(完整版)高考数学函数专题习题及详细答案

(完整版)高考数学函数专题习题及详细答案
(完整版)高考数学函数专题习题及详细答案

函数专题练习

1.函数1

()x y e

x R +=∈的反函数是( )

A .1ln (0)y x x =+>

B .1ln (0)y x x =->

C .1ln (0)y x x =-->

D .1ln (0)y x x =-+>

2.已知(31)4,1

()log ,1a a x a x f x x x -+?

是(,)-∞+∞上的减函数,那么a 的取值范围是

(A )(0,1)

(B )1

(0,)3 (C )11[,)73

(D )1[,1)7

3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,

1221|()()|||f x f x x x -<-恒成立”的只有

(A )1()f x x

=

(B )()||f x x = (C )()2x

f x =

(D )2

()f x x =

4.已知()f x 是周期为2

的奇函数,当01x <<时,()lg .f x x =设

63(),(),52a f b f ==5(),2

c f =则

(A )a b c << (B )b a c << (C )c b a << (D )c a b <<

5.

函数2

()lg(31)f x x =

++的定义域是 A .1(,)3-+∞ B . 1(,1)3- C . 11(,)33- D . 1(,)3

-∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是

A .3 ,y x x R =-∈

B . sin ,y x x R =∈

C . ,y x x R =∈ D

7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点

(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =

A .4

B .3

C . 2

D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是

(A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x

y e =的图象与函数()y f x =的图象关于直线y x =对称,则

A .()22()x

f x e x R =∈ B .()2ln 2ln (0)f x x x =>g

)

C .()22()x

f x e x R =∈ D .()2ln ln 2(0)f x x x =+>

10、设12

32,2()((2))log (1) 2.

x e x f x f f x x -??=?-≥??<,

则的值为, (A )0 (B )1 (C )2 (D )3 11、对a ,b ∈R ,记max {a ,b }=???≥b

a b b

a a <,,,函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值

(A )0 (B )

12 (C ) 3

2

(D )3 12、关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;

②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.

命题的个数是 A .0 B .1 C .2 D .3 (一) 填空题(4个)

1.函数()f x 对于任意实数x 满足条件()()

1

2f x f x +=

,若()15,f =-则()()5f f =_______________。

2设,0.(),0.

x e x g x lnx x ?≤=?>?则1

(())2g g =__________

3.已知函数()1

,21

x

f x a =-

+,若()f x 为奇函数,则a =________。 4. 设0,1a a >≠,函数2

()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的解

集为 。

(二) 解答题(6个) 1. 设函数54)(2--=x x x f .

(1)在区间]6,2[-上画出函数)(x f 的图像; (2)设集合{}),6[]4,0[]2,(,5)(∞+-∞-=≥=Y Y B x f x A . 试判断集合A 和B 之间

的关系,并给出证明;

(3)当2>k 时,求证:在区间]5,1[-上,3y kx k =+的图像位于函数)(x f 图像的上方.

2、设f(x)=3ax 0.2=++++c b a c bx b

若,f (0)>0,f (1)>0,求证:

(Ⅰ)a >0且-2<

b

a

<-1; (Ⅱ)方程f (x )=0在(0,1)内有两个实根.

3. 已知定义域为R 的函数12()2x x b

f x a

+-+=+是奇函数。

(Ⅰ)求,a b 的值;

(Ⅱ)若对任意的t R ∈,不等式2

2

(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围;

4.设函数f (x )=,2

2

a

ax x c ++其中a 为实数. (Ⅰ)若f (x )的定义域为R ,求a 的取值范围; (Ⅱ)当f (x )的定义域为R 时,求f (x )的单减区间.

5. 已知定义在正实数集上的函数2

1()22

f x x ax =

+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同. (I )用a 表示b ,并求b 的最大值; (II )求证:()()f x g x ≥(0x >).

6. 已知函数2()1f x x x =+-,,αβ是方程f (x )=0的两个根()αβ>,'()f x 是f (x )的导数;设11a =,1()

'()

n n n n f a a a f a +=-

(n =1,2,……) (1)求,αβ的值;

(2)证明:对任意的正整数n ,都有n a >a ; (3)记ln n n n a b a a

β

-=-(n =1,2,……),求数列{b n }的前n 项和S n 。

解答: 一、选择题 1解:由1

x y e

+=得:1ln ,x y +=即x=-1+lny ,所以1ln (0)y x x =-+>为所求,故选D 。

2解:依题意,有0

3

,又当x <1时,(3a -1)x +4a >7a -1,当x >1时,log a x <0,所以7a -1≥0解得x ≥1

7

故选C 3解:2112121212x x 111|

||||x x x x x x |x x |--==-|12x x 12∈Q ,(,)12x x ∴>112

1

x x ∴<1∴

12

11

|

x x -|<|x 1-x 2|故选A 4解:已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设

644()()()555a f f f ==-=-,311()()()222b f f f ==-=-,51

()()22c f f ==<0,∴

c a b <<,选D .

5解:由131

1301<<-???

?>+>-x x x ,故选B .

