简述活性炭吸附技术在水处理中的应用

合集下载

活性炭在水处理中的应用

活性炭在水处理中的应用

活性炭在水处理中的应用一、前言水是人类生活不可或缺的资源,同时也是人类健康和工业生产的关键因素。

然而,随着经济的发展和人口的增加,水污染日益严重成为人类面临的一个严峻问题。

活性炭作为一种有效的水处理材料,其应用越来越广泛,在提高水处理效果、减少污染物排放、保护水资源等方面都具有重要的意义。

本文将结合国内外文献和实际案例,介绍活性炭在水处理中的应用及其优缺点。

二、活性炭概述活性炭(Activated Carbon,简称AC)是一种多孔性的吸附材料,主要由可燃材料制成,如木材、竹材、果壳、煤炭等,通过炭化和活化过程制成。

活性炭的特点是孔隙分布均匀、孔径范围广、比表面积大、吸附性强,广泛应用于气体、液体、固体的吸附和分离。

活性炭根据其制备方法和应用领域的不同,可以分为硬质活性炭、软质活性炭和粉状活性炭等。

三、活性炭在水处理中的应用1. 活性炭在净水中的应用活性炭在水处理中的主要应用是净水。

由于活性炭具有高效的吸附能力和强大的污染物去除能力,能够有效地去除水中的有机物、气味、色度等污染物,提高水的质量,保护人类健康。

在一些传统的净水工艺中,如混凝沉淀法、过滤等方法,都很难去除水中难以分解的有机物和微量污染物,而活性炭能够大量吸附这些污染物,保证水的净化效果。

同时,活性炭还可以去除水中的异味和氯气,提高水的饮用性。

2. 活性炭在废水处理中的应用除了在净水方面使用,活性炭在废水处理中同样具有广泛的应用。

废水中含有各种有机化合物、氨氮、重金属等高浓度的污染物,废水排放对环境造成严重的污染。

有些高难度的废水处理过程需要借助活性炭的强大吸附能力,才能获得最终的净化效果。

(1)废水的预处理活性炭对废水中的悬浮物、泥沙、颗粒污染物等能够快速吸附,提高废水的澄清度和透明度,为后续的处理提供了便利条件。

(2)去除有机物活性炭能够高效地去除废水中的各种有机物。

可以通过物理吸附和化学反应两种方式来去除有机物。

依据处理工艺的不同,活性炭可以直接置于废水中,或者通过传统的反应槽、活性池、氧化池、生物反应器等方式来进行废水处理。

活性炭的吸附机理及其在水处理方面的应用

活性炭的吸附机理及其在水处理方面的应用

活性炭的吸附机理及其在水处理方面的应用活性炭的吸附机理及其在水处理方面的应用概述:活性炭是一种具有高度多孔结构和巨大比表面积的吸附剂,广泛用于水处理领域。

本文将介绍活性炭的吸附机理,并详细讨论其在水处理方面的应用。

第一部分:吸附机理1. 活性炭的结构和性质活性炭是一种碳质材料,其独特的结构和性质使其具有良好的吸附能力。

活性炭通常由煤炭、木材等原料经过活化制得,具有高度多孔结构和巨大比表面积。

这些孔道和表面可提供大量的吸附位点,能够将溶质从水中去除。

2. 吸附机理活性炭的吸附机理涉及物理吸附和化学吸附两个过程。

物理吸附是通过静电力、范德华力和亲疏水性等力,将溶质吸附在活性炭表面或孔道上。

化学吸附则是通过活性炭表面的化学反应,使溶质与活性炭形成化学键。

这两种吸附机制共同作用,使得活性炭对多种污染物具有高效的吸附能力。

