2015年全国高中数学联赛福建赛区预赛试题及参考答案
2018年福建省高中数学联赛(福建省赛区)预赛试题参考答案(新)

2bc
6c
∴ c2 10 , c 10 。
∴ cos C a2 b2 c2 4 9 10 1 。
2ab
223 4
3.设复数 z 满足 z i 2 ,则 z z 的最大值为
。( i 为虚数单位, z 为复
数 z 的共轭复数) 【答案】 6 【解答】设 z x yi ( x , y Βιβλιοθήκη R ),4 y0
。
∴ r1 r2 16 ,结合 r1 r2 4 ,得 r1 10 , r2 6 。
由此得到, F1P 2 F1F2 2 F2 P 2 。因此, PF2 F1F2 。
∴
△F1PF2
的外接圆半径
R
1 2
F1P
5。
4
8.最近网络上有一篇文章很火。源于一道常见题目:(见图),这貌似易解的题目,里面 竟然蕴藏了深奥的大道理。 (本题不作为本次考试的试题,本次试题如下)
1的左、右焦点,点
P
在双曲线 C
上, G
、I
分别为 △F1PF2 的重心、内心,若 GI∥x 轴 ,则 △F1PF2 的外接圆半径 R
。
【答案】 5
【解答】不妨设 P(x0 ,y0 ) 在第一象限, PF1 r1 , PF2 r2 。 依题意, r1 r2 4 , F1F2 8 。
∴ z z 的最大值为 6 。
1
4.已知定义在 R 上的奇函数 f (x) 的图像关于直线 x 2 对称,当 0 x 2 时,f (x) x 1,
则 f (100) f (101)
。
【答案】 2
【 解答】 由 f (x) 为奇函数,且其图像关 于直线 x 2 对称,知 f (x) f (x) ,且
解析版-2024年全国高中数学联赛福建赛区预赛试卷

2024年全国高中数学联赛福建赛区预赛暨2024年福建省高中数学竞赛试卷(考试时间:2024年6月22日上午9:00-11:30, 满分160分)一、填空题(共10小题, 每小题6分, 满分60分. 请直接将答案写在题中的横线上)1在△ABC 中,已知AB =4,BC =2,AC =23,若动点P 满足CP =1,则AP ⋅BP的最大值为.【答案】 5【解答】取 AB 中点 O ,则AP ⋅BP =PA ⋅PB =14PA +PB 2-PA -PB 2 =142PO 2-BA 2 =PO 2-14×42=PO 2-4由 AB =4,BC =2,AC =23,知 AB 2=CA 2+CB 2,于是 CA ⊥CB .所以 CO =12AB =2 .又 CP =1,所以 PO的最大值为 CO +1=3 .所以 AP ⋅BP的最大值为 32-4=5 .2已知z 1,z 2,z 3为方程z 3=-i 的三个不同的复数根,则z 1z 2+z 2z 3+z 3z 1=.【答案】 0【解答】设 z =x +yi x ,y ∈R 为方程 z 3=-i 的复数根,则 z 3=x +yi 3=x 3+3x 2yi +3x yi 2+yi 3=-i .即 x 3+3x 2yi -3xy 2-y 3i =-i ,x 3-3xy 2+3x 2y -y 3 i =-i .由 x ,y ∈R ,得 x 3-3xy 2=03x 2y -y 3=-1,解得 x 1=0y 1=1 , x 2=32y 2=-12,x 3=-32y 3=-12.于是 z 1=i , z 2=32-12i , z 3=-32-12i .所以 z 2+z 3=32-12i+-32-12i =-i ,z 2z 3=32-12i-32-12i =-12i 2-322=-14-34=-1.因此 z 1z 2+z 2z 3+z 3z 1=z 1z 2+z 3 +z 2z 3=i ×-i -1=0 .3设a =66⋯6⏟10个6,b =33⋯3⏟6个3,则a ,b 的最大公约数为.【答案】 33【解答】用 x ,y 表示正整数 x ,y 的最大公约数.则 a ,b =66⋯6⏟10个6,33⋯3⏟6个3=33⋯3⏟10个3,33⋯3⏟6个3=311⋯1⏟10个1,11⋯1⏟6个1.设 m =11⋯1⏟10个1, n =11⋯1⏟6个1,则由 m =11⋯1⏟10个1=104×11⋯1⏟6个1+1111,可知 m ,n =1111,11⋯1⏟6个1.同理可得, m ,n =1111,11⋯1⏟6↑1=11,1111 =11,11 =11 .所以 a ,b =3m ,n =33 .4某校三个年级举办乒乓球比赛, 每个年级选派4名选手参加比赛. 组委会随机将这12名选手分成6组, 每组2人, 则在上述分组方式中每组的2人均来自不同年级的概率为.