2020版高考数学(理科)大一轮精准复习精练:2.2函数的基本性质含解析
2020年高考理科数学《函数的定义与性质》题型归纳与训练及答案解析

1例2.已知函数f(x)2x 2x a ,x[1, )■2020年高考理科数学《函数的定义与性质》题型归纳与训练【题型归纳】题型一求函数的定义域、值域A--------------------------------------- ------------------------------------------------------------例 1 ( 1)函数 f(x) —In C ,x 2 3x 2 . x 2 3x 4)的定义域为()xA.(, 4)[2,);B. ( 4,0) (0,1) ; C. [, 4,0)(0,1]Q . [, 4,0)(0,1)(2)设 fxIg 2x,则 f x f 2的定义域为()2x2xA. 4,0 0,4;B.4, 1 1,4 ; C. 2,11,2 ;D.4, 22,4【答案】( 1)D ; (2) B【解析】(1)欲使函数f (x)有意义,必须并且只需x 2 3x 2 0 2x 3x 4-------------- --------------------- x [ 4,0) (0,1),故应选择 Dx 2 3x 2 x 2 3x 4 0x 0【易错点】抽象函数的定义域【思维点拨】 如没有标明定义域,则认为定义域为使得函数解析式有意义的x 的取值范围,实际操作时要注意:①分母不能为 0;②对数的真数必须为正;③偶次根式中被开方数应为非负数;④零指数幕中,底 数不等于0;⑤负分数指数幕中,底数应大于 0;⑥若解析式由几个部分组成,则定义域为各个部分相应集 合的交集;⑦如果涉及实际问题,还应使得实际问题有意义,而且注意:研究函数的有关问题一定要注意 定义域优先原则,实际问题的定义域不要漏写。
求复合函数定义域,即已知函数f (x)的定义为[a,b ],则函数f [g(x)]的定义域是满足不等式 a g(x) b 的x 的取值范围;一般地,若函数f [g(x)]的定义域是[a,b ], 指的是x [a,b ],要求f (x)的定义域就是x [a,b ]时g(x)的值域。
2024年高考数学高频考点(新高考通用)函数的概念及其表示(精练:基础+重难点)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第06讲函数的概念及其表示(精讲)【A组在基础中考查功底】则函数根据函数图像可知:(f x 故选:ACD.8.已知函数4 ()f x xx=+A.-3B 【答案】ABC四、解答题12.定义在R 上的函数()f x 对任意实数x 都有()2243f x x x -=-+.(1)求函数()f x 的解析式;(2)若函数()()23g x f x x =-+在[],1m m +上是单调函数,则求实数m 的取值范围.【答案】(1)()21f x x =-(2)(][),01,-∞+∞ 【分析】(1)配方后,利用整体法求解函数解析式;(2)求出()g x 的单调区间,与[],1m m +比较,得到不等式,求出实数m 的取值范围.【详解】(1)()()2224321f x x x x -=-+=--,故函数()f x 的解析式为()21f x x =-;(2)()()2223122121x x g x x x x =-+=---++=在(),1-∞上单调递减,在()1,+∞上单调递增,因为()g x 在[],1m m +上是单调函数,所以m 1≥或11m +≤,解得0m ≤或m 1≥,所以实数m 的取值范围是(][),01,-∞+∞ .【B 组在综合中考查能力】由图可得当且仅当0t<<时)的,故()()()()36494922f f f f m n =⨯=+=+.【C 组在创新中考查思维】,该函数在当32m>时,当x>m时()2,3f x⎛∈-∞-⎝①,当1,22aa >>时,()f x 在[]0,1上单调递增,②,由2222a a a x ⎛⎫-+⨯=- ⎪⎝⎭解得12x a +=或1x -=。
高考数学复习典型题型与知识点专题讲解4 函数的基本性质(解析版)

高考数学复习典型题型与知识点专题讲解4 函数的基本性质一、典型例型解题思维(名师点拨)知识点1 ()(0)af x x a x =+>的单调性知识点2 二次函数区间求最值知识点3 已知一半求另一半(奇偶性) 知识点4单调奇偶联袂 二、题型归类练专练一、典型例型解题思维(名师点拨)知识点1 ()(0)af x x a x=+>的单调性例1.(2021·宁夏·平罗中学高一期中)已知4()f x x x=+. (1)判断()f x 的奇偶性;(2)判断函数()f x 在(2,)+∞的单调性并用定义证明. 【答案】(1)函数()f x 为奇函数;(2)()f x 在区间()2,+∞上是增函数;证明见详解. (1)解:由题可知,4()f x x x=+,则函数()f x 的定义域为{}|0x x ≠ ,关于原点对称,又44()()()f x x x f x x x-=--=-+=-, 所以函数()f x 为奇函数.(2)解:()f x 在区间()2,+∞上是增函数, 证明:12,(2,)x x ∀∈+∞且12x x <, 有12121244()()()()f x f x x x x x -=+-+ 121244()()x x x x =-+-121212(4)x x x x x x -=-, 122x x <<,1212124,40,0x x x x x x >->-<∴,121212(4)0x x x x x x -∴-<,即12()()f x f x <, ∴函数()f x 在区间()2,+∞上是增函数.名师点评:对于函数()(0)af x x a x =+>主要性质如下:①定义域(,0)(0,)-∞+∞; ②奇偶性:奇函数;③单调性:当0x >时;()(0)af x x a x =+>在上单调递减;在)+∞的单调增;④值域与最值:当0x >时;()(0)af x x a x =+>值域为)+∞,当x =小值特别提醒同学们函数()(0)af x x a x =+>我们称为对钩函数(耐克函数),注意需要0a >这个大前提,当0a ≤时都不再是对钩函数,此时不具有对钩函数的性质。