第二部分:活性炭在水处理中的应用1. 活性炭对有机物的吸附活性炭对有机物的吸附能力较强,可用于去除水中的有机污染物。

有机物分子往往含有芳香环、功能团等结构,这些结构与活性炭表面产生相互作用力,使有机物分子与活性炭形成吸附层,从而有效去除水中的有机污染物。

2. 活性炭对重金属的吸附活性炭对重金属离子的吸附也较为有效,可用于去除水中的重金属污染物。

重金属离子常呈阳离子形式存在于水中,而活性炭具有一定的负电性,能够与重金属离子发生静电吸附。

此外,活性炭中的表面官能团也能与重金属形成化学键,进一步增强吸附能力。

3. 活性炭对微污染物的吸附活性炭对水中的微污染物,如农药残留、药物和个人护理产品中的物质等,也有良好的吸附能力。

这些微污染物由于其量低浓度高和稳定性差的特点,对水质构成了较大的威胁。

活性炭的高比表面积和多孔结构为吸附这些微污染物提供了良好的条件。

第三部分:活性炭水处理技术的发展和挑战1. 发展趋势随着水污染问题日益严重,活性炭在水处理领域的应用得到了广泛关注和应用。

新型活性炭材料的开发,如改性活性炭、纳米活性炭等,将进一步提高吸附效率和性能。

活性炭吸附技术在水处理中的应用

活性炭吸附技术在水处理中的应用

溶剂中的溶解度和溶质与吸附剂之间的范德华力、化学键力和静电引力。

通常上,活性炭交互作用下是一个非常复杂的过程。

它是一种通过物理吸附、化学吸附、交换吸附、氧化、催化氧化和活性炭还原去除水中污染物的水处理方法。

3 活性炭在水处理方面的应用3.1 活性炭吸附法应用于吸附重金属离子活性炭对重金属离子的吸附除表面积大、孔道发达、空腔容量大外,还取决于活性炭表面的稳定性和可调节性,活性炭表面含氧和含氮官能团的存在可以改变重金属的化学性质。

因现代化工业不断的发展中,大量的重金属离子不断地从工业废水中分散出来,存有极大的安全隐患。

对此,利用活性炭的结构密度特点,可以不断地优化活性炭链接式的密度结构,从而加快对重金属离子的吸附、分解[3]。

近年来,多元化的行业不断新起,工业技术优化中不断产生重金属离子的废水。

活性炭身上有很多的化学、物理性质,可以有效地去除重金属离子,对其进行吸附。

且在重金属离子中六价铬的金属最多,其以各种不一样的形式存在于水中,其结构中所含的pH 值也是不同的。

而且,活性炭微孔结构可以很好地对重金属的阴离子进行吸附,从而改性重金属中含有的元素,使其表面吸附的负价铁、其他正价金属会发生交互作用,尤其是六价铬,会对铬产生化学吸附,从而去除水中的微量铬。

改性活性炭可用于电镀废水中铬的处理,吸附水可达到国家排放标准。

3.2 活性炭吸附法应用于吸附水中有机物活性炭对水中有机污染物具有良好的吸附能力。

活性炭的亲水性优于亲油性炭。

因此,活性炭对含油废水的吸附一般是采用其他方法吸附油脂,然后再用活性炭进行二次吸附。

用这种方法吸附后的废水含油量将降低到0.1~0.2mg/L 。

二是吸附含重金属离子的污水。

例如酚类化合物、苯类化合物、石油和石油产品等具有很强的吸附能力,还可以去除生物法pH 和其它化学法难以去除的有机污染物、除草剂、杀虫剂、农药等异味;亚甲基蓝表面活性剂、合成染料、含有胺类、合成洗涤剂及多元化合成的有机物同时也具备吸附能力,可有效去除水中杂质[4]。

