汽车空气过滤器性能与试验方法
滤清器常规性能试验项目

滤清器常规性能试验项目1空气滤芯选用的空气滤芯一定要与原装发动机的动力性、经济性及可靠性匹配。
(1)额定进气量滤芯技术参数中的空气流量应大于配用发动机的额定进气量。
(2)过滤材料对过滤材料有定量、厚度、挺度、耐破度、透气度、最大孔径、平均孔径等要求。
进口柴油机要求空气过滤精度为5ym,国产柴油机也要还应小于20叩。
高效滤纸的过滤精度为2^m,普通进口滤纸为30ym, 而国产滤纸仅为80ym o(3)滤芯性能试验①流量-阻力(压降)试验测定空气流动压力损失(流量-阻力或流量-压力降曲线)。
②原始过滤效率试验可计算出滤芯的集尘效率,正常滤芯的降尘率应为99%以上。
③储尘能力试验和累积效率试验滤芯积尘灰过多造成堵塞、进气阻力增大。
使发动机功率下降5%或油耗上升5%时的进气阻力是一极限值,达到此值时就必须清扫或更换滤芯。
试验时,进气阻力或压力降达到7—46kPa时的积灰重量即是滤芯的储尘能力,而在此试验期间的过滤效率则为累积效率。
④原始进气阻力试验进气阻力(额定空气流量通过滤芯时在进、出口处的压差)不应超过 3.2kPa,否则功率将下降,发动机会冒黑烟。
2柴油滤清器柴油滤清器要按ISO4020标准(道路车辆-汽车柴油机用燃油滤清器试验方法)进行下述试验。
(1)新滤清器清结度试验确定滤芯内侧是否清除了生产储运中残留的灰尘杂质。
(2)气泡法试验用于证实滤芯是否有大于过滤精度的孔隙存在。
(3)过滤效率和寿命试验过滤效率是指测定被滤除的特定粒子的百分比,滤清器寿命则以堵塞试验压差大于0.07MPa 的时间表示。
(4)水分离效度试验确定滤油器分离油水混合液中水分的百分数(5)滤芯破损试验确定滤芯的抗破裂压力(6)滤油器总成破损试验测定总成承受内压力的能力(7)脉动压力疲劳试验测定在脉动压力下(模拟发动机起动或停止时)滤油器总成的机械强度(8)抗振疲劳试验确定正常使用条件下滤油器抗振动的机械强度。
3机油滤清器全流式机油滤清器应按ISO4548 标准进行下述试验。
空气过滤器性能试验方法

附录 B(规范性附录)空气过滤器性能试验方法附录B规定了空气过滤器性能试验的测试装置、测试方法和测试结果处理方法,用以评价通风、空气调节和空气净化系统或设备用空气过滤器的阻力和效率等主要特性。
B.1 测试装置测试装置系统图及主要部件构造图见图B.1一图B.4。
测试装置主要包括:风道系统、气溶胶发生装置和测定装置及仪表三部分。
测试装置的结构允许有所差别,但测试条件应和本标准的规定一致,同一受试过滤器的测试结果应与本标准测试装置的测试结果一致。
B.1.1 风道系统B.1.1.1 构造风道系统的构造及尺寸见图1一图4。
风道系统的制作与安装要求应符合GBJ 243。
各管段之间连接时,任何一边错位不应大于1.5mm。
整个风道系统要求严密,投入使用前应进行打压检漏,其压力应不小于风道系统风机额定风压的1.5倍。
a. 用以夹持受试过滤器的管段长度应为受试过滤器长度的1.1倍,且不小于1000 mm。
当受试过滤器截面尺寸与测试风道截面不同时,应采用变径管,其尺寸如图3。
b.测定计数效率时,采样管的安装孔应设在管段(1)、(6)的下方。
B.测定过滤器阻力用的静压环和整流格栅(13)的构造应符合GB 1236的要求。
B.1.1.2 测试用空气的引入测试用空气应保证洁净,风道中粒子的背景浓度不应超过气溶胶发生浓度的1%。
a.风道应在吸入口设保护网和静压室。
静压室的尺寸不小于2 m ×2 m× 2 m,但其容积应不大干10m3。
b.静压室入口应安装两级空气过滤器,确保进入风道的空气洁净。
c.当室外空气温度低于5℃或相对湿度大于75%时,可以采用加热方式来提高温度或降低相对湿度。
B.1.1.3 排气风道系统的排气经过处理后排至室外,或排入风道系统吸入口以外的房间。
B.1.1.4 隔震风道系统应与风机或试验室内其他震源隔离。
B.1.2 气溶胶发生器气溶胶发生器应满足下述条文,有关气溶胶发生器的资料性介绍见附录A。
过滤器标准

空气过滤器1范围本标准规定了空气过滤器(简称过滤器)的术语与定义、分类与标记、要求,试验方法、检验规则以及产品的标志、包装、运输和贮存等。