2020年浙江高考数学一轮复习:函数及其表示

••>必过数材美函数映射两集合A,B设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A TB 如果按照某种确定的对应关系f,使对于集合A中的任意一个数X,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A T B为从集合A到集合B的一个函数称对应f:A T B为从集合A到集合B的一个映射记法y= f(x),x€ A对应f:A T B是一个映射2. 函数的有关概念(1) 函数的定义域、值域:在函数y= f(x), x€ A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x € A}叫做函数的值域.显然,值域是集合B的子集.(2) 函数的三要素:定义域、值域和对应关系.(3) 相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4) 函数的表示法表示函数的常用方法有:解析法、图象法、列表________3. 分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.[小题体验]1. (2018台州模拟)下列四组函数中,表示相等函数的是()A. f(x)= x2,g(x)= x2B. f(x)=子,g(x)= :2函数及其表示C. f(x)= 1, g(x)= (x — 1)2x — 9D. f(x)= "x+J , g (x)=x— 3解析:选B 选项A 中,f(x) = x 2与g(x)= x 2的定义域相同,但对应关系不同;选项B中,二者的定义域都为 {x|x >0},对应关系也相同;选项 C 中,f(x)= 1的定义域为R , g(x) 0 x 2— 9=(x — 1)0的定义域为{x|x M 1};选项 D 中,f(x)= 的定义域为{x|x M — 3}, g(x)= x — 3 x + 3的定义域为R.2.若函数 y = f(x)的定义域为{x| — 3w x < 8, x M 5},值域为{y| — K y w 2, y M 0},贝y y =f(x)的图象可能是(解析:选B 根据函数的概念,任意一个 x 只能有唯一的 由定义域为{x|— 3< x w 8, X M 5}排除A 、D 两项,故选 B.___ 13.函数f(x)= 2x- 1+口的定义域为解析:由题意得I2 — 1> 0, 解得x > 0且X M 2.lx — 2M 0,答案:[0,2) U (2,+^ )4.若函数 f(x) = ex —IT 贝 “(2))=5 — x , x > 1 , 解析:由题意知,f(2) = 5— 4 = 1, f ⑴=e 0= 1,答案:15•已知函数f(x)= ax 3 — 2x 的图象过点(一1,4),贝V f(2)= 解析:T 函数f(x) = ax 3— 2x 的图象过点(—1,4),4= — a + 2,.°. a = — 2,即卩 f(x) = — 2x — 2x , ••• f(2) = — 2X 23— 2X 2=— 20. 答案:—20••I 必过易措关1•求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义 域.y 值和它对2•分段函数无论分成几段,都是一个函数,不要误解为是“由几个函数组成” •求分段函数的函数值,如果自变量的范围不确定,要分类讨论.=2的解为解析: Wg)卜"。
函数的基本性质

函数的基本性质函数的基本性质一、函数的单调性函数的单调性函数的单调性反映了函数图像的走势,高考中常考其一下作用:比较大小,解不等式,求最值。
定义:(略)定理1: 那么上是增函数;上是减函数.定理2:(导数法确定单调区间) 若 ,那么上是增函数; 上是减函数.1.函数单调性的判断(证明)(1)作差法(定义法) (2)作商法 (3)导数法2.复合函数的单调性的判定对于函数 和 ,如果函数 在区间 上具有单调性,当 时 ,且函数 在区间 上也具有单调性,则复合函数 在区间 具有单调性。
3.由单调函数的四则运算所得到的函数的单调性的判断对于两个单调函数 和 ,若它们的定义域分别为 和 ,且 :(1)当 和 具有相同的增减性时,① 的增减性与 相同,② 、 、 的增减性不能确定;(2)当 和 具有相异的增减性时,我们假设 为增函数, 为减函数,那么:① 的增减性不能确定;② 、 、 为增函数, 为减函数。
4.奇偶函数的单调性奇函数在其定义域内的对称区间上的单调性相同,偶函数在其定义域内的对称区间上的单调性相反。
二、函数的对称性函数的对称性是函数的一个基本性质, 对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能够更简捷的使问题得到解决,对称关系同时还充分体现数学之美。
1.函数 的图象的对称性(自身):定理1: 函数 的图象关于直 对称特殊的有:①函数 的图象关于直线 对称 。
②函数 的图象关于 轴对称(奇函数) 。
③函数 是偶函数 关于 对称。
定理2:函数 的图象关于点 对称特殊的有:① 函数 的图象关于点 对称 。
② 函数 的图象关于原点对称(奇函数) 。
③ 函数 是奇函数 关于点 对称。
定理3:(性质)①若函数y=f (x)的图像有两条铅直对称轴x=a 和x=b(a 不等于b),那么f(x)为周期函数且2|a-b|是它的一个周期。
②若函数y=f (x)的图像有一个对称中心M(m.n)和一条铅直对称轴x=a,那么f(x)为周期函数且4|a-m|为它的一个周期。
人教A版高考总复习一轮理科数学精品课件 第2章 函数的概念与性质 第6节 对数与对数函数

增函数
1
时,y=
0
⑤当 x>1 时, y<0 ;当 0<x<1 时,
y>0 ;在(0,+∞)上是 减函数
微思考如图给出4个对数函数的图象.底数a,b,c,d与1的大小关系如何?
