分类算法之贝叶斯网络(Bayesian networks)_光环大数据培训
R语言与数据分析之三:分类算法_光环大数据培训

R语言与数据分析之三:分类算法_光环大数据培训分类算法与我们的生活息息相关,也是目前数据挖掘中应用最为广泛的算法,如:已知系列的温度、湿度的序列和历史的是否下雨的统计,我们需要利用历史的数据作为学习集来判断明天是否下雨;又如银行信用卡诈骗判别。
分类问题都有一个学习集,根据学习集构造判别函数,最后根据判别函数计算我们所需要判别的个体属于哪一类的。
常见的分类模型与算法传统方法1、线性判别法;2、距离判别法;3、贝叶斯分类器;现代方法:1、决策树;2、支持向量机;3、神经网络;线性判别法:天气预报数据(x1,x2分别为温度和湿度,G为是否下雨)G=c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2)x1=c(-1.9,-6.9,5.2,5.0,7.3,6.8,0.9,-12.5,1.5,3.8,0.2,-0.1,0.4,2.7,2.1 ,-4.6,-1.7,-2.6,2.6,-2.8)x2=c(3.2,0.4,2.0,2.5,0.0,12.7,-5.4,-2.5,1.3,6.8,6.2,7.5,14.6,8.3,0.8, 4.3,10.9,13.1,12.8,10.0)a=data.frame(G,x1,x2)plot(x1,x2)text(x1,x2,G,adj=-0.5)观察上图可以1点分布在右下方区域,2点主要分布在上方区域,肉眼可见这两个集合分离的比较明显,线性判别法的原理就是在平面中找出一条直线,使得属于学习集1号的分布在直线一侧,属于学习集2号的分布在直线另一侧。
判别式是允许有出差的,只要在一定的范围内即可。
R语言的表达如下:library(MASS)z=predict(ld)newG=z$classy=cbind(G,z$x,newG)由上左图可以看出,首先计算先验概率,数据中1,2各占50%,然后计算x1和x2的平均值,最后给出了判别函数的代数表达:观察上右图可见,newG为预测的判别,可见两类分别只有一个判错,同时可以见判别函数的值为正值时判为第2类,判别函数值为负值时判为第1类。
分类算法之朴素贝叶斯分类(Naive Bayesian classification)_光环大数据培训

分类算法之朴素贝叶斯分类(Naive Bayesian classification)_光环大数据培训我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比的美感。
而每次将学过的算法应用到实际中,并解决了实际问题后,那种快感更是我在其它地方体会不到的。
一直想写关于算法的博文,也曾写过零散的两篇,但也许是相比于工程性文章来说太小众,并没有引起大家的兴趣。
最近面临毕业找工作,为了能给自己增加筹码,决定再次复习算法方面的知识,我决定趁这个机会,写一系列关于算法的文章。
这样做,主要是为了加强自己复习的效果,我想,如果能将复习的东西用自己的理解写成文章,势必比单纯的读书做题掌握的更牢固,也更能触发自己的思考。
如果能有感兴趣的朋友从中有所收获,那自然更好。
这个系列我将其命名为“算法杂货铺”,其原因就是这些文章一大特征就是“杂”,我不会专门讨论堆栈、链表、二叉树、查找、排序等任何一本数据结构教科书都会讲的基础内容,我会从一个“专题”出发,如概率算法、分类算法、NP问题、遗传算法等,然后做一个引申,可能会涉及到算法与数据结构、离散数学、概率论、统计学、运筹学、数据挖掘、形式语言与自动机等诸多方面,因此其内容结构就像一个杂货铺。
当然,我会竭尽所能,尽量使内容“杂而不乱”。
1.1、摘要贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。
本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。
然后,介绍贝叶斯分类算法的基础——贝叶斯定理。
