圆锥曲线的综合应用(教案)

圆锥曲线的综合应用(教案)
圆锥曲线的综合应用(教案)

解析几何中的最值问题

授课教师:海门市四甲中学数学组 夏华

[执教时间]:2008年4月17日 [授课班级]:高三(2)班

【内容概要】

解析几何沟通了数学内数与形、代数与几何等最基本对象之间的关系。是一门用代数方法研究几何问题及用几何意义直观反映代数关系的学科. 解析几何中涉及最值问题常有求夹角、面积、距离的最值或与之相关的一些问题.这些问题是解析几何与其他知识的交汇处,它是考查我们学生综合能力的主要内容之一,也是近年来高考的热点.

【教学目标】

1.能够根据变化中的几何量的关系,建立目标函数,然后利用求函数最值的方法求出某些最值;或者列出关于目标量的不等式求出目标量的范围.

2.能够比较熟练地应用数形结合的思想,结合曲线的定义和几何性质,用几何法求出某些最值.

【方法指导】

① 建立目标函数,运用函数求最值的思想. ② 列出目标量的不等式,解出目标量的范围.

③ 根据问题的几何意义,运用“数形结合的思想”求解.

【考点检测】

1.设F (c ,0)是椭圆122

22=+b

y a x (a >b >0)的一个焦点,直线l 经过原点与此椭圆交

于A 、B 两点,则△ABF 面积最大值为 bc . 分析:设1122(,),(,)A x y B x y

则1211

||||22

ABF AOF BOF S S S c y c y =+=??+??△△△ 1||c y bc =?=.

评注:将三角形分割成两个同底等高的三角形,且两个三角形的底都为定值,此时,

很容易就能建立函数关系式进行求解. 2.P 是椭圆13

42

2=+y x 上的点,F 1、F 2是焦点,设k =|PF 1||PF 2|,则k 的最大值与最小值

之差为

1 .

法一:(用焦半径公式)

设00(,)P x y ,由题意知1

2,1,2

a c e === 则 2000111

(2)(2)4224

k x x x =+

?-=-. 0max min 22,4,3x k k -≤≤∴== max min 1k k ∴-= 法二:(用第一定义)

1221

2

111124, 4(4)(2) 4.(13)

PF PF a PF PF k PF PF PF PF +==∴=-∴=?-=--+≤≤

max min max min 4,3, 1k k k k ∴==∴-= 评注:①此题主要运用了函数求最值的思想.

②此题也可用两点间的距离公式将k 表示出来,再将y 换成x .

3.已知椭圆

22

1169

x y +=,则x y +的最大值 5 . 法一:(线性规划)

令a x y =+,则y x a =-+

由2222253216(9)01169

y x a x ax a x y =-+??

?-+-=?+

=??

令0=△,得5a =±,所以max ()5x y += 法二:(参数法)

令4cos ,3sin x y αα==,则4cos 3sin 5sin()x y ααα?+=+=+ 所以max ()5x y +=

评注:此题可由“x +y ”联想到线性规划,进而可用数形结合的思想来解题.

4.已知椭圆

22

11612

x y +=内有一点(1,1)P -,F 为右焦点,椭圆上求一点M , 使||2||MP MF +的最小,最小值为 7 .

分析:4,,2a b c ===,右准线18,2

x e ==, 2MP MF MP MN ∴+=+,

因此,,M P N 三点共线时,2MP MF +有最小值为

变式训练:若求MP MF

+的最小值呢? 分析:由定义知12MF a MF =-, 所以12MP MF MP MF a +=-+

所以,当1,,M P F 三点共线且点M 位于第四象限时 min 1()2MP MF PF a +=-+

评注:此题主要考查了椭圆的第一、第二定义的应用,及用数形结合求最值的思想.

【热点分析】

例题:已知点A (3,0)、B (0,4),动点P (x ,y )在线段AB 上,求: (1)x y +的最小值; (2)22

x y +的最小值;

(3的最小值.

