.【精彩点拨】 解答此类题目主要是利用性质和已知巧设,再构造方程或方程组求解.【自主解答】 法一:设这四个数依次为a -d ,a ,a +d ,a +d 2a ,由条件得⎩⎪⎨⎪⎧a -d +a +d 2a =16,a +a +d =12,解得⎩⎪⎨⎪⎧a =4,d =4或⎩⎪⎨⎪⎧a =9,d =-6.∴当a =4,d =4时,所求四个数为0,4,8,16; 当a =9,d =-6时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1.法二:设这四个数依次为2a q -a ,aq,a ,aq (a ≠0),由条件得⎩⎪⎨⎪⎧2a q -a +aq =16,aq +a =12,解得⎩⎪⎨⎪⎧q =2,a =8或⎩⎪⎨⎪⎧q =13,a =3.∴当q =2,a =8时,所求四个数为0,4,8,16; 当q =13,a =3时,所求四个数为15,9,3,1.故所求四个数为0,4,8,16或15,9,3,1.灵活设项求解等比数列的技巧1.三数成等比数列,一般可设为aq,a ,aq .2.四数成等比数列,一般可设为a q 3,a q ,aq ,aq 3或a ,aq ,aq 2,aq 3. 3.五数成等比数列,一般可设为a q2,a q,a ,aq ,aq 2. [再练一题]2.三个数成等比数列,其积为512,如果第一个数与第三个数各减去2,则这三个数成等差数列,求这三个数.【导学号:】【解】 设三个数依次为a q,a ,aq , ∵a q·a ·aq =512,∴a =8.∵⎝⎛⎭⎪⎫aq -2+(aq -2)=2a , ∴2q 2-5q +2=0,∴q =2或q =12,∴这三个数为4,8,16或16,8,4.[探究共研型]等差数列与等比数列的综合应用探究n 2n 【提示】 {log 2a n }是等差数列,由log 2a n +1-log 2a n =log 2a n +1a n可知. 探究2 若{a n }是等差数列,则{2a n }是什么数列? 【提示】 {2a n }是等比数列,由2a n +12a n=2a n +1-a n 可知.设{a n }是公差大于0的等差数列,b n =⎝ ⎛⎭⎪⎫12a n ,已知b 1+b 2+b 3=218,b 1b 2b 3=18, (1)求证:数列{b n }是等比数列; (2)求等差数列{a n }的通项a n . 【精彩点拨】 (1)证明b n +1b n为同一常数;(2)先求b n ,由b n 求a n . 【自主解答】 (1)证明:设{a n }的公差为d (d >0), ∵b n +1b n =⎝ ⎛⎭⎪⎫12a n +1-a n =⎝ ⎛⎭⎪⎫12d为常数,且b 1=⎝ ⎛⎭⎪⎫12a 1>0, ∴{b n }为以⎝ ⎛⎭⎪⎫12a 1为首项,公比为⎝ ⎛⎭⎪⎫12d的等比数列.(2)∵b 1b 2b 3=18,∴b 32=18,∴b 2=12,∴⎩⎪⎨⎪⎧b 1+b 3=178,b 1b 3=14,∴⎩⎪⎨⎪⎧ b 1=18,b 3=2或⎩⎪⎨⎪⎧b 1=2,b 3=18.∵q =⎝ ⎛⎭⎪⎫12d∈(0,1),∴b 1>b 3,∴⎩⎪⎨⎪⎧b 1=2,b 3=18,∴b n =⎝ ⎛⎭⎪⎫122n -3,∴a n =2n -3,(n ∈N *).等差数列与等比数列的转化1.若数列{a n }为等差数列,则数列{ma n }(m >0,m ≠1)为等比数列.2.若数列{a n }为等比数列,且a n >0,则数列{log b a n }(b >0,b ≠1)为等差数列. [再练一题]3.已知{x n }为各项不为1的正项等比数列,{y n }满足y n ·log x n a =2(a >0且a ≠1),设y 4=17,y 7=11.则数列{y n }的前多少项的和最大?最大值是多少? 【解】 y n =2log x n a =2log a x n ,且{x n }为等比数列,∵y n -1+y n +1=2log a x n -1+2log a x n +1=2log a (x n -1·x n +1)=2log a x 2n =4log a x n =2y n ,n ≥2,n ∈N *, ∴{y n }为等差数列.又y 4=17,y 7=11=y 4+3d ,∴d =-2, ∴y n =y 4-2(n -4)=25-2n (n ∈N *). 由y n ≥0,知n ≤12.故{y n }的前12项和最大,其最大值为12×23+12=144.[构建·体系]1.对任意等比数列{a n },下列说法一定正确的是________.①a 1,a 3,a 9成等比数列;②a 2,a 3,a 6成等比数列;③a 2,a 4,a 8成等比数列;④a 3,a 6,a 9成等比数列.【解析】 ∵3+9=2×6,∴a 26=a 3·a 9,∴a 3,a 6,a 9成等比数列. 【答案】 ④2.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=________. 【解析】 ∵{a n }成等比数列,∴a 1a 2a 3,a 4a 5a 6,a 7a 8a 9也成等比数列, ∴(a 4a 5a 6)2=(a 1a 2a 3)·(a 7a 8a 9)=50, ∴a 4a 5a 6=±52, 又a n >0,∴a 4a 5a 6=5 2. 【答案】 5 23.在等比数列{a n }中,已知a 1+a 2=324,a 3+a 4=36,则a 5+a 6=________.【导学号:】【解析】 ∵{a n }为等比数列,∴a 1+a 2,a 3+a 4,a 5+a 6成等比数列,∴a 5+a 6=362324=4.【答案】 44.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=________.【解析】 因为数列{a n }为等比数列,所以a 5a 6=a 4a 7. 又∵a 5a 6+a 4a 7=18,∴a 5a 6=a 1a 10=a 4a 7=a 3a 8=a 2a 9=9,∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2a 3…a 10)=log 395=log 3310=10. 【答案】 105.已知四个数,前三个数成等比数列,和为19,后三个数成等差数列,和为12,求此四个数.【解】 依题意可设这四个数分别为:4-d24,4-d,4,4+d ,则由前三个数和为19,可列方程得,4-d 24+4-d +4=19,整理得,d 2-12d -28=0,解得d =-2或d =14.∴这四个数分别为:25,-10,4,18或9,6,4,2. 我还有这些不足:(1)_________________________________________________ (2)_________________________________________________ 我的课下提升方案:(1)_________________________________________________ (2)_________________________________________________学业分层测评(十一) (建议用时:45分钟)[学业达标]一、填空题1.若a ,b ,c 既成等差数列,又成等比数列,则公比为________.【解析】 由已知得⎩⎪⎨⎪⎧2b =a +c ,b 2=ac ,∴2b =a +b 2a,即a 2+b 2=2ab ,∴(a -b )2=0, ∴a =b ≠0, ∴q =b a=1. 