活性炭吸附技术在水处理中的应用

活性炭吸附技术在水处理中的应用

活性炭吸附技术在水处理中的应用活性炭吸附技术在水处理中的应用引言:随着人口的增加和工业化的快速发展,水污染问题日益严重。

而水是人类生存的基本需求,水质的安全与否直接关系到人们的健康和生活质量。

因此,水处理成为当今社会重要的环保问题之一。

活性炭吸附技术作为一种有效的水处理方法,被广泛应用于水污染控制和治理中。

本文将从活性炭吸附技术的原理、应用领域以及未来发展等方面进行探讨。

一、活性炭吸附技术的原理活性炭是一种具有高吸附性能的材料,其主要成分是碳元素。

活性炭的表面积极大,可提供大量的吸附位点,因此能够吸附溶液中的各种有机和无机物质。

活性炭吸附的基本原理是通过表面的微孔和介孔结构,以及吸附性能强的活性炭微观孔隙对水中的杂质进行吸附和分离。

一般来说,活性炭吸附的过程可分为物理吸附和化学吸附两种方式。

物理吸附是指杂质与活性炭之间的静电作用和凡德华力等非化学性吸附力作用,而化学吸附则是指活性炭表面的官能团与杂质之间形成化学键。

二、活性炭吸附技术的应用领域1.水处理中的有机污染物去除:活性炭吸附技术广泛应用于饮用水、工业废水和城市污水处理中,能有效去除水中的有机污染物,如有机溶剂、农药、臭味物质等。

