高中数学核心知识点常考题型精析:立体几何(文)

合集下载

高中立体几何知识点及经典题型

高中立体几何知识点及经典题型

高中立体几何知识点及经典题型立体几何是高中数学中的重要部分,它研究了在三维空间内的几何形体。

本文将介绍高中立体几何的主要知识点和经典题型。

知识点以下是高中立体几何的主要知识点:1. 空间几何基础:点、线、面的概念及性质。

2. 参数方程和一般式方程:用参数或方程表示几何体的方法。

3. 立体图形的投影:点、直线、平面在投影中的表现形式。

4. 空间几何中的平行与垂直:直线、平面之间的平行关系及垂直关系。

5. 直线与面的位置关系:直线与平面之间的交点、垂线、倾斜角等概念。

6. 空间角的性质:二面角、棱锥、棱台等形体的角度关系。

7. 空间几何中的直线及曲线:空间中直线与曲线的方程及性质。

8. 空间立体角:球、球台、球扇等形体的角度关系。

9. 空间的切线:曲线在空间中的切线方程及其性质。

10. 空间的幂:圆、球及其他形体的幂的概念和性质。

经典题型以下是高中立体几何的经典题型:1. 求直线与平面的位置关系问题:例如,给定一直线和一个平面,求它们之间的交点、垂直线、倾斜角等。

2. 求空间角的问题:例如,给定两个平面的交线,求二面角的度数。

3. 求直线与曲线的位置关系问题:例如,给定一条直线和一个曲面,求它们之间的位置关系。

4. 求切线和法平面的问题:例如,给定一个曲线和一个点,求曲线在该点处的切线方程及法平面方程。

5. 求空间形体的幂问题:例如,给定一个球和一个平面,求平面关于球的幂及其性质。

以上只是一些经典的立体几何题型,通过解答这些题目,可以加深对立体几何知识的理解和运用。

希望本文对高中立体几何知识点和题型的介绍能够帮助到你。

祝你在学习立体几何时取得好成绩!。

2024年高考数学立体几何知识点总结(2篇)

2024年高考数学立体几何知识点总结(2篇)

2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。

在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。

下面是对2024年高考数学立体几何知识点的总结,供考生参考。

一、空间几何1. 空间几何中的点、线、面的概念和性质。

点是没有长度、宽度和高度的,只有位置的大小,用字母表示。

线是由一组无限多个点构成的集合,用两个点的字母表示。

面是由无限多条线构成的,这些线共面且没有相交或平行关系。

2. 空间几何中的垂直、平行等概念和性质。

两条线在同一平面内,如果相交角为90°,则称两线垂直。

两条线没有相交关系,称两线平行。

3. 点到直线的距离的计算。

点到直线的距离等于该点在直线上的正交投影点的距离。

二、立体图形的面积与体积1. 立体图形的分类和性质。

立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。

各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。

2. 立体图形的面积计算。

(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。

(2)圆柱体的侧面积计算公式:S = 2πrh。

(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。

(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。

(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。

3. 立体图形的体积计算。

(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。

(2)圆柱体的体积计算公式:V = πr²h。

(3)圆锥体的体积计算公式:V = 1/3πr²h。

(4)棱柱体的体积计算公式:V = ph。

(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h 为高。

三、立体几何的一般理论1. 点、线、面的位置关系。

在空间中,点、线、面可以相互相交、平行、垂直等。

(完整版)空间立体几何高考知识点总结及经典题目,推荐文档

(完整版)空间立体几何高考知识点总结及经典题目,推荐文档

空间立体几何知识点归纳:1. 空间几何体的类型(1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。

(2) 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

如圆柱、圆锥、圆台。

2.一些特殊的空间几何体直棱柱:侧棱垂直底面的棱柱。

正棱柱:底面多边形是正多边形的直棱柱。

正棱锥:底面是正多边形且所有侧棱相等的棱锥。

正四面体:所有棱都相等的四棱锥。

3.空间几何体的表面积公式棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 : 圆锥的表面积:222S rl r ππ=+2Srl r ππ=+圆台的表面积: 球的表面积:22S rl r Rl R ππππ=+++24S R π=4.空间几何体的体积公式柱体的体积 : 锥体的体积 : VS h =⨯底13V S h =⨯底台体的体积 : 球体的体积: 1)3V S S h =++⨯上上(343V R π=5.空间几何体的三视图 正视图:光线从几何体的前面向后面正投影,得到的投影图。

侧视图:光线从几何体的左边向右边正投影,得到的投影图。

俯视图:光线从几何体的上面向右边正投影,得到的投影图。

画三视图的原则:长对正、宽相等、高平齐。

即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。

6 .空间中点、直线、平面之间的位置关系(1)直线与直线的位置关系:相交;平行;异面。

(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。

(3)平面与平面的位置关系:平行;相交。

7. 空间中点、直线、平面的位置关系的判断(1)线线平行的判断:①平行公理:平行于同一直线的两直线平行。

②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

④线面垂直的性质定理:垂直于同一平面的两直线平行。

高中数学立体几何核心考点与学习方法

高中数学立体几何核心考点与学习方法

高中数学立体几何核心考点与学习方法高中数学立体几何一直是数学的一大难点。

因为它要求学生有立体感,在一个平面内把几何图形的立体感想象出来。

同时,立体几何题目也是高考数学核心考点,那么,有什么技巧呢?小编整理了相关资料,希望能帮助到您。

高中数学立体几何核心考点1、平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2、空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算.(3)二面角①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.3、空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