最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。
1.2、分类问题综述一点都不夸张,只是我们没有意识到罢了。
例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、那边有个非主流”之类的话,其实这就是一种分类操作。
从数学角度来说,分类问题可做如下定义:已知集合:和,确定映射规则,使得任意有且仅有一个使得成立。
贝叶斯网络构建算法

贝叶斯网络构建算法贝叶斯网络(Bayesian Network)是一种概率图模型,用于表示和推断变量之间的因果关系。
构建一个准确、有效的贝叶斯网络需要采用相应的构建算法。
本文将介绍几种常用的贝叶斯网络构建算法及其应用。
一、完全数据集算法完全数据集算法是贝叶斯网络构建中最简单、最常用的方法之一。
它假设已有一个完整的数据集,其中包含了所有要构建贝叶斯网络所需的信息。
该算法的主要步骤如下:1. 数据预处理:对数据进行清洗、归一化等预处理操作,确保数据的准确性和一致性。
2. 变量分析:根据数据集对变量之间的关系进行分析,确定要构建贝叶斯网络的变量。
3. 贝叶斯网络结构初始化:将变量之间的关系表示为图的结构,可以使用邻接矩阵或邻接链表等数据结构进行存储。
4. 结构学习:利用数据集中的频数统计等方法,通过学习训练数据集中的概率分布来确定贝叶斯网络结构中的参数。
5. 参数学习:在确定了贝叶斯网络结构后,进一步学习网络中各个变量之间的条件概率分布。
6. 结果评估:使用评估指标如准确率、精确率和召回率等来评估生成的贝叶斯网络模型的性能。
完全数据集算法的优点是能够利用完整数据构建准确的贝叶斯网络模型,但它的缺点是对于大规模的数据集,计算成本较高。
二、半监督学习算法半监督学习算法是一种使用有标记和无标记数据进行贝叶斯网络构建的方法。
这种方法可以在数据集不完整的情况下也能获得较好的贝叶斯网络模型。
以下是半监督学习算法的主要步骤:1. 数据预处理:对有标记和无标记数据进行预处理,清洗、归一化等操作。
2. 初始化:使用有标记数据初始化贝叶斯网络结构,可以采用完全数据集算法。
3. 标记传播:通过标记传播算法,将有标记数据的标签扩散到无标记数据中,这样可以在无需标记大量数据的情况下获得更多的有关因果关系的信息。
4. 参数学习:在获得了更多的有标记数据后,使用这些数据进行参数学习,并更新贝叶斯网络模型。
5. 结果评估:使用评估指标对生成的贝叶斯网络模型进行评估。
光环大数据人工智能培训_广泛应用的贝叶斯神经网络是什么来历

光环大数据人工智能培训_广泛应用的贝叶斯神经网络是什么来历光环大数据作为国内知名的人工智能培训的机构,帮助无数学员稳健、扎实的提升人工智能技术,来光环大数据学人工智能,高薪就业不是梦!在刚刚过去的NIPS 2016会议上,剑桥大学信息工程学教授Zoubin Ghahramani为我们讲述了贝叶斯神经网络的发展历程。
本文从研究背景和问题应用切入,介绍了贝叶斯神经网络的起源、黄金时期以及后来的复兴,并介绍了每个发展阶段的几篇关键研究,是一份简明扼要的学习资料,能够帮你快速深入理解贝叶斯神经网络。
P4:上世纪八十年代的研究背景《玻尔兹曼机》于1985年出版,1986年反向传播网络论文发表,接着1987年PDP大量出现。
这一领域过去也被称为连接机制,NIPS是该领域的主要学术会议。
P5-P7:神经网络与深度学习简介神经网络与深度学习系统在很多基准任务的表现优异,但是它也有以下缺陷:需要大量数据(常常是数百万样本)训练与部署的计算量大(云GPU资源)不确定性表征得不太好常常被对抗样本欺骗对于优化很挑剔:非凸+架构选择,学习程序(procedure),初始化等等,还需要专家知识(expert knowledge)和实验过程黑箱,无法解释,缺少透明性,很难信任其结果。
P8 -12:贝叶斯在这里有什么帮助处理参数不确定性的所有来源具备处理结构不确定性的能力贝叶斯定理告诉我们要从数据(可衡量的量)当中做一些关于假设(不确定的量)的推理。
学习和预测都可以看作是推理的形式。
校正模型与预测不确定性:让系统知道它们何时不知道。