【答案】64385【解答】设三个年级为甲、乙、丙.12名选手随机分成6组,每组2人的分组方式有:C 212C 210C 28C 26C 24C 22A 66=11×9×7×5×3×1 种.下面考虑每组的2人均来自不同年级的分组情形.先考虑甲年级4名选手的配对方式: 由于每组2人均来自不同年级, 因此需从乙, 丙两个 年级中每个年级各取 2 名选手与甲年级的 4 名选手配对. 故有 C 24×C 24×A 44=36×24 种方式.再考虑余下 4 人的配对方式,此时乙、丙年级各有 2 人,其分组方式有 2×1 种.所以每组的 2 人均来自不同年级的分组方式有 36×24×2 种.所以每组的 2 人均来自不同年级的概率为36×24×211×9×7×5×3×1=64385.5如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,点E ,F分别为AB ,BC 的中点,点G 在棱CC 1上. 若平面EFG 与底面ABCD 所成角的余弦值为31717,则平面EFG 截正方体ABCD -A 1B 1C 1D 1所得截面多边形的周长为.【答案】 613+32【解答】如图,以 D 为原点,射线 DA ,DC ,DD 1 分别为 x 轴, y 轴,(第 5 题图)z 轴非负半轴建立空间直角坐标系.(第 5 题答题图)则 E 6,3,0 ,F 3,6,0 . 设 G 0,6,t ,则 EF =-3,3,0 , EG=-6,3,t .设 m=x ,y ,z 为平面 EFG 的一个法向量,则m ⋅EF=-3x +3y +0=0m⋅EG =-6x +3y +tz =0,于是 m=t ,t ,3 为平面 EFG 的一个法向量.又 n =0,0,1 为平面 ABCD 的一个法向量,且平面 EFG 与底面 ABCD 所成角的余弦值 为31717,所以 cos ⟨m ,n⟩ =m ⋅nm ⋅n=32t 2+9⋅1=31717 .结合 t >0,解得 t =2 . 所以 G 0,6,2 ,CG =2 .延长 EF 交直线 DC 于点 M ,由 E ,F 分别为 AB ,BC 的中点,知点 M 在 DC 延长线上, 且 CM =3 .由CG DD 1=26=39=MCMD知, M ,G ,D 1 三点共线.于是 GD 1 是截面多边形的一条边.延长 FE 交直线 DA 于点 N ,连接 D 1N 交 AA 1 于点 P ,则 D 1P 也是截面多边形的一条边. 另由 AN =3=12A 1D 1 可知, AP =12A 1P ,所以 AP =2,A 1P =4 .连接 PE ,则五边形 EFGD 1P 为平面 EFG 截正方体 ABCD -A 1B 1C 1D 1 所得的截面多边形.易知 EF =32+32=32,FG =32+22=13,GD 1=42+62=213 ,D 1P =62+42=213, PE =22+32=13.所以截面五边形的周长为 613+32 .注: 作 CH ⊥EF 与 H ,则 GH ⊥EF ,∠GHC 为二面角 G -EF -D 的平面角,于是 tan ∠GHC =CG CH=CG 322=223,因此 CG =2 。
解析版-2024年全国高中数学联赛福建赛区预赛试卷

2024 年全国高中数学联赛福建赛区预赛 暨 2024 年福建省高中数学竞赛试卷参考答案(考试时间: 2024 年 6 月 22 日上午 9:00-11:30, 满分 160 分)一、填空题 (共 10 小题, 每小题 6 分, 满分 60 分. 请直接将答案写在题中的横线上) 1. 在 △ABC 中,已知 AB =4,BC =2,AC =2√3 ,若动点 P 满足 |CP⃗⃗⃗⃗⃗ |=1 ,则 AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 . 【答案】 5【解答】取 AB 中点 O ,则AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =14[(PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ )2−(PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ )2]=14[(2PO ⃗⃗⃗⃗⃗ )2−BA⃗⃗⃗⃗⃗ 2]=PO ⃗⃗⃗⃗⃗ 2−14×42=PO ⃗⃗⃗⃗⃗ 2−4由 AB =4,BC =2,AC =2√3 ,知 AB 2=CA 2+CB 2 ,于是 CA ⊥CB . 所以 CO =12AB =2 .