信号与系统课后答案
信号与系统课后题解第二章

⑺
对⑺式求一阶导,有:
de(t ) d 2 i 2 (t ) di (t ) du (t ) =2 +2 2 + c 2 dt dt dt dt de(t ) d 2 i2 (t ) di (t ) =2 + 2 2 + 2i1 (t ) + 2i 2 (t ) 2 dt dt dt
⑻
将⑸式代入⑻式中,有:
λ 2 + 2λ + 1 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1
y h (t ) = C1e −t + C2 te− t
由初始状态为 y (0 ) = 1, y ' (0 ) = 0 ,则有:
C1 = 1 − C 1 + C 2 = 0
由联立方程可得 故系统的零输入响应为:
由联立方程可得 故系统的零输入响应为:
A1 = 2, A2 = −1
y zi (t ) = 2e − t − e −2 t
(2)由原微分方程可得其特征方程为
λ 2 + 2λ + 2 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1 ± i
y h (t ) = e −t (C1 cos t + C2 sin t )
(− 3C1 + 3C2 )δ (t ) + (C1 + C2 )δ ' (t ) − (− 2C1 + C 2 )δ (t ) = δ (t )
(
(
( + C e )δ (t ) + (C e
2 1
)
−2 t
+ C2 e t δ ' (t )
智慧树知道网课《信号与系统(湖南工学院)》课后习题章节测试满分答案

B.
C.
D.
8
【单选题】(10分)
某连续时间LTI系统的系统函数 ,则该系统属于什么类型()
A.
带通
B.
带阻
C.
低通
D.
高通
9
【单选题】(10分)
利用梅森公式对连续系统模拟时,卡尔曼形式是最基本的,在卡尔曼形式下可以把传递函数理解为()
A.
B.
C.
D.
4
【单选题】(10分)
若信号 的奈奎斯特角频率为 ,则 的奈奎斯特角频率为
A.
B.
C.
D.
5
【单选题】(10分)
信号 的奈奎斯特频率是多少?
A.
100Hz
B.
400Hz
C.
300Hz
D.
200Hz
6
【单选题】(10分)
信号 的希尔伯特变换为()
A.
B.
C.
D.
7
【单选题】(10分)
如果LTI系统的频率响应为 ,求系统的阶跃响应为()
10
【单选题】(10分)
已知连续时不变系统的频率响应为
求对信号 的响应 。(A、B均为常数)
A.
B.
C.
D.
1
【单选题】(10分)
求信号 的单边拉氏变换()
A.
B.
C.
D.
2
【单选题】(10分)
信号 的拉氏变换为()
A.
B.
C.
D.
3
【单选题】(10分)
已知 ,求原函数的初值 和终值 ()
A.
B.
D.
3
【单选题】(10分)
信号 如图所示,求其频谱。
信号与系统课后习题答案

《低频电子线路》一、单选题(每题2分,共28分:双号做双号题,单号做单号题)1.若给PN结两端加正向电压时,空间电荷区将()A变窄B基本不变C变宽D无法确定2.设二极管的端电压为 U,则二极管的电流与电压之间是()A正比例关系B对数关系C指数关系D无关系3.稳压管的稳压区是其工作()A正向导通B反向截止C反向击穿D反向导通4.当晶体管工作在饱和区时,发射结电压和集电结电压应为 ( ) A前者反偏,后者也反偏B前者反偏,后者正偏C前者正偏,后者反偏D前者正偏,后者也正偏5.在本征半导体中加入何种元素可形成N型半导体。
()A五价B四价C三价D六价6.加入何种元素可形成P 型半导体。
()A五价B四价C三价D六价7.当温度升高时,二极管的反向饱和电流将()。
A 增大B 不变C 减小D 不受温度影响8. 稳压二极管两端的电压必须( )它的稳压值Uz 才有导通电流,否则处于截止状态。
A 等于B 大于C 小于D 与Uz 无关9. 用直流电压表测得放大电路中某三极管各极电位分别是2V 、6V 、2.7V ,则三个电极分别是() A (B 、C 、E )B (C 、B 、E )C (E 、C 、B )D (B 、C 、E )10. 三极管的反向电流I CBO 是由( )形成的。
A 多数载流子的扩散运动B 少数载流子的漂移运动C 多数载流子的漂移运动D 少数载流子的扩散运动11. 晶体三极管工作在饱和状态时,集电极电流C i 将( )。