提示:如图,作直线y=1,则该直线与四个函
数图象交点的横坐标为相应的底数.
故0<c<d<1<a<b.由此我们可得到以下规
(a,b
lo g
均大于 0 且不等于 1);
2.logab·
logbc·
logcd=logad(a,b,c均大于0且不等于1,d>0).
增素能 精准突破
考点一
对数的运算
典例突破
例1.计算:(1)lg 25+lg 2·lg 50+(lg 2)2;
(lg3 )2 -lg9 +1·(lg 27+lg8 -lg 1 000)
d=
1
2
3
2
,则(
2
3
3
a=log2 ,b=log 1 ,c=e3 ,
2
2 2
)
A.c>a>d>b
B.c>a>b>d
C.a>c>d>b
D.c>d>a>b
答案:A
1
解析:2=log2
2
3
3
2<log22<log22=1,即
e >e =1,即 c>1,0<
0
1
2
3
2
<
2020届高考数学一轮第二篇函数及其性质专题.函数的概念练习
专题2.1 函数的概念【考试要求】1.了解构成函数的要素,能求简单函数的定义域;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用;3.通过具体实例,了解简单的分段函数,并能简单应用.【知识梳理】1.函数的概念设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.2.函数的定义域、值域(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【微点提醒】1.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点.2.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)函数y=1与y=x0是同一个函数.( )(2)对于函数f:A→B,其值域是集合B.( )(3)f (x )=x -3+2-x 是一个函数.( )(4)若两个函数的定义域与值域相同,则这两个函数相等.( ) 【答案】 (1)× (2)× (3)× (4)× 【解析】(1)错误.函数y =1的定义域为R ,而y =x 0的定义域为{x|x≠0},其定义域不同,故不是同一函数. (2)错误.值域C ⊆B ,不一定有C =B. (3)错误.f(x)=x -3+2-x 中x 不存在.(4)错误.若两个函数的定义域、对应法则均对应相同时,才是相等函数. 【教材衍化】2.(必修1P25B2改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )【答案】 B【解析】 A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2]. 3.(必修1P18例2改编)下列函数中,与函数y =x +1是相等函数的是( )A.y =(x +1)2B.y =3x 3+1 C.y =x 2x+1D.y =x 2+1【答案】 B【解析】 对于A ,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B ,定义域和对应法则分别对应相同,是相等函数;对于C.函数y =x 2x+1的定义域为{x |x ≠0},与函数y =x +1的定义域x ∈R 不同,不是相等函数;对于D ,定义域相同,但对应法则不同,不是相等函数.【真题体验】4.(2019·北京海淀区期中)已知f (x 5)=lg x ,则f (2)=( ) A.15lg 2 B.12lg 5 C.13lg 2 D.12lg 3 【答案】 A【解析】 令x 5=2,则x =215,∴f (2)=lg 215=15lg 2.5.(2019·河南、河北两省重点高中联考)函数f (x )=4-4x+ln(x +4)的定义域为________. 【答案】 (-4,1]【解析】 f (x )有意义,则⎩⎪⎨⎪⎧4-4x≥0,x +4>0,解得-4<x ≤1.6.(2019·济南检测)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 【答案】 -2【解析】 由题意知点(-1,4)在函数f (x )=ax 3-2x 的图象上,所以4=-a +2,则a =-2. 【考点聚焦】考点一 求函数的定义域【例1】 (1)函数y =1-x 2+log 2(tan x -1)的定义域为________; (2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________. 【答案】 (1)⎝ ⎛⎦⎥⎤π4,1 (2)[0,1) 【解析】 (1)要使函数y =1-x 2+log 2(tan x -1)有意义,则1-x 2≥0,tan x -1>0,且x ≠k π+π2(k∈Z ).∴-1≤x ≤1且π4+k π<x <k π+π2,k ∈Z ,可得π4<x ≤1.则函数的定义域为⎝ ⎛⎦⎥⎤π4,1. (2)因为y =f (x )的定义域为[0,2],所以要使g (x )有意义应满足⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.所以g (x )的定义域是[0,1).【规律方法】 1.求给定解析式的函数定义域的方法求给定解析式的函数的定义域,其实质就是以函数解析式中所含式子(运算)有意义为准则,列出不等式或不等式组求解;对于实际问题,定义域应使实际问题有意义. 2.求抽象函数定义域的方法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f [g (x )]的定义域可由不等式a ≤g (x )≤b 求出.(2)若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. 【训练1】 (1)(2019·深圳模拟)函数y =-x 2-x +2ln x 的定义域为( )A.(-2,1)B.[-2,1]C.(0,1)D.(0,1](2)(2019·山西名校联考)设函数f (x )=lg(1-x ),则函数f [f (x )]的定义域为( ) A.(-9,+∞) B.(-9,1) C.[-9,+∞)D.[-9,1)【答案】 (1)C (2)B【解析】 (1)要使函数有意义,则⎩⎪⎨⎪⎧-x 2-x +2≥0,ln x ≠0,解得⎩⎪⎨⎪⎧-2≤x ≤1,x >0且x ≠1.∴函数的定义域是(0,1).(2)易知f [f (x )]=f [lg(1-x )]=lg[1-lg(1-x )],则⎩⎪⎨⎪⎧1-x >0,1-lg (1-x )>0,解得-9<x <1.故f [f (x )]的定义域为(-9,1). 考点二 求函数的解析式【例2】 (1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )=________;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________;(3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1,则f (x )=________.【答案】 (1)lg2x -1(x >1) (2)12x 2-32x +2 (3)23x +13【解析】 (1)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=2ax +a +b =x -1,所以⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)在f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1中,将x 换成1x ,则1x换成x ,得f ⎝ ⎛⎭⎪⎫1x=2f (x )·1x-1,由⎩⎪⎨⎪⎧f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x-1,解得f (x )=23x +13.