本标准适用于常温、常湿、包括外加电场条件下的通风、空气调节和空气净化系统或设备的干式过滤器。
2规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T191包装储运图示标志GB/T1236—2000工业通风机用标准化风道进行性能试验GB/T2423.3—2006电工电子产品环境试验第2部分.•试验方法试验C AB:恒定湿热试验GB/T2621 1—2006用安装在圆形截面管道中的差压装置测量满管流体流量第1部分:一般用安装在圆形截面管道中的差压装置测量满管流体流量用安装在圆形截面管道中的差压装置测量满管流体流量用安装在圆形截面管道中的差压装置测量满管流体流量第4部分:文丘GB4706.1—2005家用和类似用途电器的安全通用要求GB/T4857.23—2003包装运输包装件随机振动试验方法GB/T6167尘埃粒子计数器性能试验方法GB/T8170数值修约规则GB8624建筑材料及制品燃烧性能分级GB/T18883—2002室内空气质量标准GB50243通风与空调工程施工质量验收规范3术语与定义以下术语与定义适于本标准。
干式过滤器DRY TYPE FILTER滤料既不浸油,也不喷其他液体的过滤器。
亚高效过滤器 SUB^HEP A(HIGH EFFICIENCY PARTICULATE AIR) FILTER按本标准规定的方法检验,对粒径大于等于〇.5 /IM微粒的计数效率大于或等于95%而小于99.9%的过滤器。
3.3高中效过滤器 HIGH EFFICIENCY FILTER按本标准规定的方法检验,对粒径大于等于0.5/IM 微粒的计数效率大于或等于70%而小于95%的过滤器。
过滤器完整性试验

过滤器完整性试验完整性试验(integrity test)是过滤和超滤工作中必不可少的检测方法。
除菌滤器(滤膜或滤芯)或超滤器使用前后均需做完整性检测。
以此确认滤芯孔径、滤芯安装是否正确,滤芯受损情况及滤芯和厂家认证是否一致。
只有这样才能确保除菌或超滤有成功的把握。
尤其是经处理后重复使用的滤芯和超滤膜,更有必要在使用前后做相应的完整性检测。
完整性检测分破坏性检测和非破坏性检测两类。
厂家以颗粒挑战试验或细菌挑战试验来评价或验证滤芯的质量,因滤芯试验后滤膜被颗粒堵塞和污染而废弃,故称为破坏性检测。
用户常用的是非破坏性检测。
本节仅就非破坏性检测作一简介。
FDA认可的非破坏性检测方法有3种,即起泡点试验(bubble point test),扩散流试验(forward flow or diffusive flow test)和压力保持实验或压力衰减试验(pressure hold test or pressure decay test)。
通过非破坏性检测方法可以检测滤器性能,但前提必须是供货商提供经过破坏性试验验证的非破坏性试验标准合格值,否则检测数据无意义。
一、起泡点试验1.试验原理起泡点试验是最古老的试验方法,它是颇尔博士于1956年发明的,用于对微米级过滤器进行非破坏性完整检测(David B Patent3007334.Filed November 30.1956)。
其原理是基于毛细管(孔)模型,完全润湿的膜由于表面张力和毛细管压力的作用,使孔径内充满湿润液,当气体的压力达到一定程度液体充满润湿液的膜孔管压力时,液体则被压出膜孔外,然后气体也通过膜孔产生气泡。
气泡点压力是从完全润湿的膜中从最大孔径压出液体时的压力。
2.检测方法检测起泡点压力有两种方法:如在下游(滤器出口管)充满液体,缓慢加压后,下游管子流出的液量突然增加时,此时的压力即为起泡点压力;如在下游管子没有液体,缓慢加压后,至有连续不断的气泡流出,此时的压力即为起泡点压力,见下列示意图(图9-10)。
汽车空调滤清器性能与试验方法

汽车空调过滤器性能标准与试验方法(参考QCT 998-2015 汽车空调滤清器技术条件)1.颗粒式空调滤清器(蓝布)的性能标准及试验方法1.1初始压力降标准:在不同试验空气流量下,颗粒式空调滤清器初始压力降应符合表2中相应类别的规定。
测试设备:测试设备应完全符合QC/T 795.1第5章试验方法:颗粒式空调滤清器性能试验按QC/T 795.1第6章至第9章进行。