解:(1)法一:(函数的思想) 线段AB 的方程为4

4.(03)3

y x x =-+≤≤ 所以 1

43

x y x +=-

+,因此34x y ≤+≤,故min ()3x y += 法二:(线性规划)

令a x y =+,则y x a =-+,将直线在可行域内平移可得最小值为3. (2)法一:(函数的思想) 2

2

22548144()92525x y x +=

-+. 所以22

min 144()25

x y +=

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

圆锥曲线教案

直 线 与 圆 锥 曲 线 的 位 置 关 系 题型归纳: 题型1向量与圆锥曲线相结合的问题 1.设12F F ,分别是双曲线2 2 19y x +=的左、右焦点.若点P 在双曲线上,且120PF PF ?=,则12PF PF += 2.设P 为双曲线2 2 112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为 题型2变量取值范围问题 3、设 1F ,2F 分别是椭圆14 22 =+y x 的左右焦点。1)若P 是该椭圆上的一个动点,求21PF PF ?的最值; (2)设过定点()2,0M 的直线l 与椭圆交于不同的两点A,B,且AOB ∠为锐角(O 为坐标原点),求直线l 的斜率k 的范围 题型3圆锥曲线中的最值问题 4、设P 是椭圆()2 2211x y a a +=>短轴的一个端点,Q 为椭圆上一个动点,求PQ 的最大值. 5、已知椭圆C:22 221(0)x y a b a b +=>>,F 为其右焦点,过F 垂直于x 轴的直线与椭圆相交所得的弦长为2(1)求椭圆C 的方程;(2)直线l :y=kx+m (0km ≠)与椭圆C 交于A 、B 两点,若线段AB 中点在直线x+2y=0上,求?FAB 的面积的最大值。 … 题型4定值问题 6.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程; (Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. 题型5 存在性问题 7.椭圆)0(12222>>=+b a b y a x 的离心率23e =,A 、B 是椭圆上关于,x y 轴均不对称的两点,线段AB 的垂直平分线与x 轴交于(1,0)P ,点 F 是椭圆的右焦点.Ⅰ)设AB 的中点为00(,)C x y ,求0x 的值; (Ⅲ)过P 的直线交椭圆于,C D 两点,在x 轴上是否存在定点E ,使得CED ∠总被x 轴平分,若存在,求出点E 的坐标;若不存在,请说明理由. 题型6对称性问题 8.已知双曲线2 213y x -=上存在关于直线:4l y kx =+的对称点,求实数k 的取值范围.

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

高考数学(精讲+精练+精析)专题10_4 圆锥曲线的综合应用试题 文(含解析)

专题10.4 圆锥曲线的综合应用试题 文 【三年高考】 1. 【2016高考四川文科】在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为 '2222 ( ,)y x P x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题: 若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A. 单元圆上的“伴随点”还在单位圆上. 若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 . 【答案】②③ 线分别为2222( ,)0y x f x y x y -=++与 2222 (,)0y x f x y x y --=++的图象关于y 轴对称,所以②正确;③令单位圆上点的坐标为(cos ,sin )P x x 其伴随点为(sin ,cos )P x x '-仍在单位圆上,故③正确;对于④,直线 y kx b =+上取点后得其伴随点2222 ( ,)y x x y x y -++消参后轨迹是圆,故④错误.所以正确的为序号为②③. 2.【2016高考山东文数】已知椭圆C :(a >b >0)的长轴长为4,焦距为2 . (I )求椭圆C 的方程;

(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B . (i)设直线PM 、QM 的斜率分别为k 、k',证明为定值. (ii)求直线AB 的斜率的最小值. (Ⅱ)(i)设()()0000,0,0P x y x y >>,由()0,M m ,可得()()00,2,,2.P x m Q x m - 所以 直线PM 的斜率 002m m m k x x -= = ,直线QM 的斜率0023'm m m k x x --==-.此时'3k k =-,所以' k k 为定值3-. (ii)设()()1122,,,A x y B x y ,直线PA 的方程为y kx m =+,直线QB 的方程为3y kx m =-+.联立 22142 y kx m x y =+???+ =?? ,整理得()222214240k x mkx m +++-=.由20122421m x x k -=+可得()()212 02221m x k x -=+ ,所以() ()2112 02221k m y kx m m k x -=+= ++,同理() ()() ()22222 2 2262,181181m k m x y m k x k x ---= = +++.所以 () ()() ()() ()()2222212 2 2 2 00 22223221812118121m m k m x x k x k x k k x -----= - = ++++, ()()()()()()()() 2 2 2 2 21 2 2 2 2 622286121812118121k m m k k m y y m m k x k x k k x ----+--=+--=++++ ,所以2212161116.44AB y y k k k x x k k -+??===+ ?-?? 由00,0m x >>,可知0k >,所以1626k k +≥,等号当且仅