A 随B i 增加而增加B 随B i 增加而减少C 与B i 无关,只决定于e R 和CE uD 不变12. 理想二极管的正向电阻为( )A A.零 B.无穷大 C.约几千欧 D.约几十欧13. 放大器的输入电阻高,表明其放大微弱信号能力( )。
A 强B 弱C 一般D 不一定14. 某两级放大电路,第一级电压放大倍数为5,第二级电压放大倍数为20,该放大电路的放大倍数为( )。
A 100B25C 5D2015.如题47图所示电路中,静态时, T1、T2 晶体管发射极电位UEQ为( ) 。
信号与系统杨晓非课后答案

信号与系统杨晓非课后答案【篇一:《信号与系统》考试大纲】>(一)信号与系统的基本概念信号的基本概念及其分类,信号的表示方法,典型连续信号及其性质,典型离散信号及性质,信号的基本运算和变换,系统的基本概念及其分类,线性非时变系统及其性质,系统性质的判定,连续系统与离散系统的数学模型,离散系统数学模型的建立,连续系统的时域模拟。
(二)连续系统的时域卷积分析法 lti连续系统的时域经典分析法。
冲激响应、阶跃响应及其与冲激响应的关系;任意波形信号的时域分解与卷积积分的定义,卷积积分的图解法和阶跃函数法、求解卷积的运算性质,lti连续系统零状态响应的卷积分析法,运用杜阿密尔积分求解系统的零状态响应。
lti离散系统的时域经典分析法。
单位序列响应、阶跃响应及其与单位序列响应的关系;任意波形离散信号的时域分解与积卷和的定义,卷积和的图解法、时限序列卷积和的不进位乘法和算式法求解、卷积和的运算性质,lti离散系统零状态响应的卷积和分析法。
(三)信号的频谱分析与傅里叶变换分析法周期信号表为傅里叶级数,周期信号的频谱及其特点,周期信号的功率谱。
非周期信号的傅里叶变换,频谱密度及其特点,典型信号的傅里叶变换,傅里叶变换的性质,周期信号的傅里叶变换,能量谱密度和功率谱密度。
频域系统函数h(j?),lti连续系统零状态响应的傅里叶变换分析法,系统无失真传输的条件;无失真传输系统和理想低通滤波器的冲激响应与阶跃响应,抽样定理。
(四)拉普拉斯变换分析法拉普拉斯变换及其收敛域,单边拉普拉斯变换,典型信号的单边拉普拉斯变换,单边拉普拉斯变换的性质,求拉普拉斯反变换的部分分式展开法和留数法,单边拉普拉斯变换与傅里叶变换的关系。
微分方程的拉普拉斯变换解,lti连续系统的s域分析法,电路的s 域分析法,系统函数h(s)在系统分析中的意义及求取,系统信号流图及其化简与模拟。
系统函数的零、极点概念,零极点图,连续系统函数h(s)的零极点分布与系统的时间特性、频率特性、因果性以及稳定性的定性关系,系统稳定性的判别。
信号与系统刘树棠课后答案

信号与系统刘树棠课后答案【篇一:信号与系统复习指导】>本课程是电子信息与电气类专业本科生的一门重要的专业基础课程。
它主要讨论信号、线性时不变系统的分析方法,并通过实例分析,向学生介绍工程应用中的重要方法。
通过这门课程的学习,提高学生的分析问题和解决问题的能力,为学生今后进一步学习信号处理、网络分析综合、通信理论、控制理论等课程打下良好的基础。
本课程需要较强的数学基础,其主要任务是运用相关数学方法进行信号与线性时不变系统分析。
注重结合工程实际。
先修课程:“高等数学”、“大学物理”、“电路分析”等。
□ 课程的主要内容和基本要求1. 信号与系统的基本概念(1) 掌握信号的基本描述方法、分类及其基本运算。
(2) 掌握系统的基本概念和描述方法,掌握线性时不变系统的概念。
2. 信号与系统的时域分析(1) 掌握卷积积分的概念及其性质。
(2) 掌握卷积和的概念及计算。
(3) 掌握连续信号的理想取样模型及取样定理。
3. 连续时间信号与系统的频域分析 (1) 掌握周期信号的傅里叶级数展开。
(2) 掌握傅里叶变换及其基本性质。
(3) 掌握信号的频谱的概念及其特性。
(4) 掌握系统对信号响应的频域分析方法。
(5) 掌握系统的频域传输函数的概念。
(6) 掌握理想低通滤波器特性,了解系统延时、失真、因果等概念。
(7) 掌握线性系统的不失真传输条件。
4.离散时间信号与系统的频域分析 (1) 理解周期信号的傅里叶级数展开。
(2) 掌握傅里叶变换及其基本性质。
(4) 掌握系统的频率响应。
(5) 掌握系统对信号响应的频域分析方法。
5. 连续时间信号与系统的复频域分析(1) 掌握单边拉普拉斯变换的定义和性质。
(2) 掌握拉普拉斯反变换的计算方法(部分分式分解法)。
