重复抽样的样本量计算公式
第三章 参数估计

第三章参数估计重点:1.总体参数与统计量2.样本均值与样本比例及其标准误差难点:1.区间估计2.样本量确实定知识点一:总体分布与总体参数统计分析数据的方法包括:描绘统计和推断统计〔第一章〕推断统计是研究如何利用样本数据来推断总体特征的统计学方法,包括参数估计和假设检验两大类。
总体分布是总体中所有观测值所形成的分布。
总体参数是对总体特征的某个概括性的度量。
通常有总体平均数〔μ〕总体方差〔σ2〕总体比例〔π〕知识点二:统计量和抽样分布总体参数是未知的,但可以利用样本信息来推断。
统计量是根据样本数据计算的用于推断总体的某些量,是对样本特征的某个概括性度量。
统计量是样本的函数,如样本均值〔〕、样本方差〔 s2〕、样本比例〔p〕等。
构成统计量的函数中不能包括未知因素。
由于样本是从总体中随机抽取的,样本具有随机性,由样本数据计算出的统计量也就是随机的。
统计量的取值是根据样本而变化的,不同的样本可以计算出不同的统计量值。
[例题·单项选择题]以下为总体参数的是( )a.样本均值b.样本方差c.样本比例d.总体均值答案:d解析:总体参数是对总体特征的某个概括性的度量。
通常有总体平均数、总体方差、总体比例题·判断题:统计量是样本的函数。
答案:正确解析:统计量是样本的函数,如样本均值〔〕、样本方差〔〕、样本比例〔p〕等。
构成统计量的函数中不能包括未知因素。
[例题·判断题]在抽样推断中,作为推断对象的总体和作为观察对象的样本都是确定的、唯一的。
答案:错误解析:作为推断对象的总体是唯一的,但作为观察对象的样本不是唯一的,不同的样本可以计算出不同的统计量值。
〔一〕样本均值的抽样分布设总体共有n个元素,从中随机抽取一个容量为n的样本,在重置抽样时,共有n n种抽法,即可以组成n n不同的样本,在不重复抽样时,共有个可能的样本。
每一个样本都可以计算出一个均值,这些所有可能的抽样均值形成的分布就是样本均值的分布。
统计学课后答案第七八章

6.1 调节一个装瓶机使其对每个瓶子的灌装量均值为盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差盎司的正态分布。
随机抽取由这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量。
试确定样本均值偏离总体均值不超过0.3盎司的概率。
令狐采学解:总体方差知道的情况下,均值的抽样分布服从的正态分布,由正态分布,标准化得到标准正态分布:z=~,因此,样本均值不超过总体均值的概率P为:====21,查标准正态分布表得=0.8159因此,=0.63186.2在练习题6.1中,我们希望样本均值与总体均值的偏差在0.3盎司之内的概率达到0.95,应当抽取多大的样本?解:===6.3 ,,……,表示从标准正态总体中随机抽取的容量,n=6的一个样本,试确定常数b,使得解:由于卡方分布是由标准正态分布的平方和构成的:设Z1,Z2,……,Zn是来自总体N(0,1)的样本,则统计量服从自由度为n的χ分布,记为χ~??χ(n)因此,令,则,那么由概率,可知:b??,查概率表得:b??????6.4 在习题6.1中,假定装瓶机对瓶子的灌装量服从方差的标准正态分布。
假定我们计划随机抽取10个瓶子组成样本,观测每个瓶子的灌装量,得到10个观测值,用这10个观测值我们可以求出样本方差,确定一个合适的范围使得有较大的概率保证S2落入其中是有用的,试求b1,b2,使得解:更加样本方差的抽样分布知识可知,样本统计量:此处,n=10,,所以统计量根据卡方分布的可知:又因为:因此:则:查概率表:=3.325,=19.919,则=0.369,=1.887.1 从一个标准差为5的总体中采用重复抽样方法抽出一个样本容量为40的样本,样本均值为25。
(1)样本均值的抽样标准差等于多少(2)在95%的置信水平下,估计误差是多少?7.2 某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
抽样技术及样本计算方法