自动模型复杂性控制与结构学习((Bayesian Occam's Razor))要清楚的一点是「贝叶斯」属于算法范畴,不是模型类。
任何定义好的模型都可以用贝叶斯方法.P13:贝叶斯神经网络P14-16:贝叶斯神经网络的早期历史贝叶斯神经网络的早期历史可以从以下几篇论文中了解:John Denker, Daniel Schwartz, Ben Wittner, Sara Solla, RichardHoward, Lawrence Jackel, and John Hopfield. Large automaticlearning, rule extraction, and generalization. Complex Systems,1(5):877-922, 1987.Nafitali Tishby,Esther Levin,and Sara A Solla. Consistent inference of probabilities in layered networks: Prediction and generalization. In IJCNN,1989.P17- 20贝叶斯神经网络的黄金时期David JC Mackay发表在神经计算(Neural Computation)上的一篇文章:A Pratical Bayesian Framework For Backpropagation Networks揭开了这一时期的序幕。
Bayesiannetwork贝叶斯网络精品PPT课件

Parameter Learning
• In order to fully specify the Bayesian network and thus fully represent the joint probability distribution, it is necessary to specify for each node X the probability distribution for X conditional upon X's parents
prior possibility P(Y) ( rankings, recent history of their performance)
Introduction
• First half is over • The outcome of the first period may be
treated as a random variable X, the óbserved evidence' that influence your prediction of the final value of Y.
• Prior confidence --------belief • Process--------belief propagation dynamics
causal relationships
statistical dependence between
Bayesian Networks
• DAG: Directed Acyclic Graph • CPT: Conditioanl Probability Tables
• P(Y|X)= PX |YPY Hale Waihona Puke XIntroduction
数据分析中的贝叶斯网络介绍

数据分析中的贝叶斯网络介绍数据分析是当今社会中不可或缺的一部分,它帮助我们从大量的数据中提取有用的信息和洞察力。
在数据分析领域中,贝叶斯网络是一种常用的工具,用于建模和分析复杂的关系网络。
本文将介绍贝叶斯网络的基本概念、应用领域以及其在数据分析中的重要性。
贝叶斯网络是一种概率图模型,用于表示变量之间的依赖关系。
它由节点和有向边组成,其中节点代表变量,有向边表示变量之间的依赖关系。
贝叶斯网络使用概率分布来描述变量之间的条件概率关系,从而能够推断出未知变量的概率分布。
这使得贝叶斯网络成为处理不确定性和推理的有力工具。
贝叶斯网络的应用领域广泛,包括医学诊断、金融风险评估、自然语言处理等。