活性炭能够与这些有机物发生吸附作用,有效减少水中有机物质的含量,提高水质。

2.重金属离子的吸附:活性炭对重金属离子具有良好的吸附能力,能够吸附水中的汞、铅、铬等重金属离子。

这些重金属离子对人体健康有害,如果直接排放到环境中,会对生态系统产生不可逆转的损害。

因此,利用活性炭吸附技术对重金属离子进行去除是一种非常有效的方法。

3.药物残留的去除:随着人们在医疗和畜牧业中广泛应用的药物,药物残留问题日益突出。

这些药物残留可能对人类和生态系统造成潜在的风险。

通过活性炭吸附技术,可以有效去除水中的药物残留物,保障饮用水和水环境的安全。

三、活性炭吸附技术的未来发展尽管活性炭吸附技术已经在水处理中取得了显著效果,但仍然存在一些挑战和限制。

常用吸附材料在水处理中的应用

常用吸附材料在水处理中的应用

常用吸附材料在水处理中的应用一、引言水是人类生活中必不可少的资源,而水的污染问题也日益严重。

为了保护水资源的可持续利用和保障人类的健康,水处理技术变得越来越重要。

吸附是一种常用的水处理方法,常用吸附材料在水处理中发挥着重要的作用。

本文将介绍几种常用吸附材料及其在水处理中的应用。

二、活性炭活性炭是一种广泛应用于水处理领域的吸附材料。

活性炭具有高度的孔隙结构,能够有效吸附水中的有机物、重金属离子和氯等污染物。

活性炭广泛应用于水处理中的饮用水净化、废水处理和污水处理等领域。

例如,活性炭可以用于去除水中的异味和色素,净化水质;同时,活性炭还可以去除水中的有机污染物和重金属离子,提高水的安全性和质量。

三、分子筛分子筛是一种常用的吸附材料,具有特殊的孔隙结构和选择性吸附性能。

分子筛可以吸附水中的氨氮、硝酸盐和磷酸盐等污染物。

分子筛广泛应用于饮用水处理、工业废水处理和水体修复等领域。

例如,分子筛可以用于去除水中的氨氮,减少水体中的氮污染;同时,分子筛还可以去除水中的磷酸盐,防止水体富营养化。

四、活性氧化铝活性氧化铝是一种具有高度活性表面的吸附材料,可以有效吸附水中的重金属离子和有机污染物。

活性氧化铝广泛应用于工业废水处理和饮用水净化等领域。

例如,活性氧化铝可以用于去除水中的铅、镉等重金属离子,净化水质;同时,活性氧化铝还可以去除水中的有机污染物,提高水的安全性和质量。

五、离子交换树脂离子交换树脂是一种能够吸附和释放离子的吸附材料,可以用于去除水中的离子污染物。

离子交换树脂广泛应用于饮用水处理、工业废水处理和废水回用等领域。

例如,离子交换树脂可以用于去除水中的硝酸盐、铵盐和钠盐等离子,净化水质;同时,离子交换树脂还可以用于水的软化和脱盐等处理过程。

六、纳米材料纳米材料是一种具有特殊结构和性质的吸附材料,具有较大的比表面积和高度的吸附能力。

纳米材料广泛应用于水处理中的污染物去除和水体修复等领域。

例如,纳米材料可以用于去除水中的重金属离子和有机污染物,提高水的净化效果;同时,纳米材料还可以用于水体修复,恢复水体的生态平衡。

地下水处理技术

地下水处理技术

地下水处理技术地下水是地球上重要的自然资源之一,在人类的日常生活中扮演着重要的角色。

然而,由于各种原因,地下水受到了严重的污染和威胁。

因此,地下水处理技术成为了当今社会亟需解决的问题之一。

本文将探讨一些常见的地下水处理技术以及它们的应用。

1. 砂滤池砂滤池是一种常见的地下水处理技术,通过使用不同粒径的砂纳滤材料来去除水中的悬浮物和微生物。

它的工作原理是通过水通过砂层时的物理和化学反应,将悬浮物和微生物捕获在砂粒中,从而净化水质。

砂滤池通常用于处理地下水中的铁、锰和沉积物等污染物。

2. 活性炭吸附活性炭吸附是一种常用的地下水处理技术,适用于去除水中的有机物和重金属等污染物。

活性炭的特殊结构使其具有较大的比表面积,因此具有良好的吸附性能。

当水通过活性炭时,污染物会被吸附在其表面,从而达到净化水质的目的。

活性炭吸附技术广泛应用于地下水处理和饮用水净化过程中。

3. 反渗透技术反渗透技术是一种常见且高效的地下水处理技术,通过半透膜来去除水中的溶解性固体和溶解性盐等污染物。

反渗透膜具有非常小的孔径,可以阻止溶质和水通过,只允许水分子通过。

因此,当水通过反渗透膜时,污染物会被滞留在膜表面,从而实现水质的净化。

反渗透技术广泛应用于饮用水处理、海水淡化和工业废水处理等领域。

4. 生物降解技术生物降解技术是一种利用微生物来降解水中有机污染物的地下水处理技术。

这种技术主要通过培养特定的微生物群落,利用微生物的代谢活动来降解有机污染物。

生物降解技术可以有效地去除水中的有机物,对于处理含有高浓度有机污染物的地下水特别有效。

总结:地下水处理技术在保护环境和人类健康方面起着重要的作用。

本文介绍了一些常见的地下水处理技术,包括砂滤池、活性炭吸附、反渗透技术和生物降解技术。

每种技术都有其特定的应用领域和优势,可以根据实际需求选择合适的技术进行地下水处理。

通过不断研究和创新,相信未来会有更多高效、环保的地下水处理技术应运而生,为我们提供更清洁的地下水资源。

吸附在水处理中的应用

吸附在水处理中的应用

吸附在水处理中的应用吸附在水处理中的应用可真是个有趣的话题呢!你知道吗?吸附就像是水处理里的小魔法。

比如说活性炭,它就像是一个超级海绵,不过这个海绵吸的不是水,而是水里那些讨厌的杂质。

活性炭的表面有好多好多小孔隙,这些孔隙就像一个个小房间,那些脏东西啊,像重金属离子啦、有机污染物之类的,就会被活性炭的这些小房间给“邀请”进去住下,然后水就变得干净多啦。