1.2 分级过滤效率标准:在试验空气流量为300m³/h条件下,使用GB/T 28957.1中定义的A2灰测试,颗粒式空调滤清器分级过滤效率应符合表3中相应类别的规定。
测试设备:测试设备应完全符合QC/T 795.1第5章试验方法:颗粒式空调滤清器性能试验按QC/T 795.1第6章至第9章进行。
1.3 储灰量标准:在试验空气流量为300m³/h条件下,使用GB/T 28957.1中定义的A2灰或A4灰测试,当压力降上升了200Pa时,颗粒式空调滤清器储灰量应符合表4中相应类别的规定。
测试设备:测试设备应完全符合QC/T 795.1第5章试验方法:颗粒式空调滤清器性能试验按QC/T 795.1第6章至第9章进行。
2.多效空调滤清器(低碳、高碳)的性能标准及试验方法2.1初始压力降标准:不同试验空气流量下,多效空调滤清器初始压力降应符合表5中相应类别的规定。
测试设备:测试设备应完全符合QC/T 795.1第5章试验方法:多效空调滤清器性能试验按QC/T 795.1第6章至第9章进行。
2.2分级过滤效率标准:在试验空气流量为300m³/h条件下,使用GB/T 28957.1中定义的A2灰测试,多效空调滤清器分级过滤效率应符合表6中相应类别的规定。
测试设备:测试设备应完全符合QC/T 795.1第5章试验方法:多效空调滤清器性能试验按QC/T 795.1第6章至第9章进行。
2.3储灰量。
标准:在试验空气流量为300m³/h条件下,使用ISO 12103定义的A2灰或A4灰测试,当压力降上升了200Pa时,多效空调滤清器储灰量应符合表7中相应类别的规定。
整车气密性试验方法及影响因素分析

MANUFACTURING AND PROCESS | 制造与工艺整车气密性试验方法及影响因素分析赵清 赵刚 乔旭锋山西吉利汽车部件有限公司 山西省晋中市 030600摘 要: 整车气密性是判定整车密封性的重要指标,测量方法分为正压试验法和负压试验法。
通过试验表明,四门外水切、左右后三角板、前后门漏液孔等对整车气密性具有一定的贡献量,可以通过改善产品质量或增加封堵孔提升整车气密性。
整车气密性要求过高或过低都不合理,需综合考虑设计要求、制造成本、工艺制造水平和乘坐舒适性等因素为其设定合理的范围。
关键词:整车气密性;正压试验方法;负压试验方法;密封1 概述整车气密性,也称车室气体密封性,是衡量整车密封性的一项重要指标。
整车气密性的好坏不仅可以影响到车内有害气体的含量、外部灰尘和湿气的渗入量;同时对整车隔声降噪效果、暖风与空调效果也有很大影响。
[1]对于整车的密封性能来说,气密性要求过高或者过低都是不合理的。
气密性要求过高(气密性数值较大),不仅会加大车辆的制造成本,也会对整车的制造工艺提出更高的要求;气密性要求过低(气密性数值较小),则会引起车内压力的变化幅度过大,导致顾客产生耳鸣,从而降低乘坐的舒适性。
因此,在进行整车气密性的设定时,必须综合考虑设计要求、制造成本、工艺制造水平以及乘坐舒适性等因素。
2 试验[2]2.1 试验原理[3]整车气密性是利用气密性测试设备,通过车内静压法,测试整车的空气泄漏量,以此判断其是否满足要求,并寻找引起泄漏的区域和原因。
车内静压法是指在车内气体压力稳定时,车内压力和大气压力的气压差。
2.2 术语2.2.1 泄漏量指静压在稳定状态下,气体从车内泄漏到车外的流量。
2.2.2 英寸水柱(INWC)是压力单位,一英寸水柱是指在参考温度下,一英寸高度的水柱产生的压力。
2.2.3 SCFM即标准立方英尺每分钟,是体积流量单位。
标准立方英尺是在标准温度和压力下,1立方英尺的气体。
(精品过滤器过滤效率测试方法