高中数学必修2立体几何常考题型:棱柱、棱锥、棱台的结构特征

高中数学必修2立体几何常考题型:棱柱、棱锥、棱台的结构特征

棱柱、棱锥、棱台的结构特征【知识梳理】1.空间几何体题型一、棱柱的结构特征【例1】下列关于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[解析](1)错误,棱柱的底面不一定是平行四边形;(2)错误,棱柱的底面可以是三角形;(3)正确,由棱柱的定义易知;(4)正确,棱柱可以被平行于底面的平面截成两个棱柱,所以说法正确的序号是(3)(4).[答案](3)(4)【类题通法】有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.【对点训练】1.下列四个命题中,假命题为()A.棱柱中两个互相平行的平面一定是棱柱的底面B.棱柱的各个侧面都是平行四边形C.棱柱的两底面是全等的多边形D.棱柱的面中,至少有两个面互相平行解析:选A A错,正六棱柱的两个相对的侧面互相平行,但不是棱柱的底面,B、C、D 是正确的.题型二、棱锥、棱台的结构特征【例2】下列关于棱锥、棱台的说法:(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由四个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥,其中正确说法的序号是________.[解析](1)错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台;(2)正确,棱台的侧面一定是梯形,而不是平行四边形;(3)正确,由棱锥的定义知棱锥的侧面只能是三角形;(4)正确,由四个面围成的封闭图形只能是三棱锥;(5)错误,如图所示四棱锥被平面截成的两部分都是棱锥.[答案](2)(3)(4)【类题通法】判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:2.试判断下列说法正确与否:①由六个面围成的封闭图形只能是五棱锥;②两个底面平行且相似,其余各面都是梯形的多面体是棱台.解:①不正确,由六个面围成的封闭图形有可能是四棱柱;②不正确,两个底面平行且相似,其余各面都是梯形的多面体.侧棱不一定相交于一点,所以不一定是棱台.题型三、多面体的平面展开图【例3】如图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.【类题通法】1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.【对点训练】3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1B.2C.快D.乐解析:选B由题意,将正方体的展开图还原成正方体,1与乐相对,2与2相对,0与快相对,所以下面是2.【练习反馈】1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:选D由棱柱定义知,①③为棱柱.2.下列图形经过折叠可以围成一个棱柱的是()解析:选D A、B、C中底面边数与侧面个数不一致,故不能围成棱柱.3.棱锥最少有________个面.答案:44.下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).答案:①③④⑥⑤5.(1)三棱锥、四棱锥、十五棱锥分别有多少条棱?多少个面?(2)有没有一个多棱锥,其棱数是2 012?若有,求出有多少个面;若没有,说明理由.解:(1)三棱锥有6条棱、4个面;四棱锥有8条棱、5个面;十五棱锥有30条棱、16个面.(2)设n棱锥的棱数是2 012,则2n=2012,所以n=1 006,1 006棱锥的棱数是2 012,它有1 007个面.。