在日常生活里,我们有时候会觉得家里的水有股怪味,这时候要是有个简单的活性炭吸附过滤器就很棒。

就像给家里的水做了个小净化SPA,让水变得好喝又健康。

还有一些特殊的吸附材料,它们在工业水处理里可是大功臣。

像一些工厂排出来的废水,里面可能有各种各样的污染物,要是直接排放到环境里,那可就糟糕透顶了。

但是这些吸附材料就像英勇的小卫士,把那些污染物紧紧抓住,不让它们跑出去为害。

想象一下,那些在水里乱窜的污染物就像调皮捣蛋的小怪兽,而吸附材料就是专门收服它们的超级英雄。

比如说在处理含染料的废水时,吸附材料能把那些花花绿绿的染料分子吸附住,让废水不再是五颜六色的脏水,而是逐渐变回清澈透明的样子。

而且呀,吸附在水处理中的应用还在不断发展呢。

科学家们就像一群聪明的魔法师,不断寻找和创造出更厉害的吸附材料。

他们会想啊,这个材料能不能吸附更多种类的污染物呢?能不能吸附得更快呢?就像在打造一个完美的水处理小助手。

在一些农村地区,可能没有特别高级的水处理设备,但是简单的吸附技术也能派上大用场。

比如用一些天然的吸附材料,像黏土之类的,对当地的水源进行初步的净化。

虽然不能像大型处理厂那么彻底,但是也能让村民们喝到更干净一点的水,这也是很有意义的呀。

总之,吸附在水处理中的应用就像一个充满活力和希望的小世界,不断给我们带来惊喜,让我们的水变得更干净,让我们的生活变得更美好。

活性炭在水处理方面的作用

活性炭在水处理方面的作用

活性炭在水处理方面的作用导读工业废水中含有多种有毒物质和难以生物降解的污染物,甚至含有有机物剧毒成分。

随着工业的迅猛发展,工业废水的排放量越来越大,对我们的生态环境造成了较大的影响,甚至对人类的生存造成了威胁。

活性炭具有表面积大、吸附能力强、吸附效率高等优势,在工业废水处理方面已经对其进行较多的应用。

Ol活性炭的性质活性炭属于一种经过特殊处理的炭,其表面具有无数的细小孔隙,孔隙的直径一般在2- 50nm之间,所以活性炭具有较大的表面积,每1克的活性炭,其表面积就能够达到500m2, 部分活性炭甚至能够达到1500m2,目前对于活性炭的全部应用,几乎全部以此特征为基础。

活性炭进行吸附的主要方式是物理吸附,并且活性炭的颗粒越小,其孔隙的扩散速度就越快, 该活性炭的吸附能力也就越强。

活性炭外观为暗黑色,具有良好吸附性能,化学性质稳定,可耐强酸及强碱,能经受水浸、高温,密度比水小,是多孔的疏水性吸附剂。

02活性炭的作用机理活性炭产生吸附的主要原因是固体表面上的原子力场不饱和,有表面能,因而可以吸附某些分子以降低表面能。

固体从溶液中吸附溶质分子后,溶液的浓度将降低,而被吸附的分子将在固体表面上浓聚。

活性炭的吸附特性不仅与细孔构造和分布情况有关,而且还与活性炭的表面化学性质有关。

活性炭本身是非极性的,其含量及电荷随原料组成、活化条件不同而异,低温活化(< 500。

C)的碳可以生成表面酸性氧化物,水解后可以放出H+o由于活性炭表面有微弱的极性使其他极性溶质竞争活性炭表面的活性位置,导致非极性溶质吸附量的降低,而对水中某些金属离子交换吸附或络合反应,提高了活性炭对金属离子的吸附效果。

总之,在吸附过程中,真正决定吸附能力的是微孔结构。

全部比表面几乎都是微孔构成的。

粗孔和过渡孔分别起着粗、细吸附通道作用,它们的存在和分布在相当程度上影响了吸附和脱附速率。

止匕外,活性炭吸附性质还受活性炭表面化学性质影响。

03活性炭的水处理上的作用1、降低CoD活性炭针对污水中难以生物降解去除的有机物进行脱除,如芳香烧、含氯/有毒酚类等,有着良好的吸附效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述活性炭吸附技术在水处理中的应用
活性炭作为一种比较特殊的碳质材料,以其发达的孔隙结构、巨大的比表面积、良好的稳定性质、很强的吸附能力以及优异的再生能力,被广泛应用于环保等各个领域。