又 |CP⃗⃗⃗⃗⃗ |=1 ,所以 |PO ⃗⃗⃗⃗⃗ | 的最大值为 CO +1=3 . 所以 AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 32−4=5 . 2. 已知 z 1,z 2,z 3 为方程 z 3=−i 的三个不同的复数根,则 z 1z 2+z 2z 3+z 3z 1= . 【答案】 0【解答】设 z =x +yi (x,y ∈R ) 为方程 z 3=−i 的复数根, 则 z 3=(x +yi )3=x 3+3x 2(yi )+3x (yi )2+(yi )3=−i . 即 x 3+3x 2yi −3xy 2−y 3i =−i,x 3−3xy 2+(3x 2y −y 3)i =−i . 由 x,y ∈R ,得 {x 3−3xy 2=03x 2y −y 3=−1,解得 {x 1=0y 1=1 , {x 2=√32y 2=−12,{x 3=−√32y 3=−12.于是 z 1=i, z 2=√32−12i, z 3=−√32−12i . 所以 z 2+z 3=(√32−12i)+(−√32−12i)=−i ,z 2z 3=(√32−12i)(−√32−12i)=(−12i)2−(√32)2=−14−34=−1.因此 z 1z 2+z 2z 3+z 3z 1=z 1(z 2+z 3)+z 2z 3=i ×(−i )−1=0 .3. 设a=66⋯6⏟10个6,b=33⋯3⏟6个3,则a,b的最大公约数为 .【答案】 33【解答】用(x,y)表示正整数x,y的最大公约数.则(a,b)=(66⋯6⏟10个6,33⋯3⏟6个3)=(33⋯3⏟10个3,33⋯3⏟6个3)=3(11⋯1⏟10个1,11⋯1⏟6个1) .设m=11⋯1⏟10个1, n=11⋯1⏟6个1,则由m=11⋯1⏟10个1=104×11⋯1⏟6个1+1111 ,可知(m,n)=(1111,11⋯1⏟6个1) .同理可得, (m,n)=(1111,11⋯1⏟6↑1)=(11,1111)=(11,11)=11 .所以(a,b)=3(m,n)=33 .4. 某校三个年级举办乒乓球比赛, 每个年级选派 4 名选手参加比赛. 组委会随机将这 12 名选手分成 6 组, 每组 2 人, 则在上述分组方式中每组的 2 人均来自不同年级的概率为 .【答案】64385【解答】设三个年级为甲、乙、丙.12名选手随机分成6组,每组2人的分组方式有: C122C102C82C62C42C22A66=11×9×7×5×3×1种.下面考虑每组的2人均来自不同年级的分组情形.先考虑甲年级4名选手的配对方式: 由于每组2人均来自不同年级, 因此需从乙, 丙两个年级中每个年级各取 2 名选手与甲年级的 4 名选手配对. 故有C42×C42×A44=36×24种方式.再考虑余下 4 人的配对方式,此时乙、丙年级各有 2 人,其分组方式有2×1种.所以每组的 2 人均来自不同年级的分组方式有36×24×2种.所以每组的 2 人均来自不同年级的概率为36×24×211×9×7×5×3×1=64385.5. 如图,在棱长为 6 的正方体ABCD−A1B1C1D1中,点E,F分别为 AB,BC 的中点,点 G 在棱 CC 1 上. 若平面 EFG 与底面 ABCD 所成角的余弦值为 3√1717,则平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得截面多边形的周长为 . 【答案】 6√13+3√2【解答】如图,以 D 为原点,射线 DA,DC,DD 1 分别为 x 轴, y 轴,(第 5 题图) z 轴非负半轴建立空间直角坐标系.(第 5 题答题图)则 E (6,3,0),F (3,6,0) . 设 G (0,6,t ) ,则 EF ⃗⃗⃗⃗⃗ =(−3,3,0) , EG ⃗⃗⃗⃗⃗ =(−6,3,t ) . 设 m ⃗⃗ =(x,y,z ) 为平面 EFG 的一个法向量,则{m ⃗⃗ ⋅EF⃗⃗⃗⃗⃗ =−3x +3y +0=0m ⃗⃗ ⋅EG⃗⃗⃗⃗⃗ =−6x +3y +tz =0 ,于是 m ⃗⃗ =(t,t,3) 为平面 EFG 的一个法向量.又 n ⃗ =(0,0,1) 为平面 ABCD 的一个法向量,且平面 EFG 与底面 ABCD 所成角的余弦值 为 3√1717, 所以 |cos⟨m ⃗⃗ ,n ⃗ ⟩|=|m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n ⃗ ||=√2t 2+9⋅1=3√1717. 