随机抽样—分层随机抽样
分层抽样的特点是先将总体按照某种特征 或指标分成几个排斥的又是穷尽的子总体, 或层,然后在每个层内按照随机的方法抽 取元素。其原则是子总体内元素间差异可 能小,而不同子总体间差异大。
例:你调查了100个人,询问他们是否应该早办奥运会,其中 66%的人说“是”。如果你的调查精确度为3%,这也就 是说,如果你对不同的样本展开同样的调查,最后结果 中选“是”的比例会在63%-69%之间。
抽
样
误
抽样误差与样本量关系曲线
差
样本量
抽样误差随着样本量的增加而减少,但当样本 量增加到一定程度之后,样本量的增加对抽样 误差几乎没有影响了。
ห้องสมุดไป่ตู้点:
完成一项普查需要的时间长,可能影响最终得到数据的可 比性;
可能导致高的非抽样误差;
什么是误差
在CSI中,由于各方面因素的作用,调查 结果总会存在误差。通常,调查误差分为 两种主要类型:
抽样误差 非抽样误差
误差=抽样误差+非抽样误差
总的来说,普查不存在抽样误差,但可能 存在较大的非抽样误差;而抽样调查会产 生抽样误差和非抽样误差。
① 由调研人员引起的 ② 由访问员引起的 ③ 由被访者引起的
非抽样误差与样本量的关系
非 抽 样 误 差
样本量
误 差
样本量
抽样方法
随机抽样
1. 简单随机抽样 2. 等距抽样(系统抽样) 3. 分层随机抽样 4. 整群抽样 5. 多级抽样
非随机抽样
1、方便取样;2、判断取样;3、配额取样
误 差
统计学简答题答案

统计学基础(贾俊平)课后简答题第一章1.什么是统计学?统计方法可以分为哪两大类?统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
统计方法可以分为描述统计和分类统计。
2、统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照所采用的计量尺度不同,分为分类数据、顺序数据和数值型数据;按照统计数据的收集方法,分为观测的数据和实验的数据;按照被描述的对象与时间的关系,分为截面数据和时间序列数据。
按计量尺度分时:分类数据中各类别之间是平等的并列关系,各类别之间的顺序是可以任意改变的;顺序数据的类别之间是可以比较顺序的;数值型数据其结果表现为具体的数值。
按收集方法分时:观测数据是在没有对事物进行人为控制的条件下等到的;实验数据的在实验中控制实验对象而收集到的数据。
按被描述的对象与时间关系分时:截面数据所描述的是现象在某一时刻的变化情况;时间序列数据所描述的是现象随时间而变化的情况。
3.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体(数据)的集合样本是从总体中抽取的一部分元素的集合参数是用来描述总体特征的概括性数字度量统计量是用来描述样本特征的概括性数字度量变量是说明现象某种特征的概念。
对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
4.什么是有限总体和无限总体?举例说明。
根据总体所包含的单位数目是否可数可以分为有限总体和无限总体。
总体的范围能够明确确定,而且元素的数目是有限可数的。
比如,由若干个企业构成的总体就是有限总体,一批待检验的灯泡也是有限总体。
无限总体是指总体所包括的元素是无限的,不可数的。
例如,在科学试验中,每一个试验数据可以看作是一个总体的一个元素,而试验可以无限地进行下去,因此由试验数据构成的总体就是一个无限总体。
初级1 -第三章简单随机抽样