【答案】 12.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1a 15=________. 【解析】 ∵lg(a 3a 8a 13)=lg a 38=6, ∴a 38=106⇒a 8=102=100.又a 1a 15=a 28=10 000. 【答案】 10 0003.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________.【解析】 ∵{a n }为等比数列,∴a 5a 6=a 4a 7=-8,联立⎩⎪⎨⎪⎧a 4+a 7=2,a 4a 7=-8,可解得⎩⎪⎨⎪⎧a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4, ∴q 3=-12或q 3=-2,故a 1+a 10=a 4q3+a 7·q 3=-7.【答案】 -74.在各项均为正数的等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7=________.【导学号:】【解析】 设公比为q ,则由等比数列{a n }各项为正数且a n +1<a n 知0<q <1,由a 2·a 8=6,得a 25=6,.∴a 5=6,a 4+a 6=6q+6q =5,解得q =26, ∴a 5a 7=1q 2=⎝ ⎛⎭⎪⎫622=32. 【答案】 325.已知数列{a n }是等比数列,且a 2a 6=2a 4,则a 3a 5=________. 【解析】 ∵a 2a 6=2a 4,由等比数列的性质可知,a 2a 6=a 3a 5=a 24, ∴a 24=2a 4,∴a 4=2,∴a 3a 5=4. 【答案】 46.互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,a +3b +c =10,则a =________.【解析】 由题意知a +c =2b , ∴5b =10,b =2, ∴a +c =4.∵a c =b a,∴a 2=bc ,∴a 2=2c , ∴a 2+2a -8=0,解得a =2或a =-4. 当a =2时,a =b =2不合题意,∴a =-4. 【答案】 -47.(2016·南京高二检测)已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比q =________.【解析】 设等差数列为{a n },公差为d ,d ≠0,则a 23=a 2·a 6,∴(a 1+2d )2=(a 1+d )(a 1+5d ),化简得d 2=-2a 1d .∵d ≠0,∴d =-2a 1,∴a 2=-a 1,a 3=-3a 1, ∴q =a 3a 2=3. 【答案】 38.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________. 【解析】 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12可得q 9=3,又a n -1·a n a n +1=a 31q3n -3=324,因此q3n -6=81=34=q 36,所以n =14.【答案】 14 二、解答题9.数列{a n }是等比数列,(1)若已知a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值; (2)若a 2=2,a 6=16,求a 10; (3)若a 3=-2,a 7=-16,求a 5.【解】 (1)∵a 3a 4a 5=8,∴a 34=8,a 4=2.∴a 2a 3a 4a 5a 6=(a 2·a 6)·(a 3·a 5)·a 4=a 24·a 24·a 4=32. (2)∵a 2·a 10=a 26,∴a 10=a 26a 2=1622=128.(3)∵a 3·a 7=a 25,∴a 5=±a 3a 7=±4 2. 又∵a 5=a 3q 2<0, ∴a 5=-4 2.10.若a ,b ,c 是△ABC 中角A ,B ,C 的对边,A ,B ,C 成等差数列,a ,b ,c 成等比数列,试判断△ABC 的形状.【解】 ∵角A ,B ,C 成等差数列,∴A +C =2B ,又△ABC 中,A +B +C =π,∴B =π3.又∵边a ,b ,c 成等比数列, ∴b 2=ac ,由余弦定理∴cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =cos π3=12,∴a 2+c 2-ac =ac , ∴(a -c )2=0,∴a =c , ∴△ABC 为等边三角形.[能力提升]1.若正数a ,b ,c 成公比大于1的等比数列,则当x >1时,下列关于log a x ,log b x ,log c x 的说法正确的是________(填序号).①成等差数列;②成等比数列;③各项倒数成等差数列;④各项倒数成等比数列. 【解析】 a ,b ,c 成等比数列,则b a =cb, 即b 2=ac,2log x b =log x a +log x c ,即2log b x =1log a x +1log c x, 即1log a x ,1log b x ,1log c x成等差数列. 【答案】 ③2.(2016·启东高二检测)设{a n }是公比为q 的等比数列,其前n 项积为T n ,并满足条件a 1>1,a 99a 100-1>0,a 99-1a 100-1<0,给出下列结论: ①0<q <1;②T 198<1;③a 99a 101<1;④使T n <1成立的最小自然数n 等于199. 其中正确的编号为________.【解析】 根据等比数列的性质,如果等比数列的公比是负值,在其连续两项的乘积是负值,根据a 99a 100-1>0,可知该等比数列的公比是正值,再根据a 99-1a 100-1<0,可知a 99,a 100一个大于1,一个小于1,因为a 1>1,所以数列不会是单调递增的,只能单调递减,所以0<q <1,而且a 99>1,a 100<1,又a 99·a 101=a 2100<1,①③正确;T 198=a 1a 2…a 99a 100…a 197·a 198=(a 99a 100)99>1,②不正确;T 199=a 1a 2…a 100…a 198a 199=(a 100)199<1,故④正确.【答案】 ①③④3.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…).若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.【解析】 ∵b n =a n +1, ∴a n =b n -1,而{b n }有连续四项在集合{-53,-23,19,37,82}中, ∴{a n }有连续四项在集合{-54,-24,18,36,81}中. ∵{a n }是公比为q 的等比数列,|q |>1, ∴{a n }中的连续四项为-24,36,-54,81, ∴q =-3624=-32,∴6q =-9. 【答案】 -94.若{a n }是公差d ≠0的等差数列,{b n }是公比q ≠1的等比数列,已知a 1=b 1=1,且a 2=b 2,a 6=b 3.(1)求d 和q ;(2)是否存在常数a ,b ,使对一切n ∈N *都有a n =log a b n +b 成立?若存在,求出a ,b 的值;若不存在,请说明理由.文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 【解】 (1)由题意得⎩⎪⎨⎪⎧ 1+d =q ,1+5d =q 2,解得d =3,q =4.(2)假设存在常数a ,b .由(1)得a n =3n -2,b n =4n -1, 代入a n =log a b n +b ,得3n -2=log a 4n -1+b ,即(3-log a 4)n +(log a 4-b -2)=0对n ∈N *都成立,∴⎩⎪⎨⎪⎧ 3-log a 4=0,log a 4-b -2=0,∴⎩⎪⎨⎪⎧ a =34,b =1.所以存在常数a =34,b =1使等式成立.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