圆锥曲线解题技巧教案整理后1

圆锥曲线―概念、方法、题型、及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程8=表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y += 1(0a b >>)。方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B , C 同号,A ≠B )。 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____(答: 11 (3,)(,2)22 --- ) ; (2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2y x +的最小值是 ___2) (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1 (0,0a b >>)。方程22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A , B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2= e 的双曲线C 过点 )10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口 向上时22(0)x py p =>,开口向下时2 2(0)x py p =->。 如定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。 4 5

新课标高考《圆锥曲线》大题专题含答案

新课标高考《圆锥曲线》大题专题含答案

全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .(2013年高考江西卷(理)) 过点2,0) 引直线l 与曲线2 1y x = +相交于 A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线 l 的斜 率 等 于 ( ) A .y E B B C CD =++3 B .3 C .3± D .32 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版)) 双曲线 2 214 x y -=的顶点到其渐近线的距离等于 ( ) A .25 B .4 5 C 25 D 453 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 已知中心在原 点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程 是 ( ) A .22 145 x -= B .22 145 x y -= C . 22 125 x y -= D . 22 125 x -=

4 .(2013年高考新课标1(理)) 已知双曲线C : 22 2 21x y a b -=(0,0a b >>)的离心率为52 ,则C 的渐近 线 方 程为 ( ) A .14y x =± B .13 y x =± C . 12 y x =± D .y x =± 5 .(2013年高考湖北卷(理)) 已知04π θ<<,则双曲线 22 122:1 cos sin x y C θθ -=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦 距相等 D .离心率相等 6 .(2013年高考四川卷(理)) 抛物线2 4y x =的焦点到双曲线 2 21 3 y x -=的渐近线的距 离 是 ( ) A .12 B .3 2 C .1 D 3

高三数学 圆锥曲线的应用

第六节 圆锥曲线的应用 一、基本知识概要: 解析几何在日常生活中应用广泛,如何把实际问题转化为数学问题是解决应用题的关键,而建立数学模型是实现应用问题向数学问题转化的常用常用方法。本节主要通过圆锥曲线在实际问题中的应用,说明数学建模的方法,理解函数与方程、等价转化、分类讨论等数学思想。 二、例题: 例1、 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨 道的焦点处,当此慧星离地球相距m 万千米和m 34万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32π π和,求该慧星与地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为12222=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3 π 时,由椭圆的几何意义可知,彗星A 只能满足)3 (3/ππ=∠=∠xFA xFA 或。作m FA FB Ox AB 3 221B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(3 4)(22 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31c c c m c a m a c m =-==∴?=代入第一式得 .32.32m c c a m c ==-∴=∴

答:彗星与地球的最近距离为m 3 2万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质。 思考讨论:椭圆上任一点到焦点的距离的最大值和最小值是多少?怎样证明? 例2:A ,B ,C 是我方三个炮兵阵地,A 在B 正东6Km ,C 在B 正北偏西ο30,相距4Km ,P 为敌炮阵地,某时刻A 处发现敌炮阵地的某种信号,由于B ,C 两地比A 距P 地远,因此4s 后,B ,C 才同时发现这一信号,此信号的传播速度为1s Km /,A 若炮击P 地,求炮击的方位角。(图见优化设计教师用书P249例2) 解:如图,以直线BA 为x 轴,线段BA 的中垂线为y 轴建立坐标系,则)32,5(),0,3(),0,3(--C A B ,因为PC PB =,所以点P 在线段BC 的垂直平分线上。 因为3-=BC k ,BC 中点)3,4(-D ,所以直线PD 的方程为)4(31 3+=-x y (1) 又,4=-PA PB 故P 在以A ,B 为焦点的双曲线右支上。设),(y x P ,则

圆锥曲线优秀教案

与圆锥曲线有关的几种典型题 一、教案目标 (一)知识教案点 使学生掌握与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线相交问题等. (二)能力训练点 通过对圆锥曲线有关的几种典型题的教案,培养学生综合运用圆锥曲线知识的能力. (三)学科渗透点 通过与圆锥曲线有关的几种典型题的教案,使学生掌握一些相关学科中的类似问题的处理方法. 二、教材分析 1.重点:圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题. (解决办法:先介绍基础知识,再讲解应用.) 2.难点:双圆锥曲线的相交问题. (解决办法:要提醒学生注意,除了要用一元二次方程的判别式,还要结合图形分析.) 3.疑点:与圆锥曲线有关的证明问题. (解决办法:因为这类问题涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法,所以比较灵活,只能通过一些例题予以示范.) 三、活动设计 演板、讲解、练习、分析、提问. 四、教案过程 (一)引入

与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到,为了让大家对这方面的知识有一个比较系统的了解,今天来讲一下“与圆锥曲线有关的几种典型题”. (二)与圆锥曲线有关的几种典型题 1.圆锥曲线的弦长求法 设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为: (2)若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|. A、B两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解. 由学生演板完成.解答为: ∵抛物线方程为x2=-4y,∴焦点为(0,-1). 设直线l的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入x2=-4y中得:x2+4kx-4=0. ∴x1+x2=-4,x1+x2=-4k. ∴ k=±1.