高中数学立体几何核心考点与学习方法

高中数学立体几何核心考点与学习方法

高中数学立体几何核心考点与学习方法高中数学中,立体几何是一个重要的考点。

立体几何不仅仅是考试中的一道题目,更是在生活中应用广泛的数学知识,可以帮助我们更好地理解和把握三维空间。

本文将介绍高中数学立体几何的核心考点和学习方法,希望能对学习数学的同学有所帮助。

一、核心考点1. 立体图形的基本概念立体图形是由平面图形组成的,因此要理解立体图形的基本概念,必须要先掌握平面图形的概念。

以此类推,如棱、边、角、面等。

2. 立体图形的投影立体图形的投影是立体几何中非常重要的考点,需要掌握正视投影、侧视投影和俯视投影等概念。

3. 空间位置关系在三维空间中,点、直线、平面之间的关系是立体几何的重要考点。

需要掌握相交、平行、垂直等空间位置关系。

4. 立体图形的计算在立体几何中,计算依然很重要。

例如几何体的表面积、体积等概念需要熟练掌握,并能够应用到题目中。

二、学习方法1. 掌握基本知识要学好立体几何,首先需要掌握基本知识。

例如,对于熟悉平面几何的学生,他们应当能够意识到其实立体几何也是由平面几何所组成的。

掌握立体几何基本概念后,才能够更好地理解和掌握后续知识。

2. 齐头并进在学习立体几何时,平面几何也是需要同时学习的。

因为立体几何的知识点和平面几何关联紧密,如果平面几何不扎实,就会影响到对立体几何的掌握。

3. 多做习题做习题是学习立体几何的重要方法之一。

多做相关习题,能够帮助我们更好地理解基本概念和核心考点,并且能够提高解题能力。

但是,做习题时要注意时间和方法,不要为了做题而做题,一定要有方法和技巧。

4. 小结法则在学习过程中,要经常做出小结,以便能够及时回顾所学的知识,将知识点串连起来,形成更完整的知识模型。

这也能够帮助我们在日后的考试中更好地应对各种题目。

5. 应用到生活中学习立体几何不仅是为了应付考试,更是要应用到生活中。

例如,设计建筑、制作玩具等都需要运用立体几何知识。

将学到的知识与实际生活相结合,能够提高学习立体几何的热情和兴趣。

高中数学立体几何题型详解

高中数学立体几何题型详解

高中数学立体几何题型详解立体几何是高中数学中的一个重要部分,涉及到空间中的各种几何体及其性质。

在考试中,常常会出现与立体几何相关的题目,考察学生对几何体的认识和应用能力。

本文将针对高中数学中常见的立体几何题型进行详细解析,帮助学生和家长更好地理解和应对这类题目。

一、平行四边形的体积计算平行四边形是一个常见的几何体,其体积的计算是高中数学中的基础知识。

考虑一个平行四边形的底面积为S,高为h的立体,其体积V可以通过公式V=S*h来计算。

例如,给定一个底边长为a,高为h的平行四边形,求其体积。

根据公式V=S*h,我们可以得到V=a*h,其中a为底边长,h为高。

这个公式的应用非常广泛,可以解决各种与平行四边形体积相关的问题。

二、正方体的表面积计算正方体是另一个常见的几何体,其表面积的计算也是高中数学中的基础知识。

一个边长为a的正方体,其表面积S可以通过公式S=6*a^2来计算。

例如,给定一个边长为a的正方体,求其表面积。

根据公式S=6*a^2,我们可以得到S=6*a*a=6*a^2,其中a为边长。

这个公式的应用非常广泛,可以解决各种与正方体表面积相关的问题。

三、立方体的体积和表面积计算立方体是一种特殊的正方体,其体积和表面积的计算也是高中数学中的基础知识。

一个边长为a的立方体,其体积V可以通过公式V=a^3来计算,表面积S可以通过公式S=6*a^2来计算。

例如,给定一个边长为a的立方体,求其体积和表面积。

根据公式V=a^3和S=6*a^2,我们可以得到V=a*a*a=a^3,S=6*a*a=6*a^2,其中a为边长。

这两个公式的应用非常广泛,可以解决各种与立方体体积和表面积相关的问题。

四、棱柱的体积和表面积计算棱柱是另一个常见的几何体,其体积和表面积的计算也是高中数学中的基础知识。

一个底面积为S,高为h的棱柱,其体积V可以通过公式V=S*h来计算,表面积S可以通过公式S=S底+S侧来计算,其中S底为底面积,S侧为侧面积。

高一数学立体几何知识点以及例题

高一数学立体几何知识点以及例题

高一数学立体几何知识点以及例题一、知识概述《高一数学立体几何知识点》①基本定义:立体几何是研究三维空间内点、线、面及其相互关系的几何学科。

②重要程度:在高一数学中,立体几何是不可或缺的一部分,它不仅能够帮助学生建立空间想象力,还为后续的数学学习打下基础。

在高考中,立体几何也是常考题型之一,对学生的逻辑思维和空间索取能力有很高的要求。

③前置知识:要求熟练掌握平面几何的基本概念、直线与平面的位置关系等。

④应用价值:立体几何在建筑设计、工程制图等多个领域都有广泛应用。

比如,建筑师需要运用立体几何知识来设计建筑的三维结构,确保安全性和美观性。

二、知识体系①知识图谱:立体几何位于高一数学的第二学期,与平面几何、三角函数等内容紧密相连。

②关联知识:立体几何的知识与平面解析几何、向量等有密切联系。

比如,我们可以用向量来解决立体几何中的角度和距离问题。

③重难点分析:重点在于点、线、面的位置关系及性质,难点在于如何通过逻辑推理和计算解决复杂问题。

需要较强的空间想象力和数学运算能力。

④考点分析:在考试中,立体几何通常会以解答题的形式出现,涉及空间几何体的表面积和体积计算、几何体中的点线面位置关系判断等。

三、详细讲解【方法技能类】①基本步骤:解决立体几何问题的基本步骤是先明确问题要求,然后识别并分析题目中的几何体和空间关系,最后通过逻辑推理或数学计算得出答案。

②关键要点:关键在于建立正确的空间模型,理解并掌握点、线、面的基本性质及位置关系。

③常见误区:很多学生在处理立体几何问题时,容易忽略空间中的隐藏条件,如异面直线的角度关系等。

④技巧提示:在做题时,可以尝试利用一些辅助线或面来帮助理解和解决问题,比如过某点作垂线、平行线等。

四、典型例题例题一《空间坐标系的建立》题目内容:在空间直角坐标系中,点A的坐标为(1,2,3),求与点A在同一直线上且距离为2的点B的坐标。