过滤器过滤效率测试方法过滤器过滤效率测试方法3.1 计重法Arrestance⑴计重法一般用于测量中央空调系统中作为预过滤的低效率过滤器.⑵将过滤器装在标准试验风洞内, 上风端连续发尘,每隔一段时间, 测量穿过过滤器的粉尘重量(或过滤器上的集尘量), 由此得到过滤器在该阶段按粉尘重量计算的过滤效率. 最终的计重效率是各试验阶段效率依发尘量的加权平均值.⑶试验用的尘源为大粒径、高浓度标准粉尘.各国使用的粉尘是不相同的.⑷计重法试验的终止试验条件为: 和用户约定的终阻力值, 或试验者自己规定的终阻力值. 终阻力值不同, 计重效率就不同.⑸计重法试验是破坏性试验, 不能用作产品生产中的性能检验.⑹计重法试验的相关标准:美国标准: ANSI/ASHRAE 52.1 - 1992英国标准: EN 779 - 1993中国标准: GB 12218 - 19893.2 比色法Dust - spot⑴比色法用于测量效率较高的一般通风用过滤器.中央空调系统中的大部份过滤器属于这种过滤器.⑵试验台与试验粉尘与计重法相同.⑶用装有高效滤纸的采样头在过滤器前后采样.每经过一段发尘试验,测量不发尘状态下过滤器前后采样点采样头上高效滤纸的通光量, 通过比较滤纸通光量的差别, 用规定计算方法得出所谓“过滤效率”. 最终的比色效率是各试验阶段效率依发尘量的加权平均值.⑷终止试验条件与计重法相似: 和用户约定的终阻力值, 或试验者自己规定的终阻力值. 终阻力值不同,比色效率就不同.⑸比色法试验是破坏性试验, 不能用作产品生产中的性能检验.⑹计重法试验的相关标准:美国标准: ANSI/ASHRAE 52.1 - 1992英国标准: EN 779 - 1993中国从来没有使用过比色法, 国内也没有比色法试验台.⑺比色法曾经是国外通行的试验方法, 这种方法正逐渐被计数法所取代.3.3 大气尘计数法⑴中国对一般用通风过滤器的效率分级是建立在大气尘计数法基础上的. 中国的计数法标准早于欧美,但应为它是建立在20世纪80年代国产计数器和相应测量水平面上, 所以方法比较粗糙..⑵尘源为大气中的“大气尘”.⑶测量粉尘颗粒数的仪器为普通光学或激光粒子计数器.⑷大气尘计数法的效率值只代表新过滤器的初始效率.⑸标准: GB 12218 - 19893.4 计数法Particle Efficiency⑴试验台和发尘用的高浓度试验粉尘与计重法和比色法所用的类似.⑵粉尘的“量”是微小粒径段颗粒物的个数, 测量粉尘颗粒数的仪器为激光粒子计数器.⑶试验过程中, 在每次发尘试验的之前和之后, 进行计数测量, 并计算对各种粒径颗粒的过滤效率. 当达到终止试验的条件时停止试验. 过滤器的典型效率值是在规定粒径范围内,各个阶段瞬时效率依发尘量的加权平均值.⑷计数效率不再是单一数据, 而是一条沿不同粒径的过滤效率曲线. 欧洲的试验表明, 当试验的终阻力为450Pa时, 0.4μm处的计数效率值与传统比色法的效率值接近.⑸欧洲标准规定, 计数测量时使用特定的多分散用液滴, 如用Laskin喷管吹出的DENS喷雾,或使用聚苯乙烯乳胶球(Latex).**聚苯乙烯乳胶球(Latex)经常用作标定粒子计数器的标准粒子.⑹美国标准规定, 计数测量使用漂白粉. 针对不同挡次的过滤器测量不同粒径范围的效率值, 其试验终阻力也因效率档次不同而不同.⑺完整的计数效率测试是破坏性试验, 不能用于产品的日常检验. 制造厂可省去发尘过程, 仅测量过滤器的初始计数效率.⑻计数法试验的相关标准:美国标准: ASHRAE 52.2 - 1999欧洲标准: PREN 779(CEN草案, 1999年, 该标准将取代EN779:1993年规定的比色法)⑼比色法曾经是国外通行的试验方法, 这种方法正逐渐被计数法所取代.3.5 油雾法Oil Mist⑴油雾法曾在前苏联、联邦德国和中国通用, 现国外已经停止使用, 中国也祗有部份滤材生产厂使用.⑵尘源为油雾. 德国规定用石蜡油, 油雾粒径0.3μm- 0.5μm.中国标准对油的种类未做具体规定, 祗规定油雾平均直径为0.28μm -0.34μm.“量”是微小粒径段颗粒物的个数, 测量粉尘颗粒数的仪器为激光粒子计数器.⑶试验过程中, 测试的“量”为含油雾空气的浊度.测试仪器为浊度计.以气样的浊度差别来判定过滤器(或过滤材料)对油雾颗粒的过滤效率.⑷相关标准:中国标准: GB 6165 – 85德国标准: DIN 24184 – 19903.6 钠焰法Sodium Flame⑴钠焰法起源于英国, 20世纪70至90年代在欧洲部份国家通行,随着扫描法的普及, 国际上已经不再使用钠焰法.现中国仍有相当一部份高效过滤器的生产厂家在使用钠焰法.⑵尘源单分散相氯化钠(Nacl)盐雾. 测试的“量”为含盐雾时氢气火焰的亮度. 