【规律方法】 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x ).【训练2】 (1)(2019·杭州检测)已知函数f (x )=ax -b (a >0),且f [f (x )]=4x -3,则f (2)=________; (2)若f (x )满足2f (x )+f (-x )=3x ,则f (x )=________. 【答案】 (1)3 (2)3x【解析】 (1)易知f [f (x )]=a (ax -b )-b =a 2x -ab -b , ∴a 2x -ab -b =4x -3(a >0),因此⎩⎪⎨⎪⎧a 2=4,ab +b =3,解得⎩⎪⎨⎪⎧a =2,b =1. 所以f (x )=2x -1,则f (2)=3. (2)因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 由①②解得f (x )=3x . 考点三 分段函数 角度1 分段函数求值【例3-1】 (2018·江苏卷)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上, f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f [f (15)]的值为________.【答案】22【解析】 因为函数f (x )满足f (x +4)=f (x )(x ∈R ),所以函数f (x )的最小正周期是4.因为在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,所以f (15)=f (-1)=12,因此f [f (15)]=f ⎝ ⎛⎭⎪⎫12=cos π4=22. 角度2 分段函数与方程、不等式问题【例3-2】 (1)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=4,则b =( )A.1B.78C.34D.12(2)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.【答案】 (1)D (2)⎝ ⎛⎭⎪⎫-14,+∞【解析】 (1)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b , 若52-b <1,即b >32时, 则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=f ⎝ ⎛⎭⎪⎫52-b =3⎝ ⎛⎭⎪⎫52-b -b =4, 解得b =78,不合题意舍去.若52-b ≥1,即b ≤32,则252-b=4,解得b =12. (2)当x ≤0时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=(x +1)+⎝ ⎛⎭⎪⎫x -12+1,原不等式化为2x +32>1,解得-14<x ≤0,当0<x ≤12时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=2x +⎝ ⎛⎭⎪⎫x -12+1,原不等式化为2x+x +12>1,该式恒成立,当x >12时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=2x +2x -12,又x >12时,2x+2x -12>212+20=1+2>1恒成立, 综上可知,不等式的解集为⎝ ⎛⎭⎪⎫-14,+∞.【规律方法】 1.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.2.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 【提醒】 当分段函数的自变量范围不确定时,应分类讨论.【训练3】 (1)(2019·合肥模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f [f (1)]=( )A.-12B.2C.4D.11(2)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.【答案】 (1)C (2)⎣⎢⎡⎭⎪⎫0,12 【解析】 (1)由题意知f (1)=12+2=3, 因此f [f (1)]=f (3)=3+13-2=4.(2)当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.【反思与感悟】1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法. 【易错防范】1.复合函数f [g (x )]的定义域也是解析式中x 的范围,不要和f (x )的定义域相混.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 【分层训练】【基础巩固题组】(建议用时:35分钟) 一、选择题1.函数f (x )=2x-1+1x -2的定义域为( )A.[0,2)B.(2,+∞)C.[0,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)【答案】 C【解析】 由题意知⎩⎪⎨⎪⎧2x-1≥0,x -2≠0,得⎩⎪⎨⎪⎧x ≥0,x ≠2,所以函数的定义域为[0,2)∪(2,+∞). 2.(2019·郑州调研)如图是张大爷晨练时离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )【答案】 D【解析】 由y 与x 的关系知,在中间时间段y 值不变,只有D 符合题意. 3.下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A.y =xB.y =lg xC.y =2xD.y =1x【答案】 D 【解析】 函数y =10lg x的定义域、值域均为(0,+∞),而y =x ,y =2x的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B ;D 中y =1x 的定义域、值域均为(0,+∞).4.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A.3B.6C.9D.12【答案】 C【解析】 根据分段函数的意义,f (-2)=1+log 2(2+2)=1+2=3.又log 212>1, ∴f (log 212)=2(log 212)-1=2log 26=6,因此f (-2)+f (log 212)=3+6=9.5.(2019·西安联考)已知函数f (x )=-x 2+4x ,x ∈[m ,5]的值域是[-5,4],则实数m 的取值范围是( ) A.(-∞,-1)B.(-1,2]C.[-1,2]D.[2,5]【答案】 C【解析】 f (x )=-x 2+4x =-(x -2)2+4. 当x =2时,f (2)=4.由f (x )=-x 2+4x =-5,得x =5或x =-1.∴要使f (x )在[m ,5]上的值域是[-5,4],则-1≤m ≤2.6.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A.y =⎣⎢⎡⎦⎥⎤x 10B.y =⎣⎢⎡⎦⎥⎤x +310C.y =⎣⎢⎡⎦⎥⎤x +410D.y =⎣⎢⎡⎦⎥⎤x +510【答案】 B【解析】 代表人数与该班人数的关系是除以10的余数大于6,即大于等于7时要增加一名,故y =⎣⎢⎡⎦⎥⎤x +310.7.