活性炭吸附技术在水处理中的应用:
1.活性炭的物理化学特性
1.1活性炭(AC)
活性炭是常用的一种非极性吸附剂,性能稳定,抗腐蚀,故应用广泛。

它是一种具有吸附性能的炭基物质的总称。

把含碳的有机物质加热炭化,去除全部挥发物,在经药品(如ZnCl2等)或水蒸汽活化,制成多孔性炭素结构吸附剂。

活性炭有粉状和粒状两种,工业上多采用粒状活性炭。

由于原料和制法的不同,其孔径分布不同,一般分为:碳分子筛,孔径在10×10-10m以下;活性焦炭,孔径20×10-10以下;活性炭,孔径在50×10-10m以下。

1.2活性炭纤维(ACF)
活性炭纤维是一种新型吸附功能材料,它以木质素、纤维素、酚醛纤维、聚丙烯纤维、沥青纤维等为原料,经炭化和活化制的。

与活性炭相比较特有的微孔结构,更高的外表面和比表面积以及多种官能团,平均细孔直径也更小,通过物理吸附以及物理化学吸附等方式在废水、废气处理、水净化领域得到了广泛应用。

纤维状活性炭微孔体积占总孔体积90%左右,其微孔孔径大部分在
1nm左右,没有过度孔和大孔。

比表面积一般为600~1200m2/g,甚至可达3000m2/g。

活性炭纤维脱附再生速率快,时间短,且其性能不变,这一点优于活性炭。

与活性炭一样,活性炭纤维吸附时无选择性,主要用于吸附有机污染物,一般用于炼油厂综合废水处理。

2.活性炭的吸附作用与吸附形式
2.1活性炭处理
指利用活性炭作为吸附剂和催化剂载体的有关过程。

主要应用于生活饮用水深度净化,城市污水处理,工业废水的处理。

2.2吸附作用与吸附形式
将溶质聚集在固体表面的作用称为吸附作用。

活性炭表面具有吸附作用。

吸附可以看成是一种表面现象,所以吸附与活性炭的表面特性有密切关系。

活性炭有巨大的内部表面和孔隙分布。

它的外表面积和表面氧化状态的作用是较小的,外表面是提供与内孔穴相通的许多通道。

表面氧化物的主要作用是使疏水性的炭骨架具有亲水性,使活性炭对许多极性和非极性化合物具有亲和力。

活性炭具有表面能,其吸附作用是构成孔洞壁表面的碳原子受力不平衡所致,从而引起表面吸附作用。

3活性炭吸附技术在水处理中的应用
3.1活性炭吸附技术应用于水处理中的概况
实践证明,活性炭是用于水和废水处理较为理想的一种吸附剂,研究活性炭用于水和废水处理已有十年的历史。

近二十年来,由于活性炭的再生问题得到了较为满意的解决,同时,活性炭的制造成本也有了
降低,活性炭吸附技术在国内外才逐渐推广使用,目前使用*多的是三级废水处理和给水除臭。