解题思路:首先确定直线AB的方向向量,然后根据向量长度的关系求解B点的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学核心知识点常考题型精析:立体几何(文)一、空间距离的计算1.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.12.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.3.已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD=()A.2B.C.D.14.如图,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=,AA1=3,E为CD上一点,DE=1,EC=3(1)证明:BE⊥平面BB1C1C;(2)求点B1到平面EA1C1的距离.5.如图,四棱锥P﹣ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(Ⅰ)求证:PC⊥AD;(Ⅱ)在棱PB上是否存在一点Q,使得A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由;(Ⅲ)求点D到平面PAM的距离.6.如图,在四棱锥S﹣ABCD中,底面ABCD是平行四边形,侧SBC是正三角形,点E是SB的中点,且AE⊥平面ABC.(1)证明:SD∥平面ACE;(2)若AB⊥AS,BC=2,求点S到平面ABC的距离.二、空间角的计算7.已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.8.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.9.正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.10.已知三棱锥S﹣ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为()A.B.C.D.11.长方体ABCD﹣A1B1C1D1中,已知二面角A1﹣BD﹣A的大小为,若空间有一条直线l与直线CC1,所成的角为,则直线l与平面A1BD所成角的取值范围是()A.[,]B.[,]C.[,]D.[0,]12.已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π13.已知正方体ABCD﹣A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成的角的余弦值为_________.14.如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是_________.15.如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:AC⊥平面BCDE;(Ⅱ)求直线AE与平面ABC所成的角的正切值.16.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.17.如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.18.如图,已知二面角α﹣MN﹣β的大小为60°,菱形ABCD在面β内,A、B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥面α,垂足为O.(Ⅰ)证明:AB⊥平面ODE;(Ⅱ)求异面直线BC与OD所成角的余弦值.19.如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点.(Ⅰ)求异面直线CC1和AB的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣B1的平面角的余弦值.21.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2.(1)求异面直线PA与BC所成角的正切值;(2)证明:平面PDC⊥平面ABCD;(3)求直线PB与平面ABCD所成角的正弦值.22.设平面ABCD⊥平面ABEF,AB∥CD,AB∥EF,∠BAF=∠ABC=90°,BC=CD=AF=EF=1,AB=2.(Ⅰ)证明:CE∥平面ADF;(Ⅱ)求直线DF与平面BDE所成角的正弦值.23.如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.(Ⅰ)求证:A1D⊥平面BB1C1C;(Ⅱ)求证:AB1∥平面A1DC;(Ⅲ)求二面角D﹣A1C﹣A的余弦值.24.如图,在四棱锥S﹣ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,点M是SD的中点,AN⊥SC,且交SC于点N.(Ⅰ)求证:SB∥平面ACM;(Ⅱ)求证:直线SC⊥平面AMN;(Ⅲ)求直线CM与平面AMN所成角的余弦值.三、空间几何体的结构、三视图25.一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.26.一个多面体的三视图如图所示,则该多面体的体积为()A.B.C.6D.727.一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱28.如图,三棱锥V﹣ABC的底面是以B为直角顶点的等腰直角三角形,侧面VAC与底面ABC垂直,已知其正视图的面积为2,则其侧视图的面积是()A.B.C.2D.329.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A.B.C.D.30.已知三棱锥的正视图与俯视图如图,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为()A.B.C.D.31.某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球的表面积为_________.32.一个几何体的三视图如图所示(单位:m),则该几何体的体积为_________m3.33.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为_________.34.已知四棱锥P﹣ABCD的三视图如图所示,△PBC为正三角形.(Ⅰ)在平面PCD中作一条与底面ABCD平行的直线,并说明理由;(Ⅱ)求证:AC⊥平面PAB;(Ⅲ)求三棱锥A﹣PBC的高.四、空间几何体的计算问题35.正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A ﹣B1DC1的体积为()A.3B.C.1D.36.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π37.