主要仪器为光度计.⑶氯化钠溶液雾化后的气溶胶其粒径在0.2μm - 2.0μm, 中值粒径约为0.6μm, 对国内现有装置的实测结果为0.50μm.⑷测试过程中, 盐水在压缩空气的搅动下飞溅, 经干燥形成的微小测试盐雾进入风道. 在过滤器前后分别采样, 含盐雾的气样使氢气火焰的颜色变蓝, 亮度增加. 以火焰亮度来判断空气的盐雾浓度, 并以此来确定过滤器对盐碱的过滤效率.⑸相关标准:中国标准: GB 6165 – 85英国标准: BS 3928 – 1969欧洲标准: EuroventS 4/43.7 DOP法 Dioctyl Phthalate⑴DOP的中文译名为<邻苯二甲酸二辛酯>, 是塑料工业一种常用的增塑剂, 也是一种常见的清洗剂. 用0.3μm的DOP液滴做尘源测试高效过滤器过滤效率的方法称为DOP法, 得出的过滤效率称为DOP效率. 这种测试方法起源于美国, 在国际上通行, 中国从未实行过.⑵将DOP液体加热成蒸汽, 蒸气在特定条件下冷凝成微小液滴,去掉过大和过小的液滴后留下0.3μm*的作为尘源.这种方法也称为“热DOP法”.*规定使用0.3μm尘粒因为早期人们认为过滤器对0.3μm的粉尘最难过滤.⑶DOP液体用压缩空气鼓气泡, 通过Laskin喷管飞溅产生雾态人工尘的称为“冷DOP法”. 冷DOP法产生的是多分散项DOP粉尘, 粒径在0.1μm - 1.0μm,≥0.35μm的占90%以上, 在对通风过滤器测试和对过滤器进行扫描测试时, 人们经常使用冷DOP法.⑷利用多分散的DOP测得的过滤器效率比用单分散的为高. 两者现尚无转换关系可循.⑸雾状DOP 0.3μm微小液滴进入风道, 测量过滤器前后气样的浊度, 可确定过滤器对0.3μm粉尘的过滤效率.⑹DOP用于高效过滤器的测试已经有近40年的历史,近几年来怀疑其所含环苯是致癌物质, 现改用单分散的DOSDEHS. 这些物质对IC及盘片驱动器的生产有害, 因此现常用粒径在0.1μm - 1.0μm的单分散聚苯乙烯乳胶球(SPL S).⑺相关标准:美国军用标准: MIL - STD - 2823.8 计数扫描法(MPPS法) Most Penetratiable Particulate Size⑴目前国际上高效过滤器的主流试验方法.⑵用计数器对过滤器的整个出风面进行连续扫描检验,计数器给出每一点粉尘的个数和粒径. 这种方法不仅能测量过滤器的平均效率, 还可以比较各点的局部效率.⑶MPPS法顾名思义是要测量出最容易穿透的粉尘粒径的过滤效率. 欧洲人的经验表明, 最容易穿透的粉尘粒径在0.1μm - 0.25μm 之间的某一点, 美国标准干脆规定只测量0.1μm - 0.2μm 区间.⑷试验中使用的尘源是Laskin喷管产生的多分散相DOP液滴, 或确定粒径的固体粉尘.⑸若测试中使用的是凝结核计数器,则必须采用粒径已知的单分散相试验粉尘.⑹MPPS法是测试高效过滤器最严格的方法, 用这种方法替代其他各种传统的测试方法是必然的趋势.⑺相关标准:美国标准: IES - RP – CC007.1 - 1992欧洲标准: EN 1882.1 – 1882.5 –1998 - 20003.9 光度计扫描⑴光度计扫描检漏的方法没有相应标准可依.⑵用光度计对过滤器的整个出风面进行扫描检漏. 这种扫描方法能快速、准确地找到过滤器的漏点.由于尘源一般为多分散相, 光度计本身又不能确定粉尘粒径, 所以这种扫描法给出的“过滤效率”没有什么实际意义.⑶光度计扫描法对生产过程的质量控制很有效, 所用的测试设备又比较简单, 有些生产厂认为只要对滤料的品质和规格严格控制, 过滤器的效率就已经确定了.因此仅进行以检漏为目的的光度计扫描就可以保证过滤器质量. 但这种理念用户不太容易接受.3.10 荧光法 Uranine⑴只有法国使用, 目前仅限于对部份核工业过滤器的测试. 实际上法国过滤器厂过去最常使用的是DOP法, 而不是自己规定的荧光法, 现在法国人又将欧洲标准化协会的计数法定为国家标准, 荧光法更少使用了.⑵荧光法的试验尘源为喷雾器产生的荧光素钠粉尘.根据法国标准, 发尘装置产生的粉尘粒径的计数平均值为0.08μm, 粒径的体积平均值为0.15μm.