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

圆锥曲线的综合应用

圆锥曲线的综合 【复习目标】 1、在理解和掌握圆锥曲线的定义和简单几何性质的基础上,把握有关圆锥曲线的知识的内在联系,灵活运用解析几何的常用方法解决问题,培养运用各种知识解决问题的能力; 2、通过问题的解决,理解函数与方程、等价转化、数形结合、分类讨论等数学思想。 【教学重点、难点】 1.灵活运用圆锥曲线的几何性质解决问题; 2.理解函数与方程、等价转化、数形结合、分类讨论等数学思想,通过问题解决的过程中,提高分析问题、解决问题的能力,同时培养运算能力。 【教学过程】 一、圆锥曲线的几何性质在高考中的地位 圆锥曲线的几何性质是在每年的高考中必考的一个知识点,这一类问题的考查大多数出现在填空题中,属于中低档题,有时也会出现在解答题的第一、第二问中,分值大约在4至8分。 【相关知识链接】 1.椭圆、双曲线第一、第二定义各是什么? 2.圆锥曲线的标准方程形式反应了其怎样的特点? 3.椭圆、双曲线中c b a ,,存在什么样的等量关系? 4.性质中的不等关系: 对于圆锥曲线标准方程中变量y x ,的范围、离心率的范围等,在求与圆锥曲线有关的一些量的范围,或者求这些量的最大值,最小值时,经常用到这些不等关系。 5.求椭圆、双曲线的离心率问题的一般思路: 求椭圆、双曲线的离心率时,一般是依据题设得出一个关于c b a ,,的等式(或不等式),利用c b a ,,之间的等量关系消去b ,即可求得离心率(或离心率的范围)。 题型一 活用圆锥曲线的几何性质 1.若椭圆122 22=+b y a x 的左右焦点分别为)0,(),0,21c F c F -(, 以点2F 为圆心,半径为c 画圆,圆2F 交椭圆于点M ,直线1MF 与圆2F 相切,则该椭圆离心率为

圆锥曲线解题技巧和方法综合(经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式: 2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 距离式方程2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种

标准方程:22 1(0)x y m n m n +=?< 距离式方程 :|2a = (3)、三种圆锥曲线的通径你记得吗? 22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足 221=-MF MF 则动点M的轨迹是( ) A、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1) 00 ;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

江苏高考圆锥曲线专题

第10讲 圆锥曲线 历年高考分析: 回顾2009~20XX 年的高考题,在填空题中主要考查了椭圆的离心率和定义的运用,在解答题中2010、2011、20XX 年连续三年考查了直线与椭圆的综合问题,难度较高.在近四年的圆锥曲线的考查中抛物线和双曲线的考查较少且难度很小,这与考试说明中A 级要求相符合. 预测在20XX 年的高考题中: (1)填空题依然是以考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. (2)在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还有可能涉及简单的轨迹方程的求解. 题型分类: (1)圆锥曲线的几何性质,如a ,b ,c ,p 的几何性质以及离心率的值或范围的求解; (2)解答题中简单的直线与椭圆位置关系问题; (3)以椭圆为背景考查直线方程、圆的方程以及直线和圆的几何特征的综合问题; (4)综合出现多字母等式的化简,这类问题难度较高. 例1:若椭圆x 25+y 2m =1的离心率e =10 5,则m 的值是________. 解析:当m >5时,105=m -5m ,解得m =253;当m <5时,105=5-m 5 ,解得m =3. 答案:3或253 例2:若抛物线y 2=2x 上的一点M 到坐标原点O 的距离为3,则M 到该抛物线焦点的距离为________. 解析:设M 的坐标为(x ,±2x )(x >0),则x 2+2x =3,解得x =1,所求距离为1+12=3 2. 例3:双曲线2x 2-y 2+6=0上一个点P 到一个焦点的距离为4,则它到另一个焦点的距离为________. 解析:双曲线方程化为y 26-x 2 3=1.设P 到另一焦点的距离为d ,则由|4-d |=26得d =4+26,或d =4-26(舍去). 例4:(2012·江苏高考)在平面直角坐标系xOy 中,若双曲线x 2m -y 2 m 2+4=1的离心率为5,则m 的值为________. 解析:由题意得m >0,∴a =m ,b =m 2+4, ∴c = m 2+m +4,由 e =c a =5得m 2+m +4m =5,解得m =2. 例5:已知椭圆()22 2210x y a b a b += >>的离心率32e =,连接椭圆的四个顶点得到的菱形的面积为4,则椭圆 的方程为 . 例 6:在平面直角坐标系xOy 中,椭圆1:C ()22 2210x y a b a b += >>的左、右焦点分别为1F 、2F ,其中2F 也