6解:B 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在

其定义域内不是奇函数,是减函数;故选A . 7解:0)(=x f 的根是=x 2,故选C

8解:A 中()()()F x f x f x =-则()()()()F x f x f x F x -=-=,

即函数()()()F x f x f x =-为偶函数,B 中()()()F x f x f x =-,()()()F x f x f x -=-此时()F x 与()F x -的关系不能确定,即函数()()()F x f x f x =-的奇偶性不确定, C 中()()()F x f x f x =--,()()()()F x f x f x F x -=--=-,即函数()()()F x f x f x =--为奇函数,D 中()()()F x f x f x =+-,()()()()F x f x f x F x -=-+=,即函数

()()()F x f x f x =+-为偶函数,故选择答案D 。

9解:函数x

y e =的图象与函数()y f x =的图象关于直线y x =对称,所以

()f x 是x

y e =的反函数,即

()f x =ln x ,∴ ()2ln 2ln ln 2(0)f x x x x ==+>,选D .

10解:f (f (2))=f (1)=2,选C

11解:当x <-1时,|x +1|=-x -1,|x -2|=2-x ,因为(-x -1)-(2-x )=-3<0,所以2-x >-x -1;当-1≤x <1

2

时,|x +1|=x +1,|x -2|=2-x ,因为(x +1)-(2-x )=2x -1<0,x +1<2-x ;当1

2

≤x <2时,x +1≥2-x ;当x ≥2时,|x +1|=x +1,|x -2|=x -2,显然x +1>x -2;

故2((,1)12([1,))

2

()11([,2))

2

1([2,))x x x x f x x x x x -∈-∞-??

?-∈-?=??+∈??+∈+∞?

据此求得最小值为32。选C

12解:关于x 的方程(

)

0112

2

2

=+---k x x 可化为(

)

2

2

2

11011x x k x x --+=≥≤(-)(或-)…(1) 或(

)

2

2

2

110x x k -+=+(-)(-1

① 当k =-2时,方程(1)的解为

(2)无解,原方程恰有2个不同的实根

② 当k =

1

4

时,方程(1)有两个不同的实根

±2(2)有两个不同的实根

±2,即原方

程恰有4个不同的实根

③ 当k =0时,方程(1)的解为-1,+1,

,方程(2)的解为x =0,原方程恰有5个不同

的实根 ④ 当k =

2

9

时,方程(1)的解为

±3,

±3,方程(2)的解为

±3,

±3,即原方程恰

有8个不同的实根 选A

二、填空题。 1解:由()()12f x f x +=

得()()

1

4()2f x f x f x +=

=+,所以(5)(1)5f f ==-,则()()11

5(5)(1)(12)5

f f f f f =-=-=

=--+。

2解:1ln 2111

(())(ln )222

g g g e ===.

3解:函数1().21x f x a =-

+若()f x 为奇函数,则(0)0f =,即01021a -=+,a =2

1

. 4解:由0,1a a >≠,函数2

()log (23)a f x x x =-+有最小值可知a >1,所以不等式

log (1)0a x ->可化为x -1>1,即x >2.

三、解答题 1解:(1)

(2)方程5)(=x f 的解分别是4,

0,142-和142+,由于)(x f 在]1,(-∞-和

]5,2[上单调递减,在]2,1[-和),5[∞+上单调递增,因此

(][)

∞++-∞-=,142]4,0[142,Y Y A .

由于A B ?∴->-<+,2142,6142.

(3)[解法一] 当]5,1[-∈x 时,54)(2++-=x x x f . )54()3()(2++--+=x x x k x g )53()4(2-+-+=k x k x

436202422

+--

??? ?

?

--=k k k x , ∴

>,2k Θ124<-k

. 又51≤≤-x , ① 当1241<-≤-k ,即62≤

x -=

, min )(x g ()[]

64104

1436202

2---=+--=k k k .

064)10(,64)10(1622<--∴<-≤k k Θ, 则0)(min >x g .

② 当

12

4-<-k

,即6>k 时,取1-=x , min )(x g =02>k . 由 ①、②可知,当2>k 时,0)(>x g ,]5,1[-∈x .

因此,在区间]5,1[-上,)3(+=x k y 的图像位于函数)(x f 图像的上方. [解法二] 当]5,1[-∈x 时,54)(2++-=x x x f .

由?

??++-=+=,54),3(2

x x y x k y 得0)53()4(2

=-+-+k x k x , 令 0)53(4)4(2=---=?k k ,解得 2=k 或18=k ,

在区间]5,1[-上,当2=k 时,)3(2+=x y 的图像与函数)(x f 的图像只交于一点

)8,1(; 当18=k 时,)3(18+=x y 的图像与函数)(x f 的图像没有交点.

如图可知,由于直线)3(+=x k y 过点)0,3(-,当2>k 时,直线)3(+=x k y 是由直

线)3(2+=x y 绕点)0,3(-逆时针方向旋转得到. 因此,在区间]5,1[-上,)3(+=x k y 的图像位于函数)(x f 图像的上方.