结合 t >0 ,解得 t =2 . 所以 G (0,6,2),CG =2 .延长 EF 交直线 DC 于点 M ,由 E,F 分别为 AB,BC 的中点,知点 M 在 DC 延长线上, 且 CM =3 . 由 CG DD 1=26=39=MCMD 知, M,G,D 1 三点共线.于是 GD 1 是截面多边形的一条边.延长 FE 交直线 DA 于点 N ,连接 D 1N 交 AA 1 于点 P ,则 D 1P 也是截面多边形的一条边. 另由AN =3=12A 1D 1 可知, AP =12A 1P ,所以 AP =2,A 1P =4 .连接 PE ,则五边形 EFGD 1P 为平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得的截面多边形. 易知 EF =√32+32=3√2,FG =√32+22=√13,GD 1=√42+62=2√13 ,D 1P =√62+42=2√13, PE =√22+32=√13.所以截面五边形的周长为 6√13+3√2 .注: 作 CH ⊥EF 与 H ,则 GH ⊥EF,∠GHC 为二面角 G −EF −D 的平面角,于是 tan∠GHC =CGCH =3√22=2√23,因此 CG =2 。
2015年全国高中数学联赛参考答案(A卷word版本)

2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题份分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,线段DC 上的动点P 与CB 延长线上的动点Q 满=,则PQ PA ⋅的最小值为 .答案34.解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 . 答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得 ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解;(ii) ππππw w 22925≤<≤,此时2549≤≤w ;(iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w .综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd ,若,,,d c c b b a ><>则称abcd 为P 类数,若d c c b b a <><,,,则称abcd 为Q 类数,则P 类数总量与Q 类数总量之差等于 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑. 因此,()()285N P N Q -=. 三、解答题9.(本题满分16分)若实数c b a ,,满足cb ac b a 424,242=+=+,求c 的最小值. 解:将2,2,2abc分别记为,,x y z ,则,,0x y z >.由条件知,222,x y z x y z +=+=,故2222224()2z y x z y z y z y -==-=-+.8分因此,结合平均值不等式可得,4221111(2)244y y z y y y y +==++≥⋅=12分 当212y y =,即y =时,zx求).由于2log c z =,故c的最小值225log log 33=-.16分 10.(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i aa ji,求4321a a a a +++的值. 解:由条件可知,(14)i j a a i j ≤<≤是6个互不相同的数,且其中没有两个为相反数,由此知,4321,,,a a a a 的绝对值互不相等,不妨设||||||||4321a a a a <<<,则||||(14)i j a a i j ≤<≤中最小的与次小的两个数分别是12||||a a 及13||||a a ,最大与次大的两个数分别是34||||a a 及24||||a a ,从而必须有121324341,81,3,24,a a a a a a a a ⎧=-⎪⎪⎪=⎨⎪=⎪=-⎪⎩ 10 分 于是2341112113,,248a a a a a a a =-===-. 故2231412113{,}{,24}{2,}82a a a a a a =--=--,15分结合1a Q ∈,只可能114a =±.