在医学诊断中,贝叶斯网络可以根据症状和疾病之间的关系来推断患者可能患有的疾病。
在金融风险评估中,贝叶斯网络可以分析不同因素对投资组合的影响,并评估投资组合的风险水平。
在自然语言处理中,贝叶斯网络可以用于语义分析和文本分类,帮助机器理解和处理自然语言。
贝叶斯网络在数据分析中的重要性不言而喻。
它能够帮助我们理解变量之间的关系,从而更好地分析数据。
通过贝叶斯网络,我们可以将数据分析问题转化为概率推理问题,从而能够更好地利用已有的知识和数据,进行推断和预测。
贝叶斯网络还具有很好的可解释性,能够清晰地展示变量之间的依赖关系,使得我们能够更好地理解模型的结果。
在使用贝叶斯网络进行数据分析时,我们需要进行模型的学习和推断。
模型的学习是指从数据中学习贝叶斯网络的结构和参数。
推断是指根据已有的知识和数据,推断未知变量的概率分布。
贝叶斯网络的学习和推断可以通过多种方法实现,包括参数估计、结构学习和概率推断算法。
这些方法在不同的场景下具有不同的适用性,需要根据具体的问题和数据进行选择。
除了学习和推断,贝叶斯网络还可以进行模型选择和验证。
模型选择是指从多个候选模型中选择最佳的模型,以最好地拟合数据。
模型验证是指评估模型的性能和准确性,以保证模型的可靠性。
贝叶斯网络

3.5 贝叶斯网络贝叶斯网络是一系列变量的联合概率分布的图形表示。
一般包含两个部分,一个就是贝叶斯网络结构图,这是一个有向无环图(DAG),其中图中的每个节点代表相应的变量,节点之间的连接关系代表了贝叶斯网络的条件独立语义。
另一部分,就是节点和节点之间的条件概率表(CPT),也就是一系列的概率值。
如果一个贝叶斯网络提供了足够的条件概率值,足以计算任何给定的联合概率,我们就称,它是可计算的,即可推理的。
3.5.1 贝叶斯网络基础首先从一个具体的实例(医疗诊断的例子)来说明贝叶斯网络的构造。
假设:命题S(moker):该患者是一个吸烟者命题C(oal Miner):该患者是一个煤矿矿井工人命题L(ung Cancer):他患了肺癌命题E(mphysema):他患了肺气肿命题S对命题L和命题E有因果影响,而C对E也有因果影响.命题之间的关系可以描绘成如右图所示的因果关系网.因此,贝叶斯网有时也叫因果网,因为可以将连接结点的弧认为是表达了直接的因果关系。
图3-5 贝叶斯网络的实例图中表达了贝叶斯网的两个要素:其一为贝叶斯网的结构,也就是各节点的继承关系,其二就是条件概率表CPT。
若一个贝叶斯网可计算,则这两个条件缺一不可。
贝叶斯网由一个有向无环图(DAG)及描述顶点之间的概率表组成.其中每个顶点对应一个随机变量。
这个图表达了分布的一系列有条件独立属性:在给定了父亲节点的状态后,每个变量与它在图中的非继承节点在概率上是独立的。
该图抓住了概率分布的定性结构,并被开发来做高效推理和决策。
贝叶斯网络能表示任意概率分布的同时,它们为这些能用简单结构表示的分布提供了可计算优势.假设对于顶点xi,其双亲节点集为Pai,每个变量xi的条件概率P(xi|Pai)。
则顶点集合X={x1,x2,…,xn}的联合概率分布可如下计算:。
双亲结点。
该结点得上一代结点。
该等式暗示了早先给定的图结构有条件独立语义。
它说明贝叶斯网络所表示的联合分布作为一些单独的局部交互作用模型的结果具有因式分解的表示形式。
贝叶斯网络教材全

其中P(D|G)称边际似然函数。 •定义一个随机变量Sh表示网络结构对应的状态,并赋予先验概率分布 P(Sh)。对任意样本D,计算后验概率分布有
其中P(D)是一个与结构无关的正规化常数,P(D|Sh)是边界似然。
(40-21)
贝叶斯网络学习
(40-9)
贝叶斯网络中的独立关系
•利用变量间的条件独立关系可以将联合概率分布分解成多个复杂度较低的 概率分布,从而降低模型复杂度,提高推理效率。
•例如:由链规则可以把联合概率分布P(A, B, E, J, M)改写为:
独立参数:1+2+4+8+16=31
– E与B相互独立,
即P(E|B)=P(E)
(40-2)
引言
• 贝叶斯网络将图论和统计学相结合,用于表达随机变量之间 复杂的概率不确定性,发现数据间的潜在关系。