(3) 掌握系统的拉普拉斯变换分析方法。
(4) 掌握系统函数的概念。
(5) 掌握系统极零点的概念及其应用。
(6) 掌握系统稳定性概念。
(7) 掌握系统的框图与信号流图描述。
信号与系统课后答案第八章作业答案后半部分

频率响应为
H
(e jΩ
)
=
H
(z)
|z = e jΩ
=
4 ⎡⎣ejΩ −1⎤⎦
3
⎡⎢⎣e
jΩ
−
1 3
⎤ ⎥⎦
经计算得极点为 p = 1 ,零点为 z = 1。 3
H(e jΩ)
(Ω)
幅频响应图(横坐标进行了归一化处理)
(c)Yx (z) =
y(−1) + 2 y(−2) + 2 y(−1)z−1 1− z−1 − 2z−2
=
8⋅ z +1⋅ 3 z−2 3
z, z +1
z
>2
其逆
z
变换即零输入响应为
yx
(n)
=
8 3
⋅
2n
u(n)
+
1 3
⋅
(−1)n
u(n)
(d)根据上面计算的零输入和零状态响应可知系统的完全响应为
f (n) = (−1)n u(n) , y(−1) = 0 , y(−2) = 1;
解:(1)将原式两边取单边 Z 变换得,
Y (z) −[z−1Y (z) + y(−1)] − 2[z−2Y (z) + y(−2) + y(−1)z−1] = F (z) + z−1F (z)
整理得:
Y (z)
=
题图 8-23
根据系统框图可得 h(n) = h1(n) ∗[h2 (n) + h3 (n)] ,故 h(n) = δ (n) ∗[h2 (n) + h3(n)] = u(n) + u(n − 2)
信号与系统课后题解第一章
(6) f (2 − t ) (8) f (− 2 − t )ε (− t )
图 1.14
【知识点窍】本题考察信号的绘制及自变量变换导致信号变换的概念 【逻辑推理】本题用到信号的时域运算与变换。 解: (1) f (2t ) 信号的波形如图 1.15 所示。 (2) f (t )ε (t ) 信号的波形如图 1.16 所示。
t
ε [sin π t ]
1 … -2 -1 1 2 3 …
t
(b) 图 1.8 (9) 2 −n ε [n ] 函数式的信号的波形如图 1.9(c )所示. 。
ε [n]
1 0 1 … 2 1
2−n
-1
n
-1 (a) 0 1 2
…
n
(b)
2 −n ε [n ]
1 … -1 0 1 2 (c )
7
n
4
cos ω (t − t 0 )
1 … …
t0பைடு நூலகம்
-1 (a)
t
cos [ω (t − t 0 )]ε (t )
1 …
t0
-1
t
(b) 图 1.3
cos ω (t − t 0 )
1 …
t0
-1
t
图 1.4 (5) ε (t 0 − t ) (6) ε (t 0 − 2t )
t 0 > 0 函数式的信号的波形如图 1.5(b)所示. 。 t 0 > 0 函数式的信号的波形如图 1.6 所示. 。
T
2
(4) 3 cos (ω 0t + θ ) 是功率信号,其平均功率为:
P = lim
1 T → ∞ 2T
2 ∫−T [3 cos (ω0 t + θ )] dt = Tlim →∞ T
信号与系统第二版课后答案
(1)
(2)利用(1)的结果,证明阶跃响应
证(1)因为
y(t)=f(t)h(t)
由微分性质,有
y(t)=f(t)h(t)
再由积分性质,有
(2)因为
s(t)=(t)h(t)
由(1)的结果,得
3-1求题3-1图所示周期信号的三角形式的傅里叶级数表示式。
题3-1图
解对于周期锯齿波信号,在周期( 0,T)内可表示为
所以输出
即y(t)包含了f(t)的全部信息F(),故恢复了f(t)。
5-1求下列函数的单边拉氏变换。
(1)
(2)
(3)
解(1)
(2)
(3)
5-2求下列题5-2图示各信号的拉氏变换。
题5-2图
解(a)因为
而
故
(b)因为
又因为
故有
5-3利用微积分性质,求题5-3所示信号的拉氏变换。
题5-3图
解先对f(t)求导,则
证明不失一般性,设输入有两个分量,且
则有
相加得
即
可见
即满足可加性,齐次性是显然的。故系统为线性的。
1-8若有线性时不变系统的方程为
若在非零f(t)作用下其响应 ,试求方程
的响应。
解因为f(t) ,由线性关系,则
由线性系统的微分特性,有
故响应
第2章习题解析
2-1如图2-1所示系统,试以uC(t)为输出列出其微分方程。
图p2-6