圆锥曲线的定义及其应用

圆锥曲线的定义及其应用 一、教学目标: 1.进一步明确圆锥曲线定义,并用定义解决有关问题; 2.通过发散思维和创新思维的训练,培养学生的探究能力; 3.培养学生用运动变化的观点分析和解决问题. 二、教学重点、难点:圆锥曲线定义的灵活应用. 三、教学方法:教师引导启发与学生自主探索相结合. 四、教学过程: (一)引入: 问题1:平面内到定点12(3,0),(3,0)F F -的距离之和为8的点P 的轨迹是什么? 121286PF PF F F +=>= ∴P 的轨迹是以12(3,0),(3,0)F F -为焦点的椭圆,方程是22 1167 x y + = 问:(1)若到两定点距离之和为改为6,则点P 的轨迹是什么? ( 以12,F F 为端点的线段) (2)若改为到两定点距离之差为2,则P 点的轨迹是什么? (以12,F F 为焦点的双曲线的一支) (3)若改为到两定点距离之差为6,则P 点的轨迹是什么? (以12,F F 为端点的射线) (通过提问,让学生对圆锥曲线的第一定义进行回顾,并且进一步明确定义中所含的限制条件) 由学生总结椭圆和双曲线的定义 问题2:已知定点F (1,0),定直线:1l x =-,设一动点P 到直线l 的距离为d ,若有PF d =,则P 点的轨迹是什么? (F l ?,∴P 点的轨迹是以F (1,0)为焦点,以直线:1l x =-为准线的抛物线。) 问:(1)若点F 改为(-1,0),则点P 的轨迹是什么? (2)当 PF d 为何值时,所求轨迹是椭圆? (3)当PF d 为何值时,所求轨迹是双曲线? (通过提问,让学生对圆锥曲线的统一定义进行回顾和巩固,注意圆锥曲线第二定义的联系和区别) 由学生总结圆锥曲线的统一定义,。

圆锥曲线的综合应用及其求解策略

圆锥曲线的综合应用及其求解策略 有关圆锥曲线的综合应用的常见题型有:①、定点与定值问题;②、最值问题;③、求参数的取值范围问题;④、对称问题;⑤、实际应用问题。 解答圆锥曲线的综合问题,应根据曲线的几何特征,熟练运用圆锥曲线的相关知识,将曲线的几何特征转化为数量关系(如方程、不等式、函数等),再结合代数知识去解答。解答过程中要重视函数思想、方程与不等式思想、分类讨论思想和数形结合思想的灵活应用。 一、定点、定值问题: 这类问题通常有两种处理方法:①、第一种方法:是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;②、第二种方法:是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。 ★【例题1】(2007年高考〃湖南文科〃19题〃13分)已知双曲线222x y -=的右焦点为F ,过点F 的 动直线与双曲线相交于A 、B 两点,又已知点C 的坐标是(10),.(I )证明CA 〃CB 为常数;(II )若动 点M 满足CM CA CB CO =++(其中O 为坐标原点),求点M 的轨迹方程. ◆解:由条件知(20)F , ,设11()A x y ,,22()B x y ,. (I )当AB 与x 轴垂直时,可求得点A 、B 的坐标分别为(2 ,(2, ,此时则有 (12)(11CA CB =?=-,. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=,则有 2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根, 所以212241k x x k +=-,2122421 k x x k +=-,于是 212121212(1)(1)(1)(1)(2)(2) CA CB x x y y x x k x x =--+=--+--2 2 2 1212(1)(21)()41k x x k x x k =+-++++22222 22 (1)(42)4(21)4111 k k k k k k k +++=-++--22(42)411k k =--++=-. ∴ 综上所述,CA CB 为常数1-. (II )设()M x y ,,则(1)CM x y =-,,11(1)CA x y =-,,22(1)CB x y =-,,(10)CO =-,,由 CM CA CB CO =++得:121213x x x y y y -=+-??=+?,即1212 2x x x y y y +=+??+=?,于是AB 的中点坐标为222x y +?? ???,.