n
n 1 N 1 n N
n 1 N 1
二、实施方法 • 抽签 制作N个同质的签,充分混合。从中一次抽出n个签, 或者先抽出一个签但不放回,再抽下一个签直到抽 满n个签为止。抽出的这n个签对应的单元入选样本, 这是不放回简单随机抽样;若从充分混合的N个签 中抽取一个,记录后放回,再抽取下一个,如此进 行,直到抽满n个为止,则是放回简单随机抽样。 抽签法的实施起来比较麻烦,尤其是当总体单元数 N较大时,所以该方法的使用场合为当总体单元数 N比较小,签的制作比较方便时。
第三章 简单随机抽样
第一节
基本问题
一、什么是简单随机抽样
从 N个单元的总体中抽取 n个单元组成的样本。总体单元数为 N,
样本量为 n。 若抽样是放回的,每次都是从 个总体单元中随机抽取1个单元,独 立重复抽取n次,得到 个单元组成的样本,叫做放回简单随机抽样。 若抽样是不放回的,每次都是从剩下的总体单元中随机抽取1个单 元,相继依次抽取n次,得到n个单元组成的样本,叫做不放回简单 随机抽样。
精度margin of error
对精度的要求通常以允许最大绝对误差
差限)或允许最大相对误差 (相对误差限)来表 示。
r
d(绝对误
d 1 P
P r 1
样本量足够大时,可用正态分布近似
ˆ tS ˆ d t V
2
第三章 基本概念
N n N 1
N n N
为 修正系数
2
为 S 修正系数
n f ,称抽样比, N
2
令
N n 1 f 有限总体调整系数 故, N 2
S V ( y ) (1 f ) n
第六讲-2 样本量确定

深圳土壤风沙尘合理采样数目
深圳
Na Mg Al Si K Ca
分布类型 对 对 对 对 正 正
变异系数(%) 2.3 23.7 2.4 0.5 36.3 58.5
=0.05,K=0.1 1 21 1 1 50 131
=0.05,K=0.2 1
5 1 1 13 33
=0.1,K=0.1 1 15 1 1 36 93
(二)约定式方法
认为某一个约定或数量就是正确的样本容量。但约定式确定样本容量的方法
忽略了与所要进行的研究相关的情况,而且采用约定的样本容量进行研究所
需的费用可能比较高。
如大气颗粒物采样
(三)成本基础法
将成本作为确定样本容量的基础。成本将不是确定样本容量的唯一考虑因素, 但在确定样本容量时也应予必要的考虑。
)S
2
假定两样本标准差相同
t均为不同显著性水平的t值
n1、n2- n1=n2时两个样本的大小
Δ—样本平均值*相对误差(%)
14
两个相关样本的情况
n
(t
t
)Sd
2
n
(t
/2
t
)Sd
2
Sd,样本差别的标准差
15
2
为什么要确定样本量?
4. 取样误差与实验室分析误差比较,通常认为取样 误差更大,因此应更加重视取样方法及取样的代 表性,尤其在微量、痕量组分分析中,取样误差 往往比其它误差来源更重要。
5. 当取样偏差是测量偏差的3倍或更多时,测量偏 差就不重要了。所以,当存在显著的取样偏差时, 任凭用多么精密的仪器,对提高分析结果的准确 性都无济于事。可见,分析全过程中,取样工作 是重要的一环.
=0.1,K=0.2 1
抽样技术需要掌握的公式

需要掌握的公式2014首都经济贸易大学李锋我整理的本学期需要掌握公式如下,有的公式有重复,可能有疏忽,欢迎指正。
1. 均方误差 = 方差 +偏倚的平方MSE (θˆ)= V (θˆ)+ B 2(θˆ)2. 如果u α是标准正态分布的双侧分位数(Z α/2)ˆ()d u S αθ=3.简单随机抽样的简单估计量总体均值的简单估计 ∑===n i i y n y Y 11ˆ 总体总量的简单估计 ∑=⋅=⋅=i y nN y N Y N Y ˆˆ总体成数的简单估计 n a p P ==ˆ 总体某种特征单元总数的简单估计 Np A=ˆ 4. 总体均值的置信度为1-α的近似置信区间为,y u s y u s αα⎡⎤-+⎢⎥⎣⎦5.成数的正态近似置信区间p u p u αα⎡-+⎢⎣6. 成数的样本方差pq n n s 12-= 7. 给定精度要求为估计量y 的绝对误差限d 是确定样本量N n n n d S u 00201n +=⎪⎭⎫ ⎝⎛=α8.对分层随机抽样:hh st st h h st st y N y N Y y W y Y ∑==∑==ˆˆ 9. 比例分配n W n h h ⋅=9. 不考虑费用的最优分配,也叫奈曼分配n S W S W n hh h h h ⋅∑= 10. 线性费用函数下最优分配:n C S W C S W n h h h hh h h ⋅∑=//11. 整群抽样总体(样本)均值:My n y y Y i ===ˆ 12. 整群抽样设计效应22()1(1)()b C srs S V y deff M V y S ρ==≈+-13.比估计量xy R =ˆ X xy X R Y R ⋅==ˆˆ X xy X R Y R ⋅==ˆˆ 14. 回归估计——差估计β0=1dd d d y N Y x X y y Y =-+==ˆˆ15.回归估计——样本回归系数b 2ˆ)()(ˆx yxlrlr lrlr s s b y N Y X x b y x X b y y Y ==--=-+==。
《统计学》样本容量的确定