• 优点: (1)知识表示形式更加直观。 (2) 对于问题域的建模,当条件或行为等发生变化时,不需要
修正模型。 (3)以图形化表示随机变量间的联合概率,处理不确定性信息。 (4)没有确定的输入或输出结点,结点之间相互影响,可以用于
•推论5.5 在一个贝叶斯网中,给定变量X的马尔可夫覆盖时,则X条件独立 于网络中所有其它变量。
•推论5.6 在一个贝叶斯网中,给定变量X的父节点Pa(X),则X条件独立于 它的所有非后代节点。
(40-14)
贝叶斯网络中的独立关系
(三)因果影响独立(causal independence)
因果影响独立指的是多个原因独立地影响同一个结果。
•两类评分标准:
① 基于编码理论
– 最小描述长度(Minimum Description Length,MDL) – 贝叶斯信息标准(Bayesian Information Criterion,BIC)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类算法之贝叶斯网络(Bayesian networks)_光环大数据培训
2.1、摘要
在上一篇文章中我们讨论了朴素贝叶斯分类。
朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。
当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力。
这一篇文章中,我们接着上一篇文章的例子,讨论贝叶斯分类中更高级、应用范围更广的一种算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。
2.2、重新考虑上一篇的例子
上一篇文章我们使用朴素贝叶斯分类实现了SNS社区中不真实账号的检测。
在那个解决方案中,我做了如下假设:
i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。
ii、日志密度、好友密度和是否使用真实头像在账号真实性给定的条件下是独立的。
但是,上述第二条假设很可能并不成立。
一般来说,好友密度除了与账号是否真实有关,还与是否有真实头像有关,因为真实的头像会吸引更多人加其为好友。
因此,我们为了获取更准确的分类,可以将假设修改如下:
及更多的使用真实头像。
ii、日志密度与好友密度、日志密度与是否使用真实头像在账号真实性给定的条件下是独立的。
iii、使用真实头像的用户比使用非真实头像的用户平均有更大的好友密度。
上述假设更接近实际情况,但问题随之也来了,由于特征属性间存在依赖关系,使得朴素贝叶斯分类不适用了。
既然这样,我去寻找另外的解决方案。
下图表示特征属性之间的关联:
上图是一个有向无环图,其中每个节点代表一个随机变量,而弧则表示两个随机变量之间的联系,表示指向结点影响被指向结点。
不过仅有这个图的话,只能定性给出随机变量间的关系,如果要定量,还需要一些数据,这些数据就是每个节点对其直接前驱节点的条件概率,而没有前驱节点的节点则使用先验概率表示。
例如,通过对训练数据集的统计,得到下表(R表示账号真实性,H表示头像真实性):
纵向表头表示条件变量,横向表头表示随机变量。
上表为真实账号和非真实账号的概率,而下表为头像真实性对于账号真实性的概率。
这两张表分别为“账号是否真实”和“头像是否真实”的条件概率表。
有了这些数据,不但能顺向推断,还能通过贝叶斯定理进行逆向推断。
例如,现随机抽取一个账户,已知其头像为假,求其账号也为假的概率:
也就是说,在仅知道头像为假的情况下,有大约35.7%的概率此账户也为假。
如果觉得阅读上述推导有困难,请复习概率论中的条件概率、贝叶斯定理及全概率公式。
如果给出所有节点的条件概率表,则可以在观察值不完备的情况下对任意随机变量进行统计推断。
上述方法就是使用了贝叶斯网络。
2.3、贝叶斯网络的定义及性质
有了上述铺垫,我们就可以正式定义贝叶斯网络了。
一个贝叶斯网络定义包括一个有向无环图(DAG)和一个条件概率表集合。