2017-2018学年高中语文(苏教版1)学业分层测评:02(四) 劝学(节选).含解析

学业分层测评(四)劝学(节选)[基础巩固层]1.下边句子中没有通假字的一项是()A.则知明而行无过矣B.君子生非异也C.君子博学而日参省乎己D。
虽有槁暴,不复挺者【解析】A项,“知"同“智”;B项,“生”同“性”,D项,“暴”同“曝”。
【答案】 C2.下列句子中,与例句句式相同的一项是()例句:蚓无爪牙之利,筋骨之强A.马之千里者,一食或尽粟一石B.甚矣,汝之不惠C.不复挺者,使之然也D。
以为轮,其曲中规【解析】A项和例句都是定语后置句。
B项是主谓倒装句。
C项是判断句。
D项是省略句.【答案】 A3.对下列句子中加点的词的解释最恰当的一组是()A.用.心躁也用:运用B.不如须臾..之所学也须臾:指长者C.故不积跬.步跬:半步D.君子博学而日参省.乎己省:忽略【解析】A项,“用"的意思是因为;B项,“须臾”的意思是片刻;D项,“省”的意思是反省,省察.【答案】 C4.下列选项中加点词的古今意义相同的一项是()A.君子博学..而日参省乎己B.故不积跬步..,无以至千里C.非蛇鳝之穴无可寄托..者,用心躁也D.蚓无爪牙..之利,筋骨之强【解析】A项,“博学",古义是广博地学习,广泛地学习;今义是知识、学识的渊博。
C项,“寄托”,古义是藏身的意思;今义是托付。
D项,“爪牙”,古义是爪子和牙齿;今义是坏人的帮凶。
【答案】 B[阅读提升层]阅读下面的文言文,完成5~8题.君子之学也,入乎耳,箸乎心,布乎四体,形.乎动静。
端而言,蠕.而动,一可以为法则.小人之学也,入乎耳,出乎口。
口耳之间则四寸耳,曷足以美七尺之躯哉!古之学者为己,今之学者为人。
君子之学也,以美其身;小人之学也,以为禽犊。
故不问而告谓之傲,问一而告二谓之①。
傲,非也;,非也;君子如向矣。
蓬生麻中,不扶而直。
白沙在涅,与之俱黑.兰槐之根是为芷其渐.之滫②君子不近庶人不服其质非不美也所渐者然也故君子居必择乡游必就.士所以防邪僻而近中正也。
苏教版高中数学必修二第2章学业分层测评12.docx

高中数学学习材料马鸣风萧萧*整理制作学业分层测评(十二)(建议用时:45分钟)[学业达标]一、填空题1.对于样本频率分布折线图与总体密度曲线的关系,下列说法中正确的是________.(填序号)①频率分布折线图与总体密度曲线无关;②频率分布折线图就是总体密度曲线;③样本容量很大的频率分布折线图就是总体密度曲线;④如果样本容量无限增大、分组的组距无限减小,那么频率分布折线图就会无限接近总体密度曲线.【解析】由总体密度曲线定义知④正确.【答案】④2.为了解高二年级女生的身高情况,从中抽出20名进行测量,所得结果如下:(单位:cm)149159142160156163145150148151156144148149153143168168152155在列样本频率分布表的过程中,如果设组距为4 cm,那么组数为________.【解析】极大值为168,极小值为142,极差为168-142=26,根据组距=极差组数,知组数为7. 【答案】 73.一个容量为40的样本数据,分组后,组距与频数如下:[5,10)5个;[10,15)14个;[15,20)9个;[20,25)5个;[25,30)4个;[30,35]3个.则样本在区间[20,+∞)上的频率为________.【解析】 由题意知在区间[20,+∞)上的样本数为5+4+3=12个,故所求频率为1240=0.3.【答案】 0.34.如图2-2-5是容量为100的样本的频率分布直方图,试根据图中的数据填空.图2-2-5(1)样本数据在范围[6,10)内的频率为________; (2)样本数据落在范围[10,14)内的频数为________. 【解析】 (1)样本数据在[6,10)内频率为0.08×4=0.32. (2)在[10,14)内的频数为0.09×4×100=36. 【答案】 (1)0.32 (2)365.在样本频率分布直方图中,共有11个小矩形,若中间一个小矩形的面积等于其他10个小矩形的面积的和的14,且样本容量为100,则中间一组的频数为________.【解析】 设中间一个小矩形的面积为x ,由题意得x 1-x =14,解得x =15,故中间一组的频数为100×15=20.【答案】 206.为了了解某地区10 000名高三男生的身体发育情况,抽查了该地区100名年龄为17~18岁的高三男生体重(kg),得到频率分布直方图如图2-2-6.根据图示,请你估计该地区高三男生中体重在[56.5,64.5]的学生人数是________.图2-2-6【解析】 依题意得,该地区高三男生中体重在[56.5,64.5]的学生人数是10 000×(0.03+2×0.05+0.07)×2=4 000.【答案】 4 0007.某班的全体学生参加英语测试,成绩的频率分布直方图如图2-2-7,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是________.【导学号:11032040】图2-2-7【解析】 成绩在[20,40)和[40,60)的频率分别是0.1,0.2,则低于60分的频率是0.3.设该班学生总人数为m ,则15m =0.3,m =50.【答案】 508.对某市“两学一做”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图2-2-8),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:图2-2-8(1)[25,30)年龄组对应小矩形的高度为________;(2)据此估计该市“两学一做”活动中志愿者年龄在[25,35)的人数为________.【解析】 设[25,30)年龄组对应小矩形的高度为h ,则5×(0.01+h +0.07+0.06+0.02)=1,h =0.04.志愿者年龄在[25,35)的频率为5×(0.04+0.07)=0.55,故志愿者年龄在[25,35)的人数约为0.55×800=440.【答案】 (1)0.04 (2)440 二、解答题9.某工厂对一批产品进行了抽样检测,图2-2-9是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是多少?图2-2-9【解】 产品净重小于100克的频率为(0.050+0.100)×2=0.300,已知样本中产品净重小于100克的个数是36,设样本容量为n ,则36n =0.300,所以n =120,净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.10.下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位:cm).