由此易知,123411,,4,642a a a a ==-==-或者123411,,4,642a a a a =-==-=.检验知这两组解均满足问题的条件. 故123494a a a a +++=±. 20 分 11.(本题满分20分)设21,F F 分别为椭圆1222=+y x 的左右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点B A ,,焦点2F 到直线l 的距离为d ,如果11,,BF l AF 的斜率依次成等差数列,求d 的取值范围.解:由条件知,点1F 、2F 的坐标分别为(-1, 0)和(l, 0) .设直线l 的方程为y kx m =+,点A 、B 的坐标分别为11(,)x y 和22(,)x y ,则12,x x 满足方程22()12x kx m ++=,即 222(21)4(22)0k x kmx m +++-=.由于点A 、B 不重合,且直线l 的斜率存在,故12,x x 是方程①的两个不同实根,因此有①的判别式22222(4)4(21)(22)8(21)0km k m k m ∆=-⋅+⋅-=+->,即2221k m +>.②由直线11,,BF l AF 的斜率1212,,11y y k x x ++依次成等差数列知,1212211y yk x x +=++,又1122,y kx m y kx m =+=+,所以122112()(1)()(1)2(1)(1)kx m x kx m x k x x +++++=++,化简并整理得,12()(2)0m k x x -++=.假如m k =,则直线l 的方程为y kx k =+,即 z 经过点1F (-1, 0),不符合条件. 因此必有1220x x ++=,故由方程①及韦达定理知,1224()221kmx x k =-+=+,即12m k k=+.③ 由②、③知,222121()2k m k k +>=+,化简得2214k k>,这等价于||2k >. 反之,当,m k满足③及||2k >l 必不经过点1F (否则将导致m k =,与③矛盾), 而此时,m k 满足②,故l 与椭圆有两个不同的交点A 、B ,同时也保证了1AF 、1BF 的斜率存在(否则12,x x 中的某一个为- l ,结合1220x x ++=知121x x ==-,与方程①有两个不同的实根矛盾).10分点2F (l , 0)到直线l: y kx m =+的距离为211|2|(2)22d k kk ==+=+.注意到||2k >t =t ∈,上式可改写为 21313()()222t d t t t=⋅+=⋅+.考虑到函数13()()2f t t t=⋅+在上上单调递减,故由④得,(1)f d f <<,即2)d ∈.20 分加试1.(本题满分40分)设)2(,,,21≥⋅⋅⋅n a a a n 是实数,证明:可以选取{}1,1,,,21-∈⋅⋅⋅n εεε,使得))(1()()(122121∑∑∑===+≤+ni i i n i i ni i a n a a ε.证法一:我们证明:2[]222111[]2()(1)()n n n n i i j i n i i i j a a a n a ====⎛⎫ ⎪+-≤+ ⎪ ⎪⎝⎭∑∑∑∑,① 即对1,2,,[]2n i =,取1i ε=,对[]1,,2ni n =+,取1i ε=-符合要求.(这里,[]x 表示实数x 的整数部分.) 10分事实上,①的左边为2222[][][]222111[]1[]1[]122222n n n n n n i j i j i j n n n i i i j j j a a a a a a ====+=+=+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++-=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑ []2221[]122222n n i j n i j n n a n a ==+⎛⎫⎛⎫⎛⎫⎡⎤⎡⎤ ⎪ ⎪≤+- ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪ ⎪⎝⎭⎝⎭∑∑(柯西不等式)30分 []2221[]1212222n n i j n i j n n a a ==+⎛⎫⎛⎫⎛+⎫⎡⎤⎡⎤ ⎪ ⎪=+ ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪⎪⎝⎭⎝⎭∑∑(利用122n n n +⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦) []2221[]12(1)n n i j n i j n a n a ==+⎛⎫⎛⎫ ⎪ ⎪≤++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭∑∑(利用[]x x ≤) 21(1)()ni i n a =≤+∑.