2-7如题2-7图一阶系统,对(a)求冲激响应i和uL,对(b)求冲激响应uC和iC,并画出它们的波形。
题2-7图
解由图(a)有
即
当uS(t) =(t),则冲激响应
则电压冲激响应
2024年信号与系统第5章课后习题答案
5.5 离散信号()f n 的波形如习题图5-3所示,试画出下列信号的波形。
(2)(1)(4)(2)(6)(1)(1)(8)(1)()(10)(1)(1)f n f n f n f n f n U n f n U n - +×- -- ---+习题图5-3(2)(1)f n -(4)(2)f n32211()10(2)102100n n n f n n f n n n =-ìï =- 3 =-ìïïï= = Þ = =ííïï = îïï î其他其他+×-(6)(1)(1)f n f n--(8)(1)()f n U n---+f n U n(10)(1)(1)5.17 求下列差分方程所描述的系统的单位样值响应。
1(1)()(2)()9y n y n f n --=解:单位样值响应是指当激励信号为()n d 时系统的零状态响应。
要求单位样值响应,输入()()f n n d =,代入差分方程得:1()(2)()(1)9h n h n n d --= LLL在0n >时,()0n d =,有1()(2)09h n h n --= 特征方程为:2121110,933l l l -= Þ =- =1211()()((2)33n nh n C C \ =-+ LLL0()0(())n h n h n < = Q 时,;因为单位样值响应是零状态响应1()(2)()91(0)(2)(0)191(1)(1)(1)09h n h n n h h h h d d d =-+ \ = -+== -+=由(1)式得: 121122(0)(1)1(0)12111(1)(0332h h h C C C h C C C ì =+==üïïïÞ ýí = -+=ïï=þïî将、代入(2)式得:1111()[((]()2323n nh n U n \ =-+5.18 求习题图5-5所示系统的单位样值响应。
信号与系统第二版课后答案_西安交大_奥本海姆(汉语)
第一章1.3 解:(a). 2401lim(),04Tt T TE x t dt e dt P ∞-∞∞→∞-====⎰⎰(b) dt t x TP T TT ⎰-∞→∞=2)(21lim121lim ==⎰-∞→dt T TTT∞===⎰⎰∞∞--∞→∞dt t x dt t x E TTT 22)()(lim(c).222lim()cos (),111cos(2)1lim()lim2222TT TTTT T TTE x t dt t dt t P x t dt dt TT∞∞→∞--∞∞→∞→∞--===∞+===⎰⎰⎰⎰(d) 034121lim )21(121lim ][121lim 022=⋅+=+=+=∞→=∞→-=∞→∞∑∑N N n x N P N Nn n N N N n N 34)21()(lim202===∑∑-∞=∞→∞nNNn N n x E (e). 2()1,x n E ∞==∞211lim []lim 112121N NN N n N n NP x n N N ∞→∞→∞=-=-===++∑∑ (f) ∑-=∞→∞=+=NNn N n x N P 21)(121lim 2∑-=∞→∞∞===NNn N n x E 2)(lim1.9. a). 00210,105T ππω===; b) 非周期的; c) 00007,,22mN N ωωππ=== d). 010;N = e). 非周期的; 1.12 解:∑∞=--3)1(k k n δ对于4n ≥时,为1即4≥n 时,x(n)为0,其余n 值时,x(n)为1易有:)3()(+-=n u n x , 01,3;M n =-=- 1.15 解:(a)]3[21]2[][][222-+-==n x n x n y n y , 又2111()()2()4(1)x n y n x n x n ==+-, 1111()2[2]4[3][3]2[4]y n x n x n x n x n ∴=-+-+-+-,1()()x n x n = ()2[2]5[3]2[4]y n x n x n x n =-+-+- 其中][n x 为系统输入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
'.