分组 [122, 126) [126, 130) [130, 134) [134, 138) [138, 142) 人数58102233分组 [142, 146) [146, 150) [150, 154) [154, 158] 人数201165(1)列出样本频率分布表; (2)画出频率分布直方图;(3)估计身高小于134 cm 的人数占总人数的百分比. 【解】 (1)样本频率分布表如下:分组 频数 频率 [122,126) 5 0.04 [126,130) 8 0.07 [130,134) 10 0.08 [134,138) 22 0.18 [138,142) 33 0.28 [142,146) 20 0.17 [146,150) 11 0.09 [150,154) 6 0.05 [154,158] 5 0.04 合计1201(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134 cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm 的人数占总人数的19%.[能力提升]1.某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下,则表中字母m、n、M、N所对应的数值分别为________、________、________、________.组别频数频率[145.5,149.5)80.16[149.5,153.5)60.12[153.5,157.5)140.28[157.5,161.5)100.20[161.5,165.5)80.16[165.5,169.5]m n合计M N【解析】由题意知样本容量为80.16=50,故M=50,从而m=50-(8+6+14+10+8)=4,所以n=450=0.08;N=1.【答案】40.0850 12.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图2-2-10).由图中数据可知a=________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.图2-2-10【解析】由题意知1-(0.005+0.035+0.020+0.010)×10=0.3,故a=0.3 10=0.030;由分层抽样的方法知,在[140,150]内的学生中选取的人数为18×0.010.03+0.02+0.01=18×16=3人.【答案】 0.030 33.某市数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图2-2-11所示,已知130~140分数段的人数为90人,求90~100分数段的人数a =________,则下边的流程图(图2-2-12)的功能是________.图2-2-11 图2-2-12【解析】 ①在频率分布图中,由题意可得900.05=a0.45,∴a =810. ②在图2中,∵a =810, n ←1时,S ←1,S ←1×1, n ←2时,S ←1×1,S ←1×1×2, n ←3时,S ←1×2,S ←1×2×3, 依此循环,n >810时终止循环,输出S . 此时S =1×2×3×4× (810)故该流程图的功能是计算并输出1×2×3×4×…×810的值. 【答案】 810 计算并输出1×2×3×…×810的值4.从某学校高三年级800名学生中随机抽取50名测量身高,被抽取的学生的身高全部介于155 cm 和195 cm 之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195],如图2-2-13是按上述分组方法得到的频率分布直方图.图2-2-13(1)根据已知条件填写下面表格:组别12345678样本数(2)估计这所学校高三年级800名学生中身高在180 cm以上(含180 cm)的人数.【解】(1)由频率分布直方图得第七组的频率为1-(0.008×2+0.016×2+0.04×2+0.06)×5=0.06,∴第七组的人数为0.06×50=3.同理可得各组人数如下:组别12345678样本数2410101543 2(2)由频率分布直方图得后三组的频率为0.016×5+0.06+0.008×5=0.18.估计这所学校高三年级身高在180 cm以上(含180 cm)的人数为800×0.18=144.。
高中数学 第2章 数列 2.3.2.1 等比数列的概念及通项公式学案 苏教版必修5-苏教版高中必修5
第1课时等比数列的概念及通项公式1.理解等比数列的概念,能在具体情景中,发现数列的等比关系.(重点)2.会推导等比数列的通项公式,并能应用该公式解决简单的等比数列问题.(重点)3.会证明一个数列是等比数列.(难点)[基础·初探]教材整理1 等比数列的概念阅读教材P49的有关内容,完成下列问题.如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).判断(正确的打“√”,错误的打“×”)(1)等比数列中,各项与公比均不为零.( )(2)数列a,a,…,a一定是等比数列.( )(3)等比数列{a n}中,a1,a3,a5一定同号.( )【答案】(1)√(2)×(3)√教材整理2 等比数列的通项公式阅读教材P51~P52,完成下列问题.如果数列{a n}是等比数列,首项为a1,公比为q,那么它的通项公式为a n=a1q n-1(a1≠0,q≠0).1.在等比数列{a n}中,已知a1=2,a4=16,则a n=________.【解析】∵a4=a1q3,∴q3=8,∴q=2,∴a n=a1q n-1=2·2n-1=2n.【答案】2n2.在等比数列{a n}中,已知a1=3,q=3,若a n=729,则n=________.【解析】∵a n=a1q n-1,a1=3,q=3,∴729=3·3n -1=3n,∴n =6.【答案】 6教材整理3 等比中项阅读教材P 54第11题,完成下列问题.1.若a ,G ,b 成等比数列,则称G 为a 和b 的等比中项,且满足G 2=ab . 2.若数列{a n }是等比数列,对任意的正整数n (n ≥2),都有a 2n =a n -1·a n +1.1.若22是b -1,b +1的等比中项,则b =________.【解析】 ∵(b -1)(b +1)=(22)2,∴b 2-1=8,∴b 2=9,∴b =±3. 【答案】 ±32.若1,a,4成等比数列,则a =________. 【解析】 ∵1,a,4成等比数列, ∴a 2=1×4=4, ∴a =±2. 【答案】 ±2[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_________________________________________________ 解惑:_________________________________________________ 疑问2:_________________________________________________ 解惑:_________________________________________________ 疑问3:_________________________________________________ 解惑:_________________________________________________[小组合作型]等比数列的判定与证明设数列{a n }满足a 1=1,a n +2a n -1+3=0(n ≥2).