半径为R的球O的直径AB垂直于平面a,垂足为B,△BCD是平面a内边长为R 的正三角形,线段AC、AD分别与球面交于点M、N,那么M、N两点间的球面距离是()A.B.C.D.38.若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为_________(结果用反三角函数值表示)39.一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为_________.40.已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为_________.41.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是_________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)42.表面积为6π的圆柱,当其体积最大时,该圆柱的高与底面半径的比为_________.43.如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.44.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.45.如图,三棱柱ABC﹣A1B1C1中,AA1⊥BC,A1B⊥BB1,(1)求证:A1C⊥CC1;(2)若AB=2,AC=,BC=,问AA1为何值时,三棱柱ABC﹣A1B1C1体积最大,并求此最大值.46.如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.47.如图,在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1(Ⅰ)求四面体ABCD的体积;(Ⅱ)求二面角C﹣AB﹣D的平面角的正切值.48.如图所示,某传动装置由两个陀螺T1,T2组成,陀螺之间没有滑动.每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的,且T1,T2的轴相互垂直,它们相接触的直线与T2的轴所成角θ=arctan.若陀螺T2中圆锥的底面半径为r(r>0).(1)求陀螺T2的体积;(2)当陀螺T2转动一圈时,陀螺T1中圆锥底面圆周上一点P转动到点P1,求P与P1之间的距离.49.如图,在三棱柱ABC﹣A1B1C1中,A1B⊥平面ABC,AB⊥AC.(Ⅰ)求证:AC⊥BB1;(Ⅱ)若P是棱B1C1的中点,求平面PAB将三棱柱ABC﹣A1B1C1分成的两部分体积之比.50.如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC;(3)若BC=4,AB=20,求三棱锥D﹣BCM的体积.五、空间的线面位置关系51.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面52.如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.M N与CC1垂直B.M N与AC垂直C.M N与BD平行D.M N与A1B1平行53.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.A B∥m B.A C⊥m C.A C⊥βD.A B∥β54.已知m,n为异面直线,m⊂平面α,n⊂平面β,α∩β=l,则直线l()A.与m,n 都相交B.至多与m,n 中的一条相交C.与m,n 都不相交D.与m,n 至少一条相交55.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,m⊥α,则l⊥α;②若m∥l,m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则l∥m.其中正确命题的个数是()A.1B.2C.3D.456.在空间中,有如下四个命题:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面α内有不共线的三个点到平面β距离相等,则α∥β;④过平面α的一条斜线有且只有一个平面与平面α垂直.其中正确的两个命题是()A.①、③B.②、④C.①、④D.②、③57.如图,已知三棱柱ABC﹣A1B1C1.(Ⅰ)若M、N分别是AB,A1C的中点,求证:MN∥平面BCC1B1.(Ⅱ)若三棱柱ABC﹣A1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B 上的动点,当PA++PC最小时,求证:B1B⊥平面APC.58.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分别在线段B1C1和AC上,B1E=3EC1,AC=BC=CC1=4(1)求证:BC⊥AC1;(2)试探究满足EF∥平面A1ABB1的点F的位置,并给出证明.七、折叠、展开问题59.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为,则四面体ABCD的外接球的表面积为_________.60.在△ABC中(如图1),已知AC=BC=2,∠ACB=120°,D,E,F分别为AB,AC,BC的中点,EF交CD于G,把△ADC沿CD折成如图2所示的三棱锥C﹣A1BD.(1)求证:E1F∥平面A1BD;(2)若二面角A1﹣CD﹣B为直二面角,求直线A1F与平面BCD所成的角.高中数学核心知识点常考题型精析:立体几何(文)参考答案与试题解析一、空间距离的计算1.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.1考点:直线与平面所成的角.专题:计算题.分析:先利用线面平行的判定定理证明直线C1A∥平面BDE,再将线面距离转化为点面距离,最后利用等体积法求点面距离即可解答:解:如图:连接AC,交BD于O,在三角形CC1A中,易证OE∥C1A,从而C1A∥平面BDE,∴直线AC1与平面BED的距离即为点A到平面BED的距离,设为h,在三棱锥E﹣ABD中,V E﹣ABD=S△ABD×EC=××2×2×=在三棱锥A﹣BDE中,BD=2,BE=,DE=,∴S△EBD=×2×=2∴V A﹣BDE=×S△EBD×h=×2×h=∴h=1故选 D点评:本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥的体积计算方法,等体积法求点面距离的技巧,属基础题2.