⑶试验过程中在过滤器前后采样, 然后用水溶解采样滤纸上的荧光素钠, 再测量含荧光素钠水溶液在特定条件下的荧光亮度, 这一亮度间接地反映出粉尘的重量. 以过滤器前后样品的荧光亮度差别来判断过滤器的效率.⑷相关标准:法国标准: NF X44 - 011 - 19723.10 其他检方法⑴变风量检漏.如果降低风量后过滤器效率降低, 则肯定有漏点.变风量检查只能判断过滤器是否有漏, 但不能对漏点定位.⑵发烟检漏.在暗室中, 在过滤器上游发烟, 用一束强光去照射过滤器的出风面, 当过滤器有漏点时,可以明显看出漏点处有一缕青烟. 这种方法可以准确地对漏点定位.⑶无污染检验. 有些用户担心试验用的粉尘污染过滤器,他们经常要求过滤器制造厂家使用他们认为安全的固体颗粒粉尘;有些制药厂要求直接使用室外大气尘.4. 过滤器的应用4.1 合理确定各级过滤器效率⑴通常情况下, 最末一级过滤器决定空气的净化程度.⑵上游的各级过滤器祗起保护作用, 统称“预过滤器”.⑶应妥善配置各级过滤器的效率. 若相邻两级过滤器的效率规格相差太大, 则前一级起不到保护后一级的作用; 若两级相差不大, 则后一级负担太小.⑷合理的配置是每隔2 – 4档设置一级过滤器, 按欧洲现行过滤器效率分级, 如末端使用H13高效过滤器, 前级可选用F5 – F8 – H10三通级保护, 末H13高效过滤器的使用寿命高达八年.⑸洁净室末端高效过滤器的使用寿命应为5 –15年, 影响使用寿命的最主要因素是预过滤器本身质量的优劣和配置是否合理.⑹洁净室末端高效过滤器前要有效率不低于F8的过滤器来保护.⑺在城市中央空调系统中, G3 – F6是常见的初级过滤器.⑻要点: 末级过滤器的性能要可靠.预过滤器的效率和配置要合理.初级过滤器的维护要方便.4.2 高效过滤器的选用⑴通常情况下, 同材质的过滤器, 效率高的阻力大, 价格也高.⑵高洁净度要求的洁净室可以选用效率较高的HEPA或ULPA过滤器, 低洁净度要求的洁净室可以选用效率较低的HEPA过滤器.⑶高发尘量下过滤器效率的变化, 对洁净室洁净度的影响不大, 因此洁净度要求不高的洁净室不宜选用较高效率的高效过滤器.⑷低发尘量下, 较高效率的高效过滤器在低风速时对洁净度有明显的好处. 因此, 对要求高洁净度的洁净室在选用较高效率过滤器的同时, 要降低其迎面风速.4.3 风速对过滤器的影响⑴在绝大多数情况下, 风速越低, 过滤器的使用效果越好.⑵对于高效过滤器, 风速减少一半, 粉尘的透过率会降低一个数量级(效率数值增加一个9), 风速增加一倍, 透过率会增加一个数量级(效率数值降低一个9).⑶对于高效过滤器, 气流穿过滤材的速度一般在0.01-0.04m/s, 在这个范围内过滤器的阻力和过滤风量呈正比关系. 如果一台额定风量为1000m3/h 的过滤器, 其初阻力为250Pa, 但在使用中其实际风量祗有500m3/h时, 它的初阻力可降为125Pa.⑷一般通风用过滤器, 气流穿过滤材的速度在0.13- 1.0m/s范围内, 阻力与风量不再是线性关系, 而是一条上扬的弧线,当风量增加30%,阻力可能为增加50%.⑸过滤器阻力是一个非常重要的参数, 不要忘掉向过滤器供应商索要风量 - 阻力曲线.4.4 选用过滤面积大的过滤器⑴此地讲的过滤面积是过滤器过滤材料的面积, 一只过滤器的过滤面积经常是过滤器迎风面积的数倍、数十倍,甚至上百倍.⑵过滤面积大, 穿过滤材的气流速度就低减, 过滤器的阻力就小,同时能容纳的粉尘就多. 因此, 增加过滤面积是延长过滤器使用寿命最有效的手段.⑶经验表明, 对于同种结构、同样滤材的过滤器, 当终阻力确定时,过滤面积增加50%时,过滤器的使用寿命会增加70 – 80%,当过滤面积增加一倍时,过滤器的使用寿命是原来的三倍。
汽车空调-过滤器技术要求

汽车空调过滤器(CAF)性能标准与试验方法1、过滤效率标准是:ISO/TS 11155-1:2001《道路车辆——乘员车厢用空气过滤器第一部分:粉尘过滤测试》一般要求在2m/S(相当于5.0m3/min)的风速下,对于有效粒径5微米的灰尘颗粒的过滤效率达到90%以上,对于有效粒径10微米的灰尘颗粒的过滤效率达到95%以上。