判断数列{a n +1}是否是等比数列?【精彩点拨】 只需证明a n +1+1a n +1=非零常数即可.【自主解答】 由题意知a n +1+2a n +3=0(n ≥2)成立,∴a n +1=-2a n -3, ∴a n +1+1a n +1=-2a n -3+1a n +1=-2(常数). 又a 1+1=2,∴数列{a n +1}是以2为首项,以-2为公比的等比数列.要判断一个数列{a n }是等比数列,其依据是a n a n -1=q (q 是非零常数)或a n +1a n=q ,对一切n ∈N *且n ≥2恒成立.[再练一题]1.判断下列数列是否为等比数列. (1)1,-1,1,-1,…; (2)1,2,4,6,8,…; (3)a ,ab ,ab 2,ab 3,….【解】 (1)是首项为1,公比为-1的等比数列. (2)64≠86,不是等比数列. (3)当ab ≠0时,是等比数列,公比为b ,首项为a ; 当ab =0时,不是等比数列.等比数列的通项公式(1)若{a n }为等比数列,且2a 4=a 6-a 5,则公比为________. (2)在等比数列{a n }中,若a 2+a 5=18,a 3+a 6=9,a n =1,则n =________.【导学号:91730035】【解析】 (1)∵a 6=a 4q 2,a 5=a 4q ,∴2a 4=a 4q 2-a 4q ,∴q 2-q -2=0,∴q 1=-1,q 2=2.(2)法一 因为⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18,③a 3+a 6=a 1q 2+a 1q 5=9,④由④③得q =12,从而a 1=32,又a n =1, 所以32×⎝ ⎛⎭⎪⎫12n -1=1,即26-n=20,所以n =6.法二 因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,知a 1=32. 由a n =a 1qn -1=1,知n =6.【答案】 (1)-1或2 (2)6等比数列基本量的求法a 1和q 是等比数列的基本量,只要求出这两个基本量,其他量便可求出来,法一是常规解法,先求a 1,q ,再求a n ,法二是运用通项公式及方程思想建立方程组求a 1和q ,这也是常见的方法.[再练一题]2.(1)若等比数列的前三项分别为5,-15,45,则第5项是________.(2)一个各项均为正数的等比数列,每一项都等于它后面两项的和,则公比q =________.【解析】 (1)∵a 5=a 1q 4,a 1=5,∴q =-3,∴a 5=405. (2)由题意,a n =a n +1+a n +2,即a n =a n q +a n q 2,∴q 2+q -1=0,∴q =-1±52.∵q >0,∴q =5-12.【答案】 (1)405 (2)5-12[探究共研型]等比中项探究1 三个数满足G 2=xy ,则x ,G ,y 成等比数列吗? 【提示】 不一定.如0,0,0这三个数不成等比数列. 探究2 任何两个非零常数都有等比中项吗? 【提示】 不是.只有同号的两个数才有等比中项.在4与14之间插入3个数,使这5个数成等比数列,求插入的3个数.【精彩点拨】 法一:利用等比数列的通项公式求解; 法二:先设出这三个数,再利用等比中项求解.【自主解答】 法一:依题意,a 1=4,a 5=14,由等比数列的通项公式,得q 4=a 5a 1=116,q =±12.因此,插入的3项依次为2,1,12或-2,1,-12.法二:此等比数列共5项,a 3是a 1与a 5的等比中项,因此a 3=±a 1a 5=±1.a 2是a 1与a 3的等比中项,a 4是a 3与a 5的等比中项,因为一个正数和一个负数没有等比中项,所以a 3=1,a 2=±a 1a 3=±2,a 1=±a 3a 5=±12.因此,插入的3项依次为2,1,12或-2,1,-12.注意等比数列中各项的符号特点是隔项符号必须相同.从而,对于数a ,b 的等比中项G ,G 2=ab 一定成立,但G 的符号不一定正负都可取,如等比数列{a n }中,三项分别为a 1,a 4,a 7,则a 4是a 1与a 7的等比中项,此时a 4可取正值,也可取负值;而对于下面的三项a 2,a 4,a 6,也有a 4是a 2与a 6的等比中项,此时a 4只能与a 2和a 6同号.[再练一题]3.已知a ,-32,b ,-24332,c 这五个数成等比数列,求a ,b ,c 的值.【解】 由题意知b 2=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-24332=⎝ ⎛⎭⎪⎫326,∴b =±278.当b =278时,ab =⎝ ⎛⎭⎪⎫-322,解得a =23;bc =⎝ ⎛⎭⎪⎫-243322=⎝ ⎛⎭⎪⎫-3210,解得c =⎝ ⎛⎭⎪⎫327. 同理,当b =-278时,a =-23,c =-⎝ ⎛⎭⎪⎫327. 综上所述,a ,b ,c 的值分别为23,278,⎝ ⎛⎭⎪⎫327或-23,-278,-⎝ ⎛⎭⎪⎫327.[构建·体系]1.下列各组数能组成等比数列的是________(填序号). ①13,16,19;②lg 3,lg 9,lg 27; ③6,8,10;④3,-33,9. 【解析】-333=9-33=- 3. 【答案】 ④2.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数n =________. 【解析】 由等比数列的通项公式,得128=4×2n -1,2n -1=32,所以n =6.【答案】 63.在等比数列{a n }中,a 1=18,q =-2,则a 4与a 10的等比中项是________.【导学号:91730036】【解析】 a 4与a 10的等比中项为a 7,a 7=18×(-2)6=8.【答案】 84.已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q =________. 【解析】 a 4-a 3=a 2q 2-a 2q =a 2(q 2-q )=2(q 2-q )=4,∴q 2-q -2=0, ∴q =2,或q =-1(舍去). 【答案】 25.在243和3中间插入3个数,使这5个数成等比数列,求这3个数. 【解】设插入的三个数为a 2,a 3,a 4,由题意得243,a 2,a 3,a 4,3成等比数列. 设公比为q ,则3=243·q 5-1,解得q =±13.当q =13时,a 2=81,a 3=27,a 4=9;当q =-13时,a 2=-81,a 3=27,a 4=-9.因此,所求三个数为81,27,9或-81,27,-9.我还有这些不足:(1)_________________________________________________ (2)_________________________________________________ 我的课下提升方案:(1)_________________________________________________ (2)_________________________________________________学业分层测评(十) (建议用时:45分钟)[学业达标]一、填空题1.在等比数列{a n }中,a 4=2,a 7=8,则a n =________.