20世纪60年代初,欧美各国开始大量使用活性炭吸附水源净化的有效手段。

我国20世纪60年代已将活性炭用于二硫化碳废水处理,自70年代初以来,粒状活性炭处理工业废水,不论在技术上,还是在应用范围和处理规模上都发展很快。

在炼油废水、印染废水、化工废水、电镀废水等处理都已在生产上形成较大规模的应用,并取得了满意的效果。

3.2活性炭在废水处理中的应用
活性炭有不同的形态,目前在水处理上仍以粒状和粉状两种为主。

粉状炭用于间歇吸附,即按一定的比例,把粉状炭加到被处理的水中,混合均匀,藉沉淀或过滤将炭、水分离,这种方法也称为静态吸附。

粒状炭用于连续吸附,被处理的水通过炭吸附床,使水得到净化,这种方法在形式上与固定床完全一样,也称为动态吸附。

能被活性炭吸附的物质很多,包括有机的或无机的,离子型的或非离子型的,此外,活性炭的表面还能起催化作用,所以可用于许多不同的场合。

活性炭对水中溶解性的有机物有很强的吸附能力,对去除水中绝大部分有机污染物质都有效果,如酚和苯类化合物、石油以及其他许多的人工合成的有机物。

水中有些有机污染物质难于用生化或氧化法去除,但易被活性炭吸附。

由于活性炭吸附处理的成本比其他一般处理方法要高。

所以当水中有机物的浓度较高时,应采用其他较为经济的方法先将有机物的含量降低到一定程度在进行处理。

在废水处理中,通常是将活性炭吸附工艺
放在生化吹的后面,称为活性炭三级废水处理,进一步减少废水中有机物的含量,去除那些微生物不易分解的污染物,使经过活性炭处理后的水能达到排放标准的要求,或使处理后的水能回到生产工艺中重复使用,达到生产用水封闭循环的目的。

活性炭吸附有机物的能力是十分大的,在三级废水处理中,每克活性炭吸附的COD可达到本身质量的百分之几十。

在废水处理厂中增加了三级废水处理能使BOD的去除效果达到95%。

活性炭以物理吸附的形式去除水中的有机物,吸附前后被吸附的性质并未变化,如果能采用适当的解吸方法,还能回收水中有价值的物质。

如果把粉状活性炭投入爆气设备中,炭粉与微生物形成了一种凝聚体,可使处理效果超过一般的二级生物处理法,出水水质接近于三级处理。

此外,还能够使活性炭污泥变得缜密和结实,降低出水浑浊度,提高二级处理的水力负荷。

粉状炭可以间断地加入,对于现有的二级处理厂可在不增加三级处理投资的情况下,提高处理效果。

3.3粉状活性炭在给水处理中的应用
粉状活性炭在给水处理中的应用已有70年左右的历史。

自从美国首次使用粉状活性炭去除氯酚产生的臭味以后,活性炭成为给水处理中去除色、嗅、味和有机物的有效方法之一。

国外对粉状活性炭吸附性能做的大量研究表明:粉状活性炭对三氯苯酚、农*中所含有机物,三卤甲烷及前体物以及消毒副产物三氯醋酸、二氯醋酸和二卤乙腈等均有很好的吸附效果,对色、嗅、味的去除效果已得到公认。

粉状活性炭在欧洲、美国、日本等地的应用很普遍,美国20世纪80
年代初期每年在给水处理中所用粉状活性炭约25万吨,且有逐年增加的趋势。

我国20世纪60年代末期开始注意污染水源的除嗅、除味问题。

粉末活性炭在上海、哈尔滨、合肥、广州都曾试用过。

粉状活性炭应用的主要特点是设备投资低,价格便宜,吸附速度快,对短期及突发性水质污染适应能力强。

自来水厂中应用粉状活性炭吸附技术,是一项非常有前景的技术。

但是,由于未能很好地解决该技术在应用方面存在的局限性,仍然难以发挥粉状活性炭技术的优势,导致该技术应用不能达到实际效果。

在自来水厂中的应用必须解决理论依据和应用两大类问题。

理论上应解决的问题主要有以下几个方面:
1.根据水厂原水的水质状况,特别是有机物分子量的分布状况,确定投加粉状活性炭的炭种和不同炭种活性炭对有机物去除效果的影响;
2.根据水厂的实际水质情况,确定合适、合理的投加点及投加方式,以解决粉状活性炭与混凝剂吸附竞争的矛盾,提高粉状活性炭使用效率。

相关文档
最新文档