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.考点:点、线、面间的距离计算;棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;(Ⅱ)通过AP=1,AD=,三棱锥P﹣ABD的体积V=,求出AB,作AH⊥PB角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可.解答:解:(Ⅰ)证明:设BD与AC 的交点为O,连结EO,∵ABCD是矩形,∴O为BD的中点∵E为PD的中点,∴EO∥PB.EO⊂平面AEC,PB⊄平面AEC∴PB∥平面AEC;(Ⅱ)∵AP=1,AD=,三棱锥P﹣ABD的体积V=,∴V==,∴AB=,作AH⊥PB交PB于H,由题意可知BC⊥平面PAB∴BC⊥AH,故AH⊥平面PBC.又A到平面PBC的距离.点评:本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.3.已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD=()A.2B.C.D.1考点:点、线、面间的距离计算.专题:计算题.分析:根据线面垂直的判定与性质,可得AC⊥CB,△ACB为直角三角形,利用勾股定理可得BC的值;进而在Rt△BCD中,由勾股定理可得CD的值,即可得答案.解答:解:根据题意,直二面角α﹣l﹣β,点A∈α,AC⊥l,可得AC⊥面β,则AC⊥CB,△ACB为Rt△,且AB=2,AC=1,由勾股定理可得,BC=;在Rt△BCD中,BC=,BD=1,由勾股定理可得,CD=;故选C.点评:本题考查两点间距离的计算,计算时,一般要把空间图形转化为平面图形,进而构造直角三角形,在直角三角形中,利用勾股定理计算求解.4.如图,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=,AA1=3,E 为CD上一点,DE=1,EC=3(1)证明:BE⊥平面BB1C1C;(2)求点B1到平面EA1C1的距离.考点:点、线、面间的距离计算;直线与平面垂直的判定.专题:计算题;空间位置关系与距离.分析:(1)过点B作BF⊥CD于F点,算出BF、EF、FC的长,从而在△BCE中算出BE、BC、CE的长,由勾股定理的逆定理得BE⊥BC,结合BE⊥BB1利用线面垂直的判定定理,可证出BE⊥平面BB1C1C;(2)根据AA1⊥平面A1B1C1,算出三棱锥E﹣A1B1C1的体积V=.根据线面垂直的性质和勾股定理,算出A1C1=EC1=3、A1E=2,从而得到等腰△A1EC1的面积=3,设B1到平面EA1C1的距离为d,可得三棱锥B1﹣A1C1E的体积V=××d=d,从而得到=d,由此即可解出点B1到平面EA1C1的距离.解答:解:(1)过点B作BF⊥CD于F点,则:BF=AD=,EF=AB=DE=1,FC=EC﹣EF=3﹣1=2在Rt△BEF中,BE==;在Rt△BCF中,BC==因此,△BCE中可得BE2+BC2=9=CE2∴∠CBE=90°,可得BE⊥BC,∵BB1⊥平面ABCD,BE⊂平面ABCD,∴BE⊥BB1,又∵BC、BB1是平面BB1C1C内的相交直线,∴BE⊥平面BB1C1C;(2)∵AA1⊥平面A1B1C1,得AA1是三棱锥E﹣A1B1C1的高线∴三棱锥E﹣A1B1C1的体积V=×AA1×=在Rt△A1D1C1中,A1C1==3同理可得EC1==3,A1E==2∴等腰△A1EC1的底边A1C1上的中线等于=,可得=×2×=3设点B1到平面EA1C1的距离为d,则三棱锥B1﹣A1C1E的体积为V=××d=d,可得=d,解之得d=即点B1到平面EA1C1的距离为.点评:本题在直四棱柱中求证线面垂直,并求点到平面的距离.着重考查了线面垂直的判定与性质、勾股定理与其逆定理和利用等积转换的方法求点到平面的距离等知识,属于中档题.5.如图,四棱锥P﹣ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(Ⅰ)求证:PC⊥AD;(Ⅱ)在棱PB上是否存在一点Q,使得A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由;(Ⅲ)求点D到平面PAM的距离.考点:点、线、面间的距离计算;空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:(Ⅰ)法一:取AD中点O,连结OP,OC,AC,依题意可知△PAD,△ACD均为正三角形,从而AD⊥平面POC,由此能证明PC⊥AD.法二:连结AC,依题意可知△PAD,△ACD均为正三角形,从而AM⊥PC,DM⊥PC,由此能证明PC⊥AD.(Ⅱ)当点Q为棱PB的中点时,A,Q,M,D四点共面.取棱PB的中点Q,连结QM,QA,由已知得QM∥BC,由此能证明A,Q,M,D四点共面.(Ⅲ)点D到平面PAM的距离即点D到平面PAC的距离,由已知得得PO为三棱锥P ﹣ACD的体高,由V D﹣PAC=V P﹣ACD,能求出点D到平面PAM的距离.解答:(Ⅰ)证法一:取AD中点O,连结OP,OC,AC,依题意可知△PAD,△ACD均为正三角形,所以OC⊥AD,OP⊥AD,又OC∩OP=O,OC⊂平面POC,OP⊂平面POC,所以AD⊥平面POC,又PC⊂平面POC,所以PC⊥AD.证法二:连结AC,依题意可知△PAD,△ACD均为正三角形,又M为PC的中点,所以AM⊥PC,DM⊥PC,又AM∩DM=M,AM⊂平面AMD,DM⊂平面AMD,所以PC⊥平面AMD,又AD⊂平面AMD,所以PC⊥AD.(Ⅱ)解:当点Q为棱PB的中点时,A,Q,M,D四点共面,证明如下:取棱PB的中点Q,连结QM,QA,又M为PC的中点,所以QM∥BC,在菱形ABCD中AD∥BC,所以QM∥AD,所以A,Q,M,D四点共面.(Ⅲ)解:点D到平面PAM的距离即点D到平面PAC的距离,由(Ⅰ)可知PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD,即PO为三棱锥P﹣ACD的体高.在Rt△POC中,,,在△PAC中,PA=AC=2,,边PC上的高AM=,所以△PAC的面积,设点D到平面PAC的距离为h,由V D﹣PAC=V P﹣ACD得,又,所以,解得,所以点D到平面PAM的距离为.点评:本题考查异面直线垂直的证明,考查四点共面的判断与求法,考查点到平面的距离的求法,解题时要注意空间思维能力的培养.6.如图,在四棱锥S﹣ABCD中,底面ABCD是平行四边形,侧SBC是正三角形,点E是SB 的中点,且AE⊥平面ABC.