【解析】 因为⎩⎪⎨⎪⎧a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2 ①a 1q 6=8 ②由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22n -53.【答案】 22n -532.等比数列x,3x +3,6x +6,…的第四项等于________.【解析】 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.【答案】 -243.如果-1,a ,b ,c ,-9成等比数列,那么b =________,ac =________.【解析】 ∵b 2=(-1)×(-9)=9,且b 与首项-1同号,∴b =-3,且a ,c 必同号. ∴ac =b 2=9.【答案】 -3 94.在等比数列{a n }中,a 3=3,a 10=384,则公比q =________.【解析】 由a 3=a 1q 2=3,a 10=a 1q 9=384,两式相除得,q 7=128,所以q =2. 【答案】 25.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=________. 【解析】 ∵{a n }为等比数列, ∴a 2+a 3a 1+a 2=q =2. 又∵a 1+a 2=3, ∴a 1=1. 故a 7=1·26=64. 【答案】 646.若{a n }是等比数列,下列数列中是等比数列的所有代号为________.①{a 2n };②{a 2n };③⎩⎨⎧⎭⎬⎫1a n ;④{lg|a n |}.【解析】 考查等比数列的定义,验证第n +1项与第n 项的比是否为常数. 【答案】 ①②③7.在160与5中间插入4个数,使它们同这两个数成等比数列,则这4个数依次为________.【解析】 设这6个数所成等比数列的公比为q ,则5=160q 5,∴q 5=132,∴q =12,∴这4个数依次为80,40,20,10. 【答案】 80,40,20,108.在等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n =________.【导学号:91730037】【解析】 记数列{a n }的公比为q ,由a 5=-8a 2,得a 1q 4=-8a 1q ,即q =-2.由|a 1|=1,得a 1=±1,当a 1=-1时,a 5=-16<a 2=2,与题意不符,舍去;当a 1=1时,a 5=16>a 2=-2,符合题意,故a n =a 1qn -1=(-2)n -1.【答案】 (-2)n -1二、解答题9.在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项,公比.【解】 设该数列的公比为q .由已知,得⎩⎪⎨⎪⎧a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以⎩⎪⎨⎪⎧a 1q -1=2,q 2-4q +3=0,解得⎩⎪⎨⎪⎧a 1=1,q =3q =1舍去,故首项a 1=1,公比q =3.10.数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列; (2)求a n .【解】 (1)a 2=3a 1-2×2+3=-4,a 3=3a 2-2×3+3=-15.下面证明{a n -n }是等比数列: 由a 2=-4,a 3=-15可知,a n ≠n . ∵a n +1-n +1a n -n=3a n -2n +1+3-n +1a n -n=3a n -3n a n -n=3(n =1,2,3,…).又a 1-1=-2,∴{a n -n }是以-2为首项,以3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1,∴a n =n -2·3n -1.[能力提升]1.在等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于________.【解析】 由题意知a 3是a 1和a 9的等比中项, ∴a 23=a 1a 9,∴(a 1+2d )2=a 1(a 1+8d ), 得a 1=d ,∴a 1+a 3+a 9a 2+a 4+a 10=13d 16d =1316.【答案】13162.已知{a n }是等比数列,a n >0,又知a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5=________. 【解析】 ∵a 2a 4=a 23,a 4a 6=a 25,∴a 23+2a 3a 5+a 25=25,∴(a 3+a 5)2=25,又∵a n >0,∴a 3+a 5=5.【答案】 53.若数列{a n }的前n 项和为S n ,且a n =2S n -3,则{a n }的通项公式是________. 【解析】 由a n =2S n -3,得a n -1=2S n -1-3(n ≥2),两式相减得a n -a n -1=2a n (n ≥2), ∴a n =-a n -1(n ≥2),a na n -1=-1(n ≥2). 故{a n }是公比为-1的等比数列,令n =1,得a 1=2a 1-3, ∴a 1=3,故a n =3·(-1)n -1.【答案】 a n =3·(-1)n -14.互不相等的3个数之积为-8,这3个数适当排列后可以组成等比数列,也可组成等差数列,求这3个数组成的等比数列.【解】 设这3个数分别为a q,a ,aq ,则a 3=-8,即a =-2. (1)若-2为-2q和-2q 的等差中项,则2q+2q =4,∴q 2-2q +1=0,解得q =1,与已知矛盾,舍去; (2)若-2q 为-2q和-2的等差中项,则1q +1=2q ,∴2q 2-q -1=0,解得q =-12或q =1(与已知矛盾,舍去), ∴这3个数组成的等比数列为4,-2,1; (3)若-2q 为-2q 和-2的等差中项,则q +1=2q,∴q 2+q -2=0,解得q =-2或q =1(与已知矛盾,舍去), ∴这3个数组成的等比数列为1,-2,4.故这3个数组成的等比数列为4,-2,1或1,-2,4.。
2017-2018学年高二数学选修4-2学业分层测评1 含答案
学业分层测评(一)[学业达标]1.画出矩阵⎣⎢⎡⎦⎥⎤2 3 -11 -1 2所表示的三角形. 【解】 矩阵⎣⎢⎡⎦⎥⎤2 3 -11 -1 2所表示的点依次为A (2,1),B (3,-1),C (-1,2),则三点所确定的三角形如图所示:2.已知矩阵A =⎣⎢⎡⎦⎥⎤1x y2,B =⎣⎢⎡⎦⎥⎤m +2n 2x +y x -y m -n .若A =B ,求x +y +m +n 的值.【导学号:30650003】【解】 ∵A =B ,∴⎩⎨⎧m +2n =1,2x +y =x ,x -y =y ,m -n =2.∴⎩⎪⎨⎪⎧x =0,y =0,m =53,n =-13.∴x +y +m +n =0+0+53-13=43.3.已知方程组为⎩⎨⎧x +y =2,x -2y =3,(1)写出由它的系数构成的矩阵;(2)若将常数项与系数联合起来,可以构成一个二行三列的矩阵,试写出该矩阵.【解】 (1)因为方程x +y =2中x 与y 的系数分别为1,1;方程x -2y =3中x 与y 的系数分别为1,-2,所以原方程组系数构成的矩阵为M =⎣⎢⎡⎦⎥⎤1 11 -2. (2)M =⎣⎢⎡⎦⎥⎤1 121 -23.4.