2、压损(空气阻力)标准是:ISO/TS 11155-1:2001《道路车辆——乘员车厢用空气过滤器第一部分:粉尘过滤测试》一般要求在2m/s(相当于5.0m3/min)的风速下,空调过滤器的压损小于80Pa。
3、容尘量标准是:ISO/TS 11155-1:2001《道路车辆——乘员车厢用空气过滤器第一部分:粉尘过滤测试》在300m3/h的风量、粉尘浓度为70±30mg/m3条件下,向过滤器释放灰尘,当过滤器阻力达到初始阻力的2.5倍时,过滤器容纳灰尘的重量不小于10g。
4、高、低温度循环性能-40℃×8h+常温×1h+80℃×8h,试验2个循环,共34h,试验后在室温下放至少30min,测量长、宽、高,尺寸变化在±1%初始值内,然后300m3/h风量下试5min,不应有损坏。
5、耐湿性能把过滤器放置于38℃×95±15%RH,时间168h,测试后在室温下放置至少30min,测量长、宽、高尺寸,尺寸变化在±1%初始值内,然后300m3/h风量下试5min,不应有损坏。
6、低温冻结性能以水分附着于滤芯进入-30℃急冻1h,再放置于常温下解冻,重复10次表面不得破损或剥离。
7、抗水性能环境温度为23℃±5℃,湿度为55±15%RH,成品浸水30min后取出,再以10m3/min (600m3/h)的风量条件下测试,持续一小时产品无变形,滤材无破损,边条无破裂。
8、耐药品(化学品)性能将汽油、润滑油涂于产品上,室温放置1h,再放于70℃,保持3h,试验后产品不得破损或剥离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车空气过滤器性能标准与试验方法(参考QCT970-2014 乘用车空气滤清器技术条件)
1.1空滤器原始进气阻力
标准:在额定空气体积流量下,空滤器原始进气阻力小于或等于2.0kPa。
试验方法:按QC/T 32-2006中7.1中的规定。
1.2滤芯原始进气阻力
标准:在额定空气体积流量下,滤芯原始进气阻力小于或等于0.5kPa。
试验方法:按QC/T 32-2006中7.2中的规定。
1.3原始滤清效率
标准:在额定空气体积流量下,空滤器/滤芯原始滤清效率应按表1的规定。
试验方法:按QC/T 32-2006中7.3中的规定.
1.4全寿命滤清效率
标准:在额定空气体积流量下,当进气阻力增量达到规定值2.0kPa时,空滤器/滤芯全寿命滤清效率应按表2的规定。
试验方法:按QC/T 32-2006中7.5/7.6中的规定.
1.5储灰量
标准:在额定空气体积流量下,当进气阻力增量达到规定值2.0kPa时,空滤器/滤芯储灰量应按表3的规定。
试验方法:按QC/T 32-2006中7.5/7.6中的规定。
1.6滤芯解体压力
标准:滤芯解体压力不低于10kpa。
试验方法:按ISO 5011-2000中6.6的规定。
1.7干式空滤器/干式滤芯进气阻力复原率
标准:对结束储灰量实验的滤芯进行复原性处理后,干式空滤器/干式滤芯进气阻力复原率应不低于80%。
试验方法:按QC/T 32-2006第8章的规定。
1.8密封性
标准:空滤器各密封部位应密封可靠,在滤清效率试验或储灰量试验结束后,立即拆检,空滤器各密封部位不应有漏灰痕迹。
试验方法:按QC/T 32-2006中7.7的规定。
1.9环境密封性
标准:空滤器在5kPa真空度作用下,清洁空气侧环境空气泄漏量应不大于100L/h。
试验方法:
1.按图A.1所示将被试验的新空滤器与试验装置稳妥连接,空滤器进气口及非清洁空气侧全部可能的进气部分应严格密封。
2.启动真空泵,在出气口处抽取真空,调整并稳定保持空滤器侧真空度值在5kPa。
3.测量滤芯与上下端盖的密封边缘处等清洁空气侧的空气泄漏量,记录测量结果。
1.10空滤器隔声性能
标准:1/3倍频程中心频率(50~10000)Hz范围内,空滤器上表面辐射噪声衰减值不小于35dB。
试验条件:
1.噪音源为白噪声,1/3倍频程中心频率范围(50~10000)Hz按GB 3240第三章的规定;
2.噪声源声压级按GB/T 4760-1995中4.3的规定;
3.静态试验:测量装置应按GB/T 4760-1995中5.4的规定;
4.测点布置:空滤器进口端主管路设1个测量点,空滤器表面指定位置50mm上方设1测点。