(2017·山东卷)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝ ⎛⎭⎪⎫1a =( )A.2B.4C.6D.8【答案】 C【解析】 由已知得0<a <1,则f (a )=a ,f (a +1)=2a , 所以a =2a ,解得a =14或a =0(舍去),所以f ⎝ ⎛⎭⎪⎫1a=f (4)=2(4-1)=6. 8.(2019·上饶质检)已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A.(1,+∞)B.(2,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-2)∪(2,+∞)【答案】 D【解析】 当a =0时,显然不成立.当a >0时,不等式a [f (a )-f (-a )]>0等价于a 2-2a >0,解得a >2. 当a <0时,不等式a [f (a )-f (-a )]>0等价于a 2+2a >0,解得a <-2.综上所述,a 的取值范围为(-∞,-2)∪(2,+∞). 二、填空题9.函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________.【答案】 (0,1]【解析】 要使函数f (x )有意义, 则⎩⎪⎨⎪⎧1+1x >0,x ≠0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒0<x ≤1.∴f (x )的定义域为(0,1].10.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫1x+1xf (-x )=2x (x ≠0),则f (-2)=________.【答案】 72【解析】 令x =2,可得f ⎝ ⎛⎭⎪⎫12+12f (-2)=4,①令x =-12,可得f (-2)-2f ⎝ ⎛⎭⎪⎫12=-1② 联立①②解得f (-2)=72.11.下列四个结论中,正确的命题序号是________.①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=0.【答案】 ②③【解析】 对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域和对应关系均分别对应相同,所以f (x )与g (t )表示同一函数;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=f (0)=1.12.设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为________.【答案】 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22 【解析】 由题意知,若x ≤0,则2x =12,解得x =-1; 若x >0,则|log 2x |=12,解得x =212或x =2-12. 故x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22. 【能力提升题组】(建议用时:15分钟)13.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数.下列函数: ①y =x -1x ;②y =ln 1-x 1+x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1. 其中满足“倒负”变换的函数是( )A.①②B.①③C.②③D.①【答案】 B【解析】 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足题意;对于②,f (x )=ln 1-x 1+x ,则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足; 对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1, 则f ⎝ ⎛⎭⎪⎫1x =-f (x ). 所以满足“倒负”变换的函数是①③.14.(2019·河南八市联考)设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1(λ∈R ),2x ,x ≥1,若对任意的a ∈R 都有f [f (a )]=2f (a )成立,则λ的取值范围是( ) A.(0,2]B.[0,2]C.[2,+∞)D.(-∞,2) 【答案】 C【解析】 当a ≥1时,2a ≥2.∴f [f (a )]=f (2a )=22a =2f (a )恒成立.当a <1时,f [f (a )]=f (-a +λ)=2f (a )=2λ-a ∴λ-a ≥1,即λ≥a +1恒成立,由题意λ≥(a +1)max ,∴λ≥2,综上,λ的取值范围是[2,+∞).15.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )的解析式是________. 【答案】 f (x )=-log 2 x【解析】 根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫1x =log 2x ,则f (x )=log 21x=-log 2x . 16.(2019·绍兴调研)设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (1))=________;不等式f (x )>2的解集为________.【答案】 1 (1,2)∪(10,+∞)【解析】 f (1)=2e 0=2,f (f (1))=f (2)=log 3(4-1)=1.当x <2时,f (x )>2即ex -1>1=e 0,∴x >1,∴1<x <2.当x ≥2时,f (x )>2即为log 3(x 2-1)>2=log 332,∴x 2>10,即x >10或x <-10,∴x >10.【新高考创新预测】17.(多选题)已知定义域内的函数f (x )满足:f (f (x ))-x >0恒成立,则f (x )的解析式不可能是( )A.f (x )=2 019xB.f (x )=e xC.f (x )=x 2D.f (x )=lg 1+x 2 【答案】 ACD【解析】A 中,f (f (x ))=f ⎝ ⎛⎭⎪⎫2 109x =x (x ≠0)恒成立, 所以f (f (x ))-x >0不恒成立,A 正确;B 中,因为e x >x ,所以ee x >e x >x ,所以f (f (x ))=ee x>x 恒成立,B 错误;C 中,f (f (x ))=x 4=x ,此方程有x =0或x =1两个根,所以f (f (x ))-x >0不恒成立,C 正确;D 中,x =0时,f (f (x ))=x 成立,所以f (f (x ))-x >0不恒成立,D 正确.。
2025届高考数学一轮总复习第3章函数与基本初等函数第1节函数的概念及其表示新人教A版
解析 因为f(x)=
故选D.
C.5
D.4
- + 1, < 0,
2=4,
所以f(-1)=-(-1)+1=2,所以f(f(-1))=f(2)=2
选择恰当的方法.
3.通过具体实例,了解简单的分段函数,并能简单应用.
目录索引
1 强基础 固本增分
知识梳理
1.函数的概念
一般地,设A,B是非空的 实数集
,如果对于集合A中
的 任意一个数x ,按照某种确定的对应关系f,在集合B
概念
中都有 唯一 确定的数y和它对应,那么就称f:A→B为
从集合A到集合B的一个函数
2 0232,相当于1个x值对应两个y值,不符合函数定义,即A错误;对于B选项,
取x=0和x=π,有f(g(0))=f(0)=0,f(g(π))=f(0)=π2,不符合函数定义,所以B
错误;对于 C 选项,若 f(2x-1)=x
+1
+1 2
+1 2
,令 t=2x-1,得 x= ,则 f(t)=( ) ,即 f(x)=( ) ,
选BCD.