营养配餐中心为学生准备了各种菜肴,每份中能量、脂肪、蛋白质的含量各不相同.“红烧肉”中所含上述三种营养成分分别为649千卡(1千卡=4 187焦耳)、30 g 、10 g ;“青椒肉丝”中所含上述三种营养成分分别为258千卡、20 g 、19 g ;“韭菜豆芽”中所含上述三种营养成分分别为131千卡、15 g 、3 g ,试将上述结果用矩阵表示出来.【解】 各种菜肴中各种营养成分的含量如下表:M =⎣⎢⎡⎦⎥⎤649 30 1025820 1913115 3. 5.设矩阵A 为二阶矩阵,且规定其元素a ij =i 2+j 2,i =1,2,j =1,2,试求矩阵A .【解】 根据题意,则有A =(a ij )=⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22=⎣⎢⎡⎦⎥⎤12+12 12+2222+12 22+22=⎣⎢⎡⎦⎥⎤2558. 6.已知n 阶矩阵A =⎣⎢⎢⎢⎡⎦⎥⎥⎥⎤3 6 … a ij … a 1n6 11 … a 2j… a 2n… … … … … …a i 1a i 2… a ij… a in… … … … … …a n 1a n 2… a nj… a nn,其中每行、每列都是等差数列,a ij表示位于第i 行第j 列的数.(1)写出a 45的值; (2)写出a ij 的计算公式.【解】 (1)∵第1列成等差数列,a 11=3,公差为3, ∴a 41=3+(4-1)×3=12.∵第2列成等差数列,a 21=6,公差为5,∴a 42=6+(4-1)×5=21.又∵第4行成等差数列,公差为21-12=9, ∴a 45=12+(5-1)×9=48. (2)由(1)得a i 1=3+(i -1)×3=3i , a i 2=6+(i -1)×5=5i +1, ∴第i 行的公差为2i +1,∴a ij =3i +(j -1)×(2i +1)=2ij +i +j -1.7.已知甲、乙、丙三人中,甲、乙相识,甲、丙不相识,乙、丙相识.若用0表示两人之间不相识,用1表示两人之间相识,请用一个矩阵表示他们之间的相识关系.(规定每个人都和自己相识)【解】 将他们之间的相识关系列表如下:故用矩阵表示为⎣⎢⎡⎦⎥⎤11 101 1.[能力提升]8.小王是个气象爱好者,他根据多年收集的资料,发现了当地天气有如下的规律:晴天的次日是晴天的概率为34; 晴天的次日是阴天的概率为18; 晴天的次日是雨天的概率为18.同样的,阴天的次日为晴天、阴天、雨天的概率分别是12,14,14; 雨天的次日为晴天、阴天、雨天的概率分别是14,12,14. 试用矩阵表示上述数据.【导学号:30650004】【解】 晴天、阴天、雨天的次日分别是晴天、阴天、雨天的概率关系如下表:M =⎣⎢⎢⎡⎦⎥⎥⎤34 18 1812 14 1414 12 14。
高中数学选修1-2学业分层测评1
学业分层测评(一)
(建议用时:45分钟)
[学业达标]
一、选择题
1.为了考查两个变量x和y之间的线性相关性,甲、乙两名同学各自独立地做了10次试验和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2.已知两个人在试验中发现对变量x的观测数据的平均数都为s,对变量y的观测数据的平均数都为t,那么下列说法中正确的是()
A.直线l1和l2都过点(s,t)
B.直线l1和l2相交,但交点不一定是(s,t)
C.直线l1和l2必平行
D.直线l1和l2必重合
【解析】线性回归方程y=bx+a恒过点(x,y),故直线l1和l2都过点(s,t).
【答案】 A
2.已知人的年龄x与人体脂肪含量的百分数y的回归方程为y=0.577x-0.448,如果某人36岁,那么这个人的脂肪含量()
A.一定是20.3%
B.在20.3%附近的可能性比较大
C.无任何参考数据
D.以上解释都无道理
【解析】将x=36代入回归方程得y=0.577×36-0.448≈20.3.由回归分析的意义知,这个人的脂肪含量在20.3%附近的可能性较大,故选B.【答案】 B
3.关于回归分析,下列说法错误的是()
A.回归分析是研究两个具有相关关系的变量的方法
B.线性相关系数可以是正的或负的。
2017-18学年高中语文学业分层测评7书序张中丞传后叙苏教版
学业分层测评(七) 书序张中丞传后叙[基础巩固层]1.下列各句中加点词的解释不.正确的一项是( )A.不为.许远立传为:替,给B.竟.与巡俱守死,成功名竟:竟然C.外无待.而犹死守待:依靠,后援D.观者见其然,从而尤.之尤:怪罪【解析】B项,竟:终于,最终。
【答案】 B2.下列各项不含通假字的一项是( )A.及巡起事,嵩常在围中B.此矢所以志也C.旦日不可不蚤自来谢项王D.其老人往往说巡、远时事【解析】A项,“常”同“尝”,曾经;B项,“志”同“识”,作标记;C项,“蚤”通“早”。
【答案】 D3.下列加点的词古今意义相同的一项是( )A.因诵嵩所读书..B.以巡初尝得临涣县尉,好学..无所不读C.虽愚人亦能数日..而知死处矣D.一座大惊,皆感激..为云泣下【解析】A项,古义:读过的书籍;今义:指上学或学习功课。
C项,古义:计算日子;今义:指时间。
D项,古义:感动,奋激;今义:因对方的好意或帮助而对他产生好感。
【答案】 B4.下列各句中属于被动句的一项是( )A.必以其言为信B.其亦不达于理C.城陷而虏D.生孩六月,慈父见背【解析】C项,“虏”即被俘虏,意念上的被动。
【答案】 C5.下列文言句子翻译成现代汉语不正确的一项是( )A.所欲忠者,国与主耳。
译文:所要效忠的,就是国家与君主罢了。
B.宁能知人之卒不救。
译文:怎么能知道这些人的士兵是不会来救援的。
C.此矢所以志也。
译文:这支箭就是用来作标记的。
D.疑畏死而辞服于贼。
译文:怀疑(许远)是怕死而向敌人说了屈服的话。
【解析】一般来说,古文的翻译总是以直译为主,意译为辅。
在试题中,一般要翻译的句子有若干个关键点,如:重点实词、句式等,只有抓住这些关键点才能得分。
如:A项,要注意“者”的用法(助词,附在别的词后面,组成名词性短语);B项,要注意“卒”、“之”的用法(卒:最终;之:助词,用在主语和谓语之间,取消句子独立性);C项,要注意“所以”这个古今异义词的准确理解;D项,要注意句式,它既是状语后置句,又是省略句,应该是“疑之畏死而于贼辞服”,翻译时将语序调正并补出相应内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学业分层测评(九)
(建议用时:45分钟)
学业达标]
一、填空题
1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7等于________. 【解析】 ∵S 5=5a 3=25,∴a 3=5,∵a 2=3, ∴d =a 3-a 2=2, ∴a 7=3+5×2=13. 【答案】 13
2.已知等差数列{a n }中,a 2
3+a 28+2a 3a 8=9,且a n <0,则S 10=________. 【解析】 由a 23+a 28+2a 3a 8=9,得(a 3+a 8)2=9,
∵a n <0,∴a 3+a 8=-3, ∴S 10=10(a 1+a 10)2=10(a 3+a 8)2
=
10×(-3)
2
=-15. 【答案】 -15
3.(2016·南京高二检测)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=________.