2(I )证明:因为(0)0,(1)0f f >>,所以0,320c a b c >++>. 由条件0a b c ++=,消去b ,得0a c >>;

由条件0a b c ++=,消去c ,得0a b +<,20a b +>. 故21b

a

-<

<-. (II )抛物线2

()32f x ax bx c =++的顶点坐标为2

3(,)33b ac b a a

--, 在21b a -<

<-的两边乘以13-,得12

333

b a <-<. 又因为(0)0,(1)0,f f >>而22()0,33b a

c ac

f a a

+--=-

< 所以方程()0f x =在区间(0,)3b a -

与(,1)3b

a

-内分别有一实根。 故方程()0f x =在(0,1)内有两个实根.

3解:(Ⅰ)因为()f x 是奇函数,所以(0)f =0,即1

11201()22x

x b b f x a a +--=?=∴=++ 又由f (1)= -f (-1)知1

112

2 2.41

a a a -

-=-?=++

(Ⅱ)解法一:由(Ⅰ)知11211

()22221

x x x f x +-==-+++,易知()f x 在(,)-∞+∞上

为减函数。又因()f x 是奇函数,从而不等式: 2

2

(2)(2)0f t t f t k -+-< 等价于2

2

2

(2)(2)(2)f t t f t k f k t -<--=-,因()f x 为减函数,由上式推得:

2222t t k t ->-.即对一切t R ∈有:2320t t k -->,

从而判别式14120.3

k k ?=+

解法二:由(Ⅰ)知

1

12()22

x

x f x +-=+.又由题设条件得: 2

2

222221

21

1212022

22

t t

t k

t t t k ---+-+--=

<++,

即 :2

2

2

2

21

221

2(22)(12)(22)(12)0t k t

t

t

t t

k

-+--+-+-++-<,

整理得 2

3221,t

t k

-->因底数2>1,故:2320t t k -->

上式对一切t R ∈均成立,从而判别式14120.3

k k ?=+

4解:(Ⅰ)()f x 的定义域为R ,2

0x ax a ∴++≠恒成立,2

40a a ∴?=-<,

04a ∴<<,即当04a <<时()f x 的定义域为R .

(Ⅱ)22

(2)e ()()

x

x x a f x x ax a +-'=++,令()0f x '≤,得(2)0x x a +-≤. 由()0f x '=,得0x =或2x a =-,又04a <

02a ∴<<时,由()0f x '<得02x a <<-;

当2a =时,()0f x '≥;当24a <<时,由()0f x '<得20a x -<<,

即当02a <<时,()f x 的单调减区间为(02)a -,

; 当24a <<时,()f x 的单调减区间为(20)a -,.

5解:(Ⅰ)设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同.

()2f x x a '=+∵,2

3()a g x x

'=,由题意00()()f x g x =,00()()f x g x ''=.

即2

20002

00123ln 232x ax a x b a x a x ?+=+????+=??

,,由200

32a x a x +=得:0x a =,或03x a =-(舍去). 即有2222215

23ln 3ln 22b a a a a a a a =

+-=-. 令22

5()3ln (0)2

h t t t t t =->,则()2(13ln )h t t t '=-.于是

当(13ln )0t t ->,即13

0t e <<时,()0h t '>; 当(13ln )0t t -<,即13

t e >时,()0h t '<.

故()h t 在130e ?? ???,为增函数,在1

3e ??

+ ???,∞为减函数,

于是()h t 在(0)+,∞的最大值为12

333

2

h e e ??= ???.

(Ⅱ)设2

21()()()23ln (0)2

F x f x g x x ax a x b x =-=

+-->, 则()F x '23()(3)

2(0)a x a x a x a x x x

-+=+-=>. 故()F x 在(0)a ,为减函数,在()a +,∞为增函数,

于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==-=. 故当0x >时,有()()0f x g x -≥,即当0x >时,()()f x g x ≥. 6解析:(1)∵2()1f x x x =+-,,αβ是方程f (x )=0的两个根()αβ>,

∴αβ=

=

; (2)'()21f x x =+,21

115

(21)(21)12

442121

n n n n

n n n n n n a a a a a a a a a a ++++-+-=-=-++ =5114

(21)4

212n n a a ++

-

+,∵11a =,

∴有基本不等式可知20a ≥>(

当且仅当1a 时取等号)

,∴20a >

>

同,样3a

,……,n a α=(n =1,2,……), (3)1()()(1)2121

n

n n n n n n n a a a a a a a a αββ

ββα+----=--=++++,而1αβ+=-,即1αβ+=-,

21()21n n n a a a ββ+--=+,同理21()21n n n a a a αα+--=+,12n n b b +=,

又11ln 1b βα-===-

2(2n n S =-四、创新试题

1解:依题意,有x 1=50+x 3-55=x 3-5,∴x 1

2解:令c =π,则对任意的x ∈R ,都有f (x )+f (x ?c )=2,于是取2

1

==b a ,c =π,则对任意的x ∈R ,af (x )+bf (x ?c )=1,由此得

1cos -=a

c

b 。选C。

相关文档
最新文档