1-1 (2)tetft,)(
(3))()sin()(tttf
(4))(sin)(ttf
(5))(sin)(trtf
(7))(2)(ktfk
(10))(])1(1[)(kkfk
1-3
1-5 判别下列各序列是否为周期性的。如果是,确定其周期。
(2))63cos()443cos()(2kkkf (5))sin(2cos3)(5tttf
.
'.
:
1-9 已知信号的波形如图1-11所示,分别画出)(tf和dttdf)(的波形。
解:由图1-11知,)3(tf的波形如图1-12(a)所示()3(tf波形是由对
)23(tf
的波形展宽为原来的两倍而得)。将)3(tf的波形反转而得到)3(tf的波形,如图
1-12(b)所示。再将)3(tf的波形右移3个单位,就得到了)(tf,如图1-12(c)所示。
dt
tdf)(
的波形如图1-12(d)所示。
1-23 设系统的初始状态为)0(x,激励为)(f,各系统的全响应)(y与激励和初始状
态的关系如下,试分析各系统是否是线性的。
(1)ttdxxxfxety0)(sin)0()( (2)tdxxfxtfty0)()0()()(
(3)tdxxftxty0)(])0(sin[)( (4))2()()0()5.0()(kfkfxkyk
.
'.
(5)kjjfkxky0)()0()(
.
'.
2-2 已知描述系统的微分方程和初始状态如下,试求其0值)0(y和)0('y。
(2))()(,1)0(',1)0(),('')(8)('6)(''ttfyytftytyty
(4))()(,2)0(',1)0(),(')(5)('4)(''2tetfyytftytytyt
.
'.
2-16 各函数波形如图2-8所示,图2-8(b)、(c)、(d)均为单位冲激函数,试求下列卷积,
并画出波形图。
(1))(*)(21tftf (2))(*)(31tftf (3))(*)(41tftf
(4))(*)(*)(221tftftf (5))3()(2[*)(341tftftf
.
'.
波形图如图2-9(a)所示。
波形图如图2-9(b)所示。
.
'.
波形图如图2-9(c)所示。
波形图如图2-9(d)所示。
波形图如图2-9(e)所示。
2-29 如图2-20所示的系统,它由几个子系统组合而成,各子系统的冲激响应分别为
)1()(tth
a
)3()()(ttth
b
求复合系统的冲激响应。
.
'.
3.11、各序列的图形如图所示,求下列卷积和。
(1)12()()fkfk(2)23()()fkfk(3)34()()fkfk(4)213()-()()fkfkfk
.
'.
4.7 用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数(三角形式或
指数形式)。
.
'.
图4-15
4-11 某1Ω电阻两端的电压)(tu如图4-19所示,
.
'.
(1)求)(tu的三角形式傅里叶系数。(2)利用(1)的结果和1)21(u,求下列无穷级数之
和......7151311S(3)求1Ω电阻上的平均功率和电压有效值。(4)利用(3)的结果
求下列无穷级数之和......7151311222S
图4-19
.
'.
.
'.
4.20 若已知)(j])([FtfF,试求下列函数的频谱:
(1))2(ttf (3)dttdft)( (5))-1(t)-(1tf (8))2-3(tfejt (9)tdttdf1*)(
.
'.