样本容量确定的两难
样本容量取得较大,收集的信息 就相对多,从而估计精度较高,但 进行观测所投入的费用、人力及时 间就比较多; 样本容量取得较小,则投入的费 用、人力及时间就相对节约,但收 集的信息也较少,从而估计精度较 低; 所以,精度和费用对样本量的影 响和要求是矛盾的,不存在既使精 度最高又使费用最省的样本量 。
估计总体均值时样本容量的确定 (例题分析)
解: 已知=2000,d=400, 1-=95%, z/2=1.96 置信度为95%的置信区间为:
n ( z 2 )2 2 (1.96 )2 20002
d2
4002
96.04 97
即应抽取97人作为样本。
估计总体比例时样本容量的确定
估计总体比例时ห้องสมุดไป่ตู้本容量的确定
1. 根据比例区间估计公式可得样本容量n为:
• •
重复抽样n
(
z
2
)2
d2
(1
)
•
2.
不重复抽n样
(
N
N( z 2 )2 (1 ) 1)d2 ( z 2 )2 (1
)
d的取值一般小于0.1
其中: d z 2
p(1 p ) n
3. π未知,以样本比例p替代
4. π或p都未知时,可取0.5,这是一种谨慎估计
1. 估计总体均值时样本容量n为:
• •
重复抽样 n
(
z
2
d
)2
2
2
•
不重复抽样
n
(N
N( z 2 )2 2 1)d2 ( z 2 )2 2
其中:d
Z
2
•
n
2. 样本容量n与总体方差成正比,与绝对误差成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重复抽样的样本量计算公式
重复抽样是指从总体中有放回地抽取样本,即在每次抽样后,将被抽取的个体重新放回总体中,再进行下一次抽样。
在进行重复抽样时,我们需要确定合适的样本量,以确保样本具有代表性且能够得到准确的估计。
下面将介绍几种常见的重复抽样的样本量计算公式。
在进行简单随机重复抽样时,可以使用以下公式计算样本量:
n=(Zα/2)²*P*(1-P)/E²
其中,n为样本量,Z为给定置信水平下的Z值,P为总体中所关注变量的比例,E为可接受的误差。
该公式的前提是我们对总体比例P有一定的了解。
在进行系统抽样时,可以使用以下公式计算样本量:
n=N/(1+N*e²/(N-1))
其中,n为样本量,N为总体大小,e为可接受的误差。
系统抽样是指将总体按照一定的顺序进行编号,然后从中随机选取一个起始点,然后每隔一定的间隔选取一个样本。
在进行分层抽样时
n=∑(Nh/N)*(Zα/2)²*σh²/E²
其中,n为样本量,Nh为第h层的总体大小,N为总体大小,Z为给定置信水平下的Z值,σh为第h层的总体方差,E为可接受的误差。
分层抽样是将总体划分为若干层,然后从每层中抽取样本。
在进行整群抽样时,可以使用以下公式计算样本量:
n=(Nh)/(1+d*(Nh/N)*(Zα/2)²)
其中,n为样本量,Nh为第h个群体的总体大小,N为总体大小,d 为群体内个体变异的比例,Z为给定置信水平下的Z值。
整群抽样是将总体划分为若干群体,然后从每个群体中抽取一个样本。
以上是常见的几种重复抽样的样本量计算公式,根据实际问题和抽样方法的不同,可能会有一些修改。
在实际应用中,我们需要根据总体特点和抽样目的,选择合适的抽样方法和样本量计算公式,以确保得到可靠和有意义的抽样结果。