试验方法:按GB/T 6881.1-2002的规定。
1.11空滤器传递损失
标准:1/3倍频程中心频率(50~10000)Hz范围内,空滤器中心频率处传递损失不小于20dB
试验条件:
1.噪音源为白噪声,1/3倍频程中心频率范围(50~10000)Hz按GB 3240第三章的规定;
2.噪声源声压级按GB/T 4760-1995中4.3的规定;
3.静态试验:测量装置应按GB/T 4760-1995中5.4的规定;
4.测点布置:空滤器进、出口端主管路设1个测量点。
试验方法:按GB/T 6881.1-2002的规定。
1.12空滤器/滤芯耐浸水性能(纸芯)
标准:空滤器/滤芯经常温净水4h规定程序的浸水试验后,滤芯纸褶不应破损。
试验方法:
1.新空滤器/滤芯按QC/T 32-2006中7.1/7.2中的规定及要求进行原始进气阻力试验,记录测试结果。
2.拆下新滤芯放入常温净水中4h,取出沥干15min后恢复装配,以额定空气体积流量持续通气干燥,直到压力降恢复到原始值或稳定为止。
3.记录滤芯状态和进气阻力测量结果。
1.13空滤器/滤芯耐淋水性能
标准:空滤器/滤芯经单位有效过滤面积淋水负荷50g/㎡的淋水试验后,其环境密封性应按1.3/1.4的要求,储灰量应不低于1.5要求的90%
试验方法:
1.按图A.2所示将被试验的新空滤器/滤芯与试验装置稳妥连接。
2.试验件按QC/T 32-2006中7.1/7.2中的规定及要求进行原始进气阻力试验,记录测试结果。
3.在额定空气体积流量下,启动淋水系统,按滤芯有效过滤面积确定淋水量,淋水负荷为50g/㎡;以5g/m³的进气体积淋水浓度,用100kPa压力的干燥压缩空气持续淋水到规定值后停止试验。
4.淋水后试验件以额定空气体积流量持续通气干燥,直到压力降恢复到原始值或稳定为止。
5.干燥后的试验件按QC/T 32-2006中7.3/7.5/7.6中的规定及要求进行性能试验,记录滤芯状态和测量结果。
1.14耐高低温性能
标准:空滤器经过规定的耐高低温性能试验后,不允许出现脆裂、变形等结构缺陷;其环境密封性应按1.9的要求。
注:耐高低温性能仅适用于树脂材料壳体空滤器
试验方法:
1.耐高温性能。
与实车同样装配条件下,把新的空滤器放入通风的恒温箱中进行110°C/24h试验,试验后取出目测外观变化情况,按1.9的要求进行性能试验。
2.耐低温性能。
与实车同样装配条件下,把新的空滤器放入低温试验箱中进行-40°C/24h试验,试验后取出目测外观变化情况,按1.9的要求进行性能试验。
3.耐低温冲击性能。
把新的空滤器放入-30°C±2°C的低温试验箱中冷冻处理4h后取出,立即用500g 钢球距空滤器400mm高度,冲击空滤器表面。
4.耐冷热交变性能。
把新的空滤器放入通风的恒温箱中进行共4循环96h的试验,循环次序:-30°C/7.5h →25°C/0.5h→100°C/1
5.5h→25°C/0.5h;试验后取出目测外观变化情况,按5.4.9的要求进行性能试验。
1.15空滤器/滤芯燃烧性能
标准:空滤器/滤芯燃烧性能应按表4的规定
试验方法:空滤器/滤芯燃烧性能试验方法应按表5的规定。
1.16耐腐蚀性
标准:空滤器所有与空气接触的金属件表面应经防锈处理,在96h试验周期的中性盐雾(NSS)试验后无可见腐蚀。
试验方法:按GB/T 10125-1997规定的中性盐雾(NSS)试验方法。
1.17耐振动疲劳性能
标准:空滤器在规定的振动疲劳试验条件下进行试验后,不允许出现开裂、变形等结构缺陷。
振动试验严酷度等级:
a)空滤器直接安装在发动机上,振动试验严酷度等级应按ISO 16750.3-2003中4.1.3.1.2的规定(见表6)
b)空滤器安装在车身(弹性质量)上,振动试验严酷度等级应按ISO 16750.3-2003中4.1.3.1.5的规定(见表7)
试验方法:
a)混合振动试验GB/T 2423.58-2008给出了相应的试验方法。
b)随机振动试验GB/T 2423.56-2008给出了相应的试验方法。
2.1外观
标准:空滤器外表面应无明显的伤痕、磕碰、拉毛和毛刺等缺陷,涂、镀层应无裂纹、脱落、流挂、露
底等缺陷。
试验方法:外观质量用目测检验。