考点二函数的定义域
例 2(1)(2024·江西赣州模拟)若函数 f(x-1)的定义域为[-2,3],则函数
f(2x-4)
g(x)= x ቤተ መጻሕፍቲ ባይዱ -4
的定义域为( B )
1
A.[2,3]
1
B.[2,2)∪(2,3]
C.[-1,2)∪(2,4]
D.[-6,2)∪(2,4]
解析 函数 f(x-1)的定义域为[-2,3],所以由-2≤x≤3,得-3≤x-1≤2,故 f(x)的定
√
.
+ 1 > 0,
高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数ⅰ word版含答案
第二章⎪⎪⎪函数的概念与基本初等函数Ⅰ第一节函数及其表示 突破点(一) 函数的定义域基础联通 抓主干知识的“源”与“流”1.函数与映射的概念 函数映射两集合A ,B设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系f :A →B如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A对应f :A →B(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.考点贯通 抓高考命题的“形”与“神”求给定解析式的函数的定义域(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R. (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≠k π+π2,k ∈Z .[例1] y =x -12x-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)D .[-2,0]∪[1,2][解析] 要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2).即函数的定义域是(-2,0)∪[1,2). [答案] C [易错提醒](1)不要对解析式进行化简变形,以免定义域发生变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.求抽象函数的定义域对于抽象函数定义域的求解(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [例2] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.[解析] 由题意得,⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,解得0≤x <1,即g (x )的定义域是[0,1).[答案] [0,1)[易错提醒]函数f [g (x )]的定义域指的是x 的取值范围,而不是g (x )的取值范围.已知函数定义域求参数[例3] 若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4][解析] 由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0,解得0<m ≤4. 综上可得:0≤m ≤4. [答案] D[方法技巧]已知函数定义域求参数的思想方法已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.基础联通 抓主干知识的“源”与“流” 1.[考点一]函数y =x ln(2-x )的定义域为( ) A .(0,2) B .[0,2) C .(0,1]D .[0,2]解析:选B 由题意知,x ≥0且2-x >0,解得0≤x <2,故其定义域是[0,2). 2.[考点一](2017·青岛模拟)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1.故选D. 3.[考点一]函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.解析:由题意得⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0,解得⎩⎪⎨⎪⎧0≤x ≤2,x ≠0,即0<x ≤2,故所求函数的定义域为(0,2].答案:(0,2]4.[考点二]已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.解析:∵y =f (x 2-1)的定义域为[-3, 3 ],∴x ∈[-3, 3 ],x 2-1∈[-1,2],∴y =f (x )的定义域为[-1,2].答案:[-1,2]5.[考点三]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.解析:函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a <0,1+2=-b ,1×2=b a ,解得⎩⎪⎨⎪⎧a =-32,b =-3,所以a +b =-32-3=-92.答案:-92突破点(二) 函数的表示方法1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项(1)解析法:一般情况下,必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征;(3)图象法:注意定义域对图象的影响.与x 轴垂直的直线与其最多有一个公共点. 3.函数的三种表示方法的优缺点(2)求x与y的对应关系时需逐个计算,比较繁杂列表法能鲜明地显示自变量与函数值之间的数量关系只能列出部分自变量及其对应的函数值,难以反映函数变化的全貌图象法形象直观,能清晰地呈现函数的增减变化、点的对称关系、最大(小)值等性质作出的图象是近似的、局部的,且根据图象确定的函数值往往有误差考点贯通抓高考命题的“形”与“神”求函数的解析式[典例](1)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.y=12x3-12x2-xB.y=12x3+12x2-3xC.y=14x3-xD.y=14x3+12x2-2x(2)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x ≤0时,f (x )=________.(3)(2017·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________.[解析] (1)设该函数解析式为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .(2)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x+1).(3)用1x代替3f (x )+5f ⎝⎛⎭⎫1x =3x +1中的x ,得3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ∴⎩⎨⎧3f (x )+5f ⎝⎛⎭⎫1x =3x +1, ①3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ②①×3-②×5得f (x )=1516x -916x +18(x ≠0).[答案] (1)A (2)-12x (x +1) (3)f (x )=1516x -916x +18(x ≠0)[易错提醒]1.