(1)证明:SD∥平面ACE;(2)若AB⊥AS,BC=2,求点S到平面ABC的距离.考点:点、线、面间的距离计算;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)连结BD,交于点F,由已知得EF∥SD,由此能证明SD∥平面ACE.(2)由已知得AB=,AE=1,AE⊥CE,CE=,AC=2,由V S﹣ABC=V A﹣SBC,能求出点S到平面ABC的距离.解答:(1)证明:连结BD,交于点F,∵ABCD是平行四边形,∴F是BD的中点,又∵点E是SB的中点,∴EF∥SD,∵SD⊄平面ACE,EF⊂平面ACE,∴SD∥平面ACE.(2)解:∵AB⊥AS,BC=2,且点E是SB的中点,∴AB=,AE=1,又∵AE⊥平面SBC,CE⊂平面SBC,∴AE⊥CE,∴侧面SBC是正三角形,∴CE=,∴AC==2,∴△ABC是底边为,腰为2的等腰三角形.∴=,设点S一平面ABC的距离为h,由V S﹣ABC=V A﹣SBC,得,∴h===.点评:本题考查空间点、线、面的位置,考查线线平行、线面平行、线线垂直与线面垂直,考查等积法求几何体的体积,考查空间想象能力、运算能力、逻辑推理能力及化归思想等.二、空间角的计算7.已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.考点:用空间向量求直线与平面的夹角;直线与平面所成的角.专题:综合题;压轴题;空间角;空间向量及应用.分析:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,设=(x,y,z)为平面BDC1的一个法向量,CD与平面BDC1所成角为θ,则sinθ=||,在空间坐标系下求出向量坐标,代入计算即可.解答:解:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,如下图所示:则D(0,0,2),C1(0,1,0),B(1,1,2),C(0,1,2),=(1,1,0),=(0,1,﹣2),=(0,1,0),设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(﹣2,2,1),设CD与平面BDC1所成角为θ,则sinθ=||=,故选A.点评:本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.8.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.考点:异面直线及其所成的角.专题:空间角.分析:由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE与BD所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD 所成角的余弦值.解答:解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.点评:本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.9.正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.考点:直线与平面所成的角;点、线、面间的距离计算.专题:空间角.分析:正方体上下底面中心的连线平行于BB1,上下底面中心的连线与平面ACD1所成角,即为BB1与平面ACD1所成角,直角三角形中,利用边角关系求出此角的余弦值.解答:解:如图,设上下底面的中心分别为O1,O,设正方体的棱长等于1,则O1O与平面ACD1所成角就是BB1与平面ACD1所成角,即∠O1OD1,直角三角形OO1D1中,cos∠O1OD1===,故选D.点评:本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D到平面ACD1的距离是解决本题的关键所在,这也是转化思想的具体体现,属于中档题.10.已知三棱锥S﹣ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为()A.B.C.D.考点:直线与平面所成的角.专题:计算题.分析:由图,过A作AE垂直于BC交BC于E,连接SE,过A作AF垂直于SE交SE于F,连BF,由题设条件证出∠ABF即所求线面角.由数据求出其正弦值.解答:解:过A作AE垂直于BC交BC于E,连接SE,过A作AF垂直于SE交SE于F,连BF,∵正三角形ABC,∴E为BC中点,∵BC⊥AE,SA⊥BC,∴BC⊥面SAE,∴BC⊥AF,AF⊥SE,∴AF⊥面SBC,∵∠ABF为直线AB与面SBC所成角,由正三角形边长2,∴AE=,AS=3,∴SE=2,AF=,∴sin∠ABF=.故选D.点评:本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角.11.长方体ABCD﹣A1B1C1D1中,已知二面角A1﹣BD﹣A的大小为,若空间有一条直线l 与直线CC1,所成的角为,则直线l与平面A1BD所成角的取值范围是()A.[,]B.[,]C.[,]D.[0,]考点:直线与平面所成的角.专题:空间位置关系与距离.分析:如图所示,过点A作AO⊥BD,连接A1O,由三垂线定理可得BD⊥A1O,则∠AOA1为二面角A1﹣BD﹣A的平面角.把直线l平移到AM,则∠A1AM=∠MAO=.过点A作AP⊥A1O,则AP⊥平面A1BD.利用线面角的定义可得:AM(即直线l)与平面A1BD所成的最大角为∠AMA1.假设,AN与直线OP相交于点N,则AN(即直线l)与平面A1BD所成的最小角为∠ANP.解答:解:如图所示,过点A作AO⊥BD,连接A1O,由三垂线定理可得BD⊥A1O,则∠AOA1为二面角A1﹣BD﹣A的平面角,∴∠AOA1=.把直线l平移到AM,则∠A1AM=∠MAO=.过点A作AP⊥A1O,则AP⊥平面A1BD.∴AM(即直线l)与平面A1BD所成的最大角为∠AMA1=∠MAO+∠MOA==.假设,AN与直线OP相交于点N,则AN(即直线l)与平面A1BD所成的最小角为∠ANP=∠PA1A﹣∠A1AN==.∴直线l与平面A1BD所成角的取值范围是.故选:C.点评:本题考查了二面角的平面角、线面角、三垂线定理、异面直线所成的角,考查了空间想象能力,考查了推理能力与计算能力,属于难题.12.已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π考点:二面角的平面角及求法.专题:计算题;压轴题.