直线与圆锥曲线的位置关系一教学设计

北京市北纬路中学徐学军 《直线与圆锥曲线的位置关系(一)》教学设计 一、教材分析及学生情况分析 本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,直线与圆的位置关系及判定,这为本节课的学习起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》的第一节课,着重是教会学生如何判断直线与椭圆的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。所以是承上启下的一节课。这节课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。 数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。 学生情况分析:对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交,会从代数、几何两个方面进行判断。本节课,学生将类比挖掘直线与椭圆圆的位置关系,学会从不同角度分析思考问题,为后续学习打下基础。本班为理科班,学生整体思维能力较强,勤于动脑,喜欢想问题,但不愿动手实践,特别是进行相关计算,另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。 二、教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知心理特征和实际,制定如下教学目标: 知识与技能:①理解直线与椭圆的位置关系; ②会进行位置关系的判断,计算弦长。 过程与方法:根据本节课的内容和学生的实际水平,通过回忆画图让学生理解直线与椭圆的位置关系;观察类比直线与圆的位置关系的判定,归纳总结出直线与椭圆的位置关系的判定,掌握代数方法, 学会解决相关的问题。 情感、态度、价值观:使得学生在学习知识的同时,培养学生自主探究和数形结合解决问题的能力。 三、教学重点、难点、关键 本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥

2020高考专题复习—圆锥曲线

一、2020年高考虽然推迟,但是一定要坚持多练习,加油! 二、高考分析 1、分值、题型、难度设置 圆锥曲线是高中数学的重要内容之一,分值约占14﹪,即20分左右,题型一般为二小一大,例如,2005年高考为一道选择题,一道填空题一道解答题。小题基础灵活,解答题一般在中等以上,一般具有较高的区分度。 考试内容:椭圆、双曲线、抛物线的定义,标准方程,简单的几何性质,椭圆的参数方程。 主要题型:(1)定义及简单几何性质的灵活运用;(2)求曲线方程(含指定圆锥曲线方程及轨迹方程);(3)直线与圆锥曲线的位置关系问题(交点、弦长、中点弦及斜率、对称问题),确定参数的取值范围;(4)在导数、不等式、函数、向量等知识网络交汇点上的问题。 2、命题方向 解析几何内容多,范围广,综合度高,其特点是:数形结合,形象思维,规律性强,运算量大,综合性好。主要考察运算能力,逻辑思维能力,以及分析问题和解决问题的综合能力。 涉及函数、方程、不等式、三角、向量和导数等方面的内容,以及数形结合、分类讨论、等价转化等数学思想方法。 要注意一些立意新,角度好,有创意的题目,特别要关注在向量和解析几何交汇点上的命题趋势,两者通过坐标自然融合,既考查基

础知识、基本方法,又平淡之中见功夫,强化区分功能,突出对能力的考查,从不同的思维层次上考察能力,有较好的思维价值。 三、 专题复习 2.1考查直线和圆锥曲线方程等有关基础知识和基本方法,要特别重视圆锥曲线定义的灵活应用,反映思维品质。 例1.1)如图,在正方体ABCD D C B A -111的侧 面1AB 内有 动点P 到直线AB 与直线11C B 距离相等,则动点P 所在的曲线的形状为: ( ) 1 11 A B 1 (A) (B) 1A B 1 A 1 B (C) B A B 1 (D) 分析:本题主要考查抛物线定义,线面垂直关系及点到直线的距离等概念,情景新,角度好,有创意,考查基础知识和基本方法。 ∵11C B ⊥面1AB ,1PB ∴即为点P 到直线11C B 的距离,故动点P 的轨迹应为过B B 1中点的抛物线,又点1A 显然在此抛物线上,故选C 。 2)已知F 1、F 2是双曲线)0,0(122 22>>=-b a b y a x 的两焦点,以线段F 1F 2为边作 正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( ) A .324+ B .13- C . 2 1 3+ D .13+ 2.2 求曲线的方程,考查坐标法的思想和方法,从不同思维层次上反映数学能力。

相关文档
最新文档