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x x -1,则f (x )=________. 解析:在f (x )=2f ⎝⎛⎭⎫1x x -1中,用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x -1,将f ⎝⎛⎭⎫1x =2f (x )1x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中,求得f (x )=23x +13(x >0).答案:23x +13(x >0) 2.函数f (x )满足2f (x )+f (-x )=2x ,则f (x )=________.解析:由题意知⎩⎪⎨⎪⎧2f (x )+f (-x )=2x ,2f (-x )+f (x )=-2x ,解得f (x )=2x . 答案:2x3.已知f (x +1)=x +2x ,求f (x )的解析式. 解:设t =x +1,则x =(t -1)2,t ≥1,代入原式有 f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. 解:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.5.已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. 解:由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.突破点(三) 分段函数基础联通 抓主干知识的“源”与“流”1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 考点贯通 抓高考命题的“形”与“神”分段函数求值[例1] (1)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12D.32(2)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( ) A.14 B.⎝⎛⎭⎫12错误!未找到引用源。
高考第一轮复习——函数的图象及其变换(理科)
一、学习目标:1. 了解函数图象的基本变换,能画出简单的函数图象。
(一次函数、二次函数、初等函数等)2. 认识函数图象,并能根据函数图象理解函数的性质。
3. 能利用函数图象解决简单的问题。
二、重点、难点:重点:作图→识图→用图难点:函数图象的应用三、考点分析:函数图象是新课标高考命题的重点之一,考查的题型多以选择、填空题出现。
根据新课标高考知识点的要求:只要求掌握对简单的函数图象的认识、应用等。
通过对函数图象这一知识点的考查,进一步考查学生分析问题、解决问题的能力及数形结合的思想方法。
知识网络结构:知识要点解析:(一)作图:1. 一般作图方法:(列表、描点、连线)确定函数定义域、化简函数解析式、讨论函数性质、画出函数图象。
2. 变换作图(1)平移变换:函数)0y的图象可由函数)f(xfxy=的图象向左(a>0)或向右(a<0)(),(≠+a=a平移|a|个单位得到。
(此平移过程中:函数的值域不变)函数)0y的图象可由函数)f(xxfy=的图象向上(b>0)或向下(b<0)(≠(,)+b=b平移|b|个单位得到。
(此平移过程中:函数的定义域不变)(2)对称变换函数)(x f y -=的图象可由函数)(x f y =的图象作关于x 轴对称变换得到。
函数)(x f y -=的图象可由函数)(x f y =的图象作关于y 轴对称变换得到。
函数)(x f y --=的图象可由函数)(x f y =的图象作关于原点对称变换得到。
函数)(1x fy -=的图象可由函数)(x f y =的图象作关于直线y =x 对称变换得到。
函数|)(|x f y =的图象可通过作函数)(x f y =的图象,然后把x 轴下方的图象翻折到x 轴的上方,其余部分不变得到。
函数|)(|x f y =的图象可由函数)(x f y =的图象在y 轴右边的部分及该部分关于y 轴对称的部分组成。
(3)伸缩变换:函数)10(),(≠>=A A x Af y 且的图象可由函数)(x f y =的图象上的各点纵坐标伸长(A >1)或缩短(0<A <1)原来的A 倍得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 函数的基本性质挖命题【考情探究】分析解读 1.能够证明函数在给定区间上的单调性;求函数的单调区间;利用单调性求函数的最值(值域)、比较大小及求参数的取值范围.2.函数奇偶性的判断及应用是高考的热点,常与函数的单调性、周期性、对称性、最值综合考查.3.要强化函数性质的应用意识,熟练掌握利用性质求最值等相关问题.4.本节内容在高考中多以选择题、填空题的形式考查函数的奇偶性与周期性,分值为5分左右,属于中低档题;与不等式、方程等结合,以解答题的形式考查函数的单调性,分值为12分左右,属于中档题.破考点【考点集训】考点一函数的单调性及最值1.(2018广东省际名校(茂名)联考(二),4)设函数f(x)在R上为增函数,则下列结论一定正确的是( )A.y=在R上为减函数B.y=|f(x)|在R上为增函数C.y=-在R上为增函数D.y=-f(x)在R上为减函数答案D2.(2018河南高三联考,4)已知函数f(x)=x+-(a>0)的最小值为2,则实数a=( )A.2B.4C.8D.16答案B3.(2017山东济宁3月模拟,15)若函数f(x)=--(a>0且a≠1)在R上单调递减,则实数a的取值范围是.答案考点二函数的奇偶性1.(2018江西赣州十四县(市)下学期期中,4)设f(x)为定义在R上的奇函数,当x≥0时, f(x)=3x-7x+2b(b为常数),则f(-2)=( )A.6B.-6C.4D.-4答案A2.(2018河北石家庄一模,6)已知奇函数f(x)在x>0时单调递增,且f(1)=0,若f(x-1)>0,则x的取值范围为( )A.{x|0<x<1或x>2}B.{x|x<0或x>2}C.{x|x<0或x>3}D.{x|x<-1或x>1}答案A考点三函数的周期性1.(2018安徽宣城第二次调研,11)定义在R上的奇函数f(x)满足f(x+2)=-f(x),且在[0,1]上是减函数,则有( )A.f<f-<fB.f<f-<fC.f<f<f-D.f-<f<f答案C2.(2018上海崇明二模,9)设f(x)是定义在R上以2为周期的偶函数,当x∈[0,1]时, f(x)=log2(x+1),则函数f(x)在[1,2]上的解析式是.答案f(x)=log2(3-x)炼技法【方法集训】方法1 判断函数单调性的方法1.(2018湖北荆州一模,3)下列函数是奇函数且在定义域内是增函数的是( )A.y=e xB.y=tan xC.y=x3-xD.y=ln-答案D2.(2018辽宁部分重点中学协作体模拟,10)函数f(x)=---,若a=f-,b=f(ln2),c=f,则有( )A.c>b>aB.b>a>cC.c>a>bD.b>c>a答案D方法2 判断函数奇偶性的一般方法1.(2017广东深圳一模,8)已知f(x)=-,g(x)=|x-2|,则下列结论正确的是( )A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)·g(x)是奇函数C.h(x)=-是偶函数D.h(x)=-是奇函数答案D2.