分析:先求出圆M的半径,然后根据勾股定理求出求出OM的长,找出二面角的平面角,从而求出ON的长,最后利用垂径定理即可求出圆N的半径,从而求出面积.解答:解:∵圆M的面积为4π∴圆M的半径为2根据勾股定理可知OM=∵过圆心M且与α成60°二面角的平面β截该球面得圆N∴∠OMN=30°,在直角三角形OMN中,ON=∴圆N的半径为则圆的面积为13π故选D点评:本题主要考查了二面角的平面角,以及解三角形知识,同时考查空间想象能力,分析问题解决问题的能力,属于基础题.13.已知正方体ABCD﹣A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成的角的余弦值为.考点:异面直线及其所成的角.专题:计算题;压轴题;数形结合;转化思想.分析:根据题意知AD∥BC,∴∠DAE就是异面直线AE与BC所成角,解三角形即可求得结果.解答:解:连接DE,设AD=2易知AD∥BC,∴∠DAE就是异面直线AE与BC所成角,在△RtADE中,由于DE=,AD=2,可得AE=3∴cos∠DAE==,故答案为:.点评:此题是个基础题.考查异面直线所成角问题,求解方法一般是平移法,转化为平面角问题来解决,体现了数形结合和转化的思想.14.如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M 与DN所成的角的大小是90°.考点:异面直线及其所成的角.专题:计算题.分析:以D为坐标原点,建立空间直角坐标系,利用向量的方法求出与夹角求出异面直线A1M与DN所成的角.解答:解:以D为坐标原点,建立如图所示的空间直角坐标系.设棱长为2,则D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2),=(0,2,1),=(﹣2,1,﹣2)•=0,所以⊥,即A1M⊥DN,异面直线A1M与DN所成的角的大小是90°,故答案为:90°.点评:本题考查空间异面直线的夹角求解,采用了向量的方法.向量的方法能降低空间想象难度,但要注意有关点,向量坐标的准确.否则容易由于计算失误而出错.15.如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:AC⊥平面BCDE;(Ⅱ)求直线AE与平面ABC所成的角的正切值.考点:直线与平面所成的角;直线与平面垂直的判定.专题:空间角.分析:(Ⅰ)如图所示,取DC的中点F,连接BF,可得DF=DC=1=BE,于是四边形BEDF是矩形,在Rt△BCF中,利用勾股定理可得BC==.在△ACB中,再利用勾股定理的逆定理可得AC⊥BC,再利用面面垂直的性质定理即可得出结论.(Ⅱ)过点E作EM⊥CB交CB的延长线于点M,连接AM.由平面ABC⊥平面BCDE,利用面面垂直的性质定理可得:EM⊥平面ACB.因此∠EAM是直线AE与平面ABC所成的角.再利用勾股定理和直角三角形的边角关系即可得出.解答:解:(Ⅰ)如图所示,取DC的中点F,连接BF,则DF=DC=1=BE,∵∠CDE=∠BED=90°,∴BE∥DF,∴四边形BEDF是矩形,∴BF⊥DC,BF=ED=1,在Rt△BCF中,BC==.在△ACB中,∵AB=2,BC=AC=,∴BC2+AC2=AB2,∴AC⊥BC,又平面ABC⊥平面BCDE,∴AC⊥平面BCDE.(Ⅱ)过点E作EM⊥CB交CB的延长线于点M,连接AM.又平面ABC⊥平面BCDE,∴EM⊥平面ACB.∴∠EAM是直线AE与平面ABC所成的角.在Rt△BEM中,EB=1,∠EBM=45°.∴EM==MB.在Rt△ACM中,==.在Rt△AEM中,==.点评:本题综合考查了矩形的判定定理及其性质定理、勾股定理及其逆定理、面面垂直的性质定理、线面角的求法、直角三角形的边角关系等基础知识与基本技能方法,考查了推理能力、辅助线的作法,属于难题.16.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E 是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.考点:用空间向量求直线与平面的夹角;直线与平面垂直的判定;向量语言表述线面的垂直、平行关系.专题:计算题.分析:(I)先由已知建立空间直角坐标系,设D(,b,0),从而写出相关点和相关向量的坐标,利用向量垂直的充要条件,证明PC⊥BE,PC⊥DE,从而利用线面垂直的判定定理证明结论即可;(II)先求平面PAB的法向量,再求平面PBC的法向量,利用两平面垂直的性质,即可求得b的值,最后利用空间向量夹角公式即可求得线面角的正弦值,进而求得线面角解答:解:(I)以A为坐标原点,建立如图空间直角坐标系A﹣xyz,设D(,b,0),则C(2,0,0),P(0,0,2),E(,0,),B(,﹣b,0)∴=(2,0,﹣2),=(,b,),=(,﹣b,)∴•=﹣=0,•=0∴PC⊥BE,PC⊥DE,BE∩DE=E∴PC⊥平面BED(II)=(0,0,2),=(,﹣b,0)设平面PAB的法向量为=(x,y,z),则取=(b,,0)设平面PBC的法向量为=(p,q,r),则取=(1,﹣,)∵平面PAB⊥平面PBC,∴•=b﹣=0.故b=∴=(1,﹣1,),=(﹣,﹣,2)∴cos<,>==设PD与平面PBC所成角为θ,则sinθ=∴θ=30°∴PD与平面PBC所成角的大小为30°点评:本题主要考查了利用空间直角坐标系和空间向量解决立体几何问题的一般方法,线面垂直的判定定理,空间线面角的求法,有一定的运算量,属中档题17.如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.考点:平面与平面之间的位置关系;异面直线及其所成的角.专题:计算题;证明题.分析:(1)欲证DE为异面直线AB1与CD的公垂线,即证DE与异面直线AB1与CD垂直相交即可;(2)将AB1平移到DG,故∠CDG为异面直线AB1与CD的夹角,作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1﹣AC1﹣B1的平面角,在三角形B1KH中求出此角即可.解答:解:(1)连接A1B,记A1B与AB1的交点为F.因为面AA1BB1为正方形,故A1B⊥AB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D为BB1的中点,故DE∥BF,DE⊥AB1.作CG⊥AB,G为垂足,由AC=BC知,G为AB中点.又由底面ABC⊥面AA1B1B.连接DG,则DG∥AB1,故DE⊥DG,由三垂线定理,得DE⊥CD.所以DE为异面直线AB1与CD的公垂线.。

相关文档
最新文档