【解析】 由等差数列前n 项和公式知S 8=8(a 1+a 8)2=4(a 1+a 8)=4(a 7+a 2),
又S 8=4a 3,∴4(a 7+a 2)=4a 3,
∴-2+a 2=a 3,∴公差d =-2,∴a 9=a 7+2d =-6. 【答案】 -6
4.一个有11项的等差数列,奇数项之和为30,则它的中间项为________.
【导学号:91730033】
【解析】 ∵S 奇=6a 1+6×5
2×2d =30,∴a 1+5d =5, S 偶=5a 2+5×4
2×2d =5(a 1+5d )=25, ∴a 中=S 奇-S 偶=5.
5.首项为正数的等差数列的前n 项和为S n ,且S 3=S 8,当n =________时,S n 取到最大值.
【解析】 ∵S 3=S 8,∴S 8-S 3=a 4+a 5+a 6+a 7+a 8=5a 6=0,∴a 6=0,∵a 1>0,∴a 1>a 2>a 3>a 4>a 5>a 6=0,a 7<0.
故当n =5或6时,S n 最大. 【答案】 5或6
6.(2015·安徽高考)已知数列{a n }中,a 1=1,a n =a n -1+1
2(n ≥2),则数列{a n }的前9项和等于________.
【解析】 由a 1=1,a n =a n -1+1
2(n ≥2),可知数列{a n }是首项为1,公差为1
2的等差数列,故S 9=9a 1+9×(9-1)2
×12=9+18=27. 【答案】 27
7.已知等差数列{a n }的前4项和为25,后4项和为63,前n 项和为286,则项数n 为________.
【解析】 ∵a 1+a 2+a 3+a 4=25,a n -3+a n -2+a n -1+a n =63, 而a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3, ∴4(a 1+a n )=88,∴a 1+a n =22. ∴S n =n (a 1+a n )
2=11n =286,∴n =26.
【答案】 26
8.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =________. 【解析】 ∵a n =⎩⎨⎧
S 1,n =1,S n -S n -1,n ≥2,
∴a n =2n -10. 由5<2k -10<8, 得7.5<k <9,∴k =8.
二、解答题
9.已知{a n }为等差数列,S n 是{a n }的前n 项和,S 7=7,S 15=75.
(1)求证:数列⎩⎨⎧⎭⎬⎫
S n n 是等差数列;
(2)求数列⎩⎨⎧⎭
⎬⎫
S n n 的前
n 项和T n .
【解】 (1)证明:设等差数列{a n }的公差为d ,由题意,得⎩⎨⎧ 7a 1+21d =7,15a 1
+105d =75,解得⎩⎨⎧
a 1=-2,d =1, 则S n =-2n +n (n -1)
2×1, ∴S n n =-2+1
2(n -1). ∵
S n +1n +1-S n n =1
2
, ∴数列⎩
⎨⎧⎭
⎬⎫
S n n 是等差数列. (2)由(1)知数列⎩⎨⎧⎭
⎬⎫
S n n 是以-2
为首项,1
2为公差的等差数列.
∴T n =-2n +n (n -1)2×12=14n 2-9
4n .
10.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0. (1)求公差d 的取值范围;
(2)问前几项的和最大,并说明理由. 【解】 (1)∵a 3=12,∴a 1=12-2d , ∵S 12>0,S 13<0,
∴⎩⎨⎧ 12a 1+66d >0,13a 1+78d <0,即⎩⎨⎧
24+7d >0,3+d <0, ∴-24
7<d <-3. (2)∵S 12>0,S 13<0,
∴⎩⎨⎧
a 1+a 12>0,a 1+a 13<0, ∴⎩⎨⎧
a 6+a 7>0,a 7<0, ∴a 6>0. 又由(1)知d <0,
∴数列前6项为正,从第7项起为负, ∴数列前6项和最大.
能力提升]
1.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________.
【解析】 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m
+1
-S m =3,所以等差数列的公差为d =a m +1-a m =3-2=1, 由⎩⎪⎨⎪⎧
a m =a 1+(m -1)d =2,S m =a 1m +1
2m (m -1)d =0,
得⎩⎪⎨⎪⎧
a 1+m -1=2,a 1m +12m (m -1)=0,
解得⎩⎨⎧
a 1=-2,m =5.
【答案】 5
2.(2016·如东高二检测)设等差数列{a n }的前n 项和为S n ,首项a 1=1,且对
任意正整数n 都有a 2n a n
=4n -1
2n -1,则S n =________.
【导学号:91730034】
【解析】 由等差数列的通项公式可得,a 2n =1+(2n -1)d ,a n =1+(n -1)d . ∵a 2n a n =4n -1
2n -1,对任意n 都成立,
∴
1+(2n -1)d 1+(n -1)d =4n -1
2n -1
对任意n 都成立,
当n =1时,有1+d
1=3,解得d =2, ∴S n =n ×1+n (n -1)
2×2=n 2. 【答案】 n 2
3.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n =________.
【解析】 由条件可知数列单调递减, 故知a 2 003>0,a 2 004<0, 故S 4 006=4 006(a 1+a 4 006)2
=2 003(a 2 003+a 2 004)>0,
S 4 007=4 007(a 1+a 4 007)
2=4 007×a 2 004<0,
故使前n 项和S n >0成立的最大自然数n 是4 006. 【答案】 4 006
4.(2016·无锡高二检测)在等差数列{a n }中,a 10=23,a 25=-22,求数列{|a n |}的前n 项和.
【解】 由已知得
⎩⎨⎧ a 1+9d =23,a 1+24d =-22,得⎩⎨⎧
a 1=50,d =-3, ∴a n =a 1+(n -1)d =-3n +53. ∴当n ≤17,n ∈N *时,a n >0; 当n ≥18,n ∈N *时,a n <0. ∴当n ≤17,n ∈N *时,
|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =-32n 2+1032n ; 当n ≥18,n ∈N *时
|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n ) =32n 2-103
2n +884.
∴当n≤17,n∈N*时,{|a n|}的前n项和为-3
2n
2+
103
2n,
当n≥18,n∈N*时,{|a n|}的前n项和为3
2n
2-
103
2n+884.。