DAG中每一个节点表示一个随机变量,可以是可直接观测变量或隐藏变量,而有向边表示随机变量间的条件依赖;条件概率表中的每一个元素对应DAG中唯一的节点,存储此节点对于其所有直接前驱节点的联合条件概率。
贝叶斯网络有一条极为重要的性质,就是我们断言每一个节点在其直接前驱节点的值制定后,这个节点条件独立于其所有非直接前驱前辈节点。
这个性质很类似Markov过程。
其实,贝叶斯网络可以看做是Markov链的非线性扩展。
这条特性的重要意义在于明确了贝叶斯网络可以方便计算联合概率分布。
一般情况先,多变量非独立联合条件概率分布有如下求取公式:
而在贝叶斯网络中,由于存在前述性质,任意随机变量组合的联合条件概率分布被化简成
其中Parents表示xi的直接前驱节点的联合,概率值可以从相应条件概率表中查到。
贝叶斯网络比朴素贝叶斯更复杂,而想构造和训练出一个好的贝叶斯网络更是异常艰难。
但是贝叶斯网络是模拟人的认知思维推理模式,用一组条件概率函数以及有向无环图对不确定性的因果推理关系建模,因此其具有更高的实用价值。
2.4、贝叶斯网络的构造及学习
构造与训练贝叶斯网络分为以下两步:
1、确定随机变量间的拓扑关系,形成DAG。
这一步通常需要领域专家完成,而想要建立一个好的拓扑结构,通常需要不断迭代和改进才可以。
2、训练贝叶斯网络。
这一步也就是要完成条件概率表的构造,如果每个随机变量的值都是可以直接观察的,像我们上面的例子,那么这一步的训练是直观的,方法类似于朴素贝叶斯分类。
但是通常贝叶斯网络的中存在隐藏变量节点,那么训练方法就是比较复杂,例如使用梯度下降法。
由于这些内容过于晦涩以及牵扯到较深入的数学知识,在此不再赘述,有兴趣的朋友可以查阅相关文献。
2.5、贝叶斯网络的应用及示例
贝叶斯网络作为一种不确定性的因果推理模型,其应用范围非常广,在医疗诊断、信息检索、电子技术与工业工程等诸多方面发挥重要作用,而与其相关的一些问题也是近来的热点研究课题。
例如,Google就在诸多服务中使用了贝叶斯网络。
在信息不完备的情况下通过可以观察随机变量推断不可观察的随机变量,并且不可观察随机变量可以多于以一个,一般初期将不可观察变量置为随机值,然后进行概率推理。
下面举一个例子。
还是SNS社区中不真实账号检测的例子,我们的模型中存在四个随机变量:账号真实性R,头像真实性H,日志密度L,好友密度F。
其中H,L,F是可以观察到的值,而我们最关系的R是无法直接观察的。
这个问题就划归为通过H,L,F的观察值对R进行概率推理。
推理过程可以如下表示:
1、使用观察值实例化H,L和F,把随机值赋给R。
2、计算。
其中相应概率值可以查条件概率表。
由于上述例子只有一个未知随机变量,所以不用迭代。
更一般得,使用贝叶斯网络进行推理的步骤可如下描述:
1、对所有可观察随机变量节点用观察值实例化;对不可观察节点实例化
为随机值。
2、对DAG进行遍历,对每一个不可观察节点y,计算,其中wi表示除y 以外的其它所有节点,a为正规化因子,sj表示y的第j个子节点。
3、使用第三步计算出的各个y作为未知节点的新值进行实例化,重复第
二步,直到结果充分收敛。
4、将收敛结果作为推断值。
以上只是贝叶斯网络推理的算法之一,另外还有其它算法,这里不再详述。
为什么大家选择光环大数据!
大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请大数据领域具有多年经验的讲师,提高教学的整体质量与教学水准。
讲师团及时掌握时代的技术,将时新的技能融入教学中,让学生所学知识顺应时代所需。
通过深入浅出、通俗易懂的教学方式,指导学生较快的掌握技能知识,帮助莘莘学子实现就业梦想。
光环大数据启动了推进人工智能人才发展的“AI智客计划”。
光环大数据专注国内大数据和人工智能培训,将在人工智能和大数据领域深度合作。
未来三年,光环大数据将联合国内百所大学,通过“AI智客计划”,共同推动人工智能产业人才生态建设,培养和认证5-10万名AI大数据领域的人才。
参加“AI智客计划”,享2000元助学金!
【报名方式、详情咨询】
光环大数据网站报名:
手机报名链接:http:// /mobile/。