(2018河南郑州第二次质量预测,9)已知y=f(x)满足f(x+1)+f(-x+1)=2,则以下四个选项一定正确的是( )A.f(x-1)+1是偶函数B.f(-x+1)-1是奇函数C.f(x+1)+1是偶函数D.f(x+1)-1是奇函数答案D方法3 函数值域的求解方法1.(2017河北唐山二模,7)函数y=-,x∈(m,n]的最小值为0,则m的取值范围是( )A.(1,2)B.(-1,2)C.[1,2)D.[-1,2)答案D2.(2018河南郑州一模,11)若函数y=-在{x|1≤|x|≤4,x∈R}上的最大值为M,最小值为m,则M-m=( )A. B.2C. D.答案A过专题【五年高考】A组统一命题·课标卷题组考点一函数的单调性及最值1.(2017课标Ⅰ,5,5分)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]答案D2.(2014课标Ⅱ,15,5分)已知偶函数f(x)在[0,+∞)上单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是.答案(-1,3)考点二函数的奇偶性与周期性1.(2018课标Ⅱ,11,5分)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)= ( )A.-50B.0C.2D.50答案C2.(2014课标Ⅰ,3,5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数答案C3.(2015课标Ⅰ,13,5分)若函数f(x)=xln(x+为偶函数,则a= .答案1B组自主命题·省(区、市)卷题组考点一函数的单调性及最值1.(2017北京,5,5分)已知函数f(x)=3x-,则f(x)( )A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数答案A2.(2016天津,13,5分)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-),则a的取值范围是.答案考点二函数的奇偶性与周期性1.(2017天津,6,5分)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( )A.a<b<cB.c<b<aC.b<a<cD.b<c<a答案C2.(2016山东,9,5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>时,f=f-.则f(6)=( )A.-2B.-1C.0D.23.(2016四川,14,5分)已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f -+f(1)= .答案-2C组教师专用题组考点一函数的单调性及最值1.(2014北京,2,5分)下列函数中,在区间(0,+∞)上为增函数的是( )A.y=B.y=(x-1)2C.y=2-xD.y=log0.5(x+1)答案A2.(2014安徽,9,5分)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为( )A.5或8B.-1或5C.-1或-4D.-4或8答案D考点二函数的奇偶性与周期性1.(2015福建,2,5分)下列函数为奇函数的是( )A.y=B.y=|sin x|C.y=cos xD.y=e x-e-x答案D2.(2014安徽,6,5分)设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x.当0≤x<π时,f(x)=0,则f=( )A. B. C.0D.-答案A3.(2014湖南,3,5分)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=( )A.-3B.-1C.1D.34.(2016江苏,11,5分)设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=--其中a∈R.若f-=f,则f(5a)的值是.答案-【三年模拟】一、选择题(每小题5分,共45分)1.(2019届山东师范大学附中第二次模拟考试,10)函数f(x)是R上的偶函数,且f(x+1)=-f(x),若f(x)在[-1,0]上单调递减,则函数f(x)在[3,5]上是( )A.增函数B.减函数C.先增后减的函数D.先减后增的函数答案D2.(2019届广东汕头达濠华侨中学、东厦中学第一次联考,11)已知函数f(x)是R上的奇函数,∀x∈(0,+∞)都有f(x+2)=-f(x)且当x∈(0,1]时,f(x)=2x+1,则f(2017)+f(2018)的值为( )A.1B.2C.3D.4答案C3.(2018河南洛阳第一次统考,3)若函数同时满足下列两个条件,则称该函数为“优美函数”:(1)∀x∈R,都有f(-x)+f(x)=0;(2)∀x1,x2∈R,且x1≠x2,都有--<0.①f(x)=sin x;②f(x)=-2x3;③f(x)=1-x;④f(x)=ln(+x),以上四个函数中,“优美函数”的个数是( )A.0B.1C.2D.3答案B4.(2018福建福安一中测试,8)已知f(x)=-,若f(a)=,则f(-a)=( )A. B.-C. D.-答案C5.(2018广东佛山一模,7)已知f(x)=2x+为奇函数,g(x)=bx-log2(4x+1)为偶函数,则f(ab)=( )A. B. C.- D.-答案D6.(2018齐鲁名校教科研协作体山东、湖北部分重点中学高考冲刺模拟,6)已知定义在R上的函数f(x)在[1,+∞)上单调递减,且f(x+1)是偶函数,不等式f(m+2)≥f(x-1)对任意的x∈[-1,0]恒成立,则实数m的取值范围是( )A.[-3,1]B.[-4,2]C.(-∞,-3]∪[1,+∞)D.(-∞,-4]∪[2,+∞)答案A7.(2017安徽安庆二模,10)定义在R上的奇函数f(x)满足:f(x+1)=f(x-1),且当-1<x<0时, f(x)=2x-1,则f(log220)等于( )A. B.-C.-D.答案D8.(2018河南郑州一模,10)已知定义在R上的奇函数f(x)满足f(x+2e)=-f(x)(其中e=2.7182…),且在区间[e,2e]上是减函数,令a=,b=,c=,则f(a),f(b),f(c)的大小关系(用不等号连接)为( )A.f(b)>f(a)>f(c)B.f(b)>f(c)>f(a)C.f(a)>f(b)>f(c)D.f(a)>f(c)>f(b)答案A9.(2018山西山大附中等晋豫名校第四次调研,11)若∀x,y∈R,有f(x+y)=f(x)+f(y)-3,则函数g(x)=+f(x)在[-2017,2017]上的最大值与最小值的和为( )A.4B.6C.9D.12答案B二、填空题(每小题5分,共15分),若f(a)=-4,则f(-a)的值为.10.(2019届天津和平期末,13)已知函数f(x)=--答案411.(2019届北京师范大学附中期中考试,14)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-2ax+a,其中a∈R.①f-= ;②若f(x)的值域是R,则a的取值范围是.答案①-②(-∞,0]∪[1,+∞)<0, 12.(2019届云南曲靖第一中学质量监测(三),15)已知函数f(x),∀x1,x2∈R,且x1≠x2,满足--并且f(x)的图象经过点A(3,7),点B(-1,1),则不等式|f(x)-4|<3的解集是.答案{x|-1<x<3}。