所以 ① 得证,从而本题得证.证法二:首先,由于问题中12,,,n a a a 的对称性,可设12n a a a ≥≥≥.此外,若将12,,,n a a a 中的负数均改变符号,则问题中的不等式左边的21)(∑=n i i a 不减,而右边的21ni i a=∑不变,并且这一手续不影响1i ε=±的选取,因此我们可进一步设120n a a a ≥≥≥≥. 10分引理:设120n a a a ≥≥≥≥,则1110(1)ni i i a a -=≤-≤∑.事实上,由于1(1,2,,1)i i a a i n +≥=-,故当n 是偶数时,1123411(1)()()()0ni i n n i a a a a a a a --=-=-+-++-≥∑,11232111(1)()()ni i n n n i a a a a a a a a ---=-=------≤∑.当n 是奇数时,11234211(1)()()()0ni i n n n i a a a a a a a a ---=-=-+-++-+≥∑,1123111(1)()()ni i n n i a a a a a a a --=-=-----≤∑.引理得证. 30 分回到原题,由柯西不等式及上面引理可知22122211111(1)(1)n n n ni i i i i i i i i a a n a a n a -====⎛⎫⎛⎫⎛⎫+-≤+≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑∑,这就证明了结论. 40分证法三:加强命题:设12,,,n a a a ⋅⋅⋅(2n ≥)是实数,证明:可以选取12,,,{1,1}n εεε⋅⋅⋅∈-,使得 2221111()()()()n nn i i i i i i i a a n a n ε===+≤+∑∑∑.证明 不妨设22212n a a a ≥≥⋅⋅⋅≥,以下分n 为奇数和n 为偶数两种情况证明.当n 为奇数时,取12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,于是有12221112()[()()]n nni i jn i i j a a a -+===+-∑∑∑12221122[()+()]n ni jn i j a a -+===∑∑1222112112()+2()()22n n i j n i j n n a n a -+==--≤⋅⋅-∑∑(应用柯西不等式).1222112(1)()+(1)()n ni jn i j n a n a -+===-+∑∑ ①另外,由于22212n a a a≥≥⋅⋅⋅≥,易证有122211211(1)(1)n n i j n i j a a n n -+==+≥-∑∑,因此,由式①即得到1222112(1)()+(1)()n nijn i j n a n a -+==-+∑∑211()()n i i n a n =≤+∑,故n 为奇数时,原命题成立,而且由证明过程可知,当且仅当12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,且12n a a a ==⋅⋅⋅=时取等号.当n 为偶数时,取1221n εεε==⋅⋅⋅==,24221n n n εεε++==⋅⋅⋅==-,于是有2222112()[()()]n nni i j n i i j a a a +===+-∑∑∑22222122[()+()]n ni j n i j a a +===∑∑2222122()+2()()22nn i j n i j n n a n a +==≤⋅⋅-∑∑(应用柯西不等式).222212[()+()]n nijn i j n a a +===∑∑22111()()()nn ii i i n a n a n ===≤+∑∑,故n 为偶数时,原命题也成立,而且由证明过程可知,当且仅当120n a a a ==⋅⋅⋅==时取等号,若12,,,n a a a ⋅⋅⋅不全为零,则取不到等号.综上,联赛加试题一的加强命题获证. 2.(本题满分40分)设{},,,,21n A A A S ⋅⋅⋅=其中n A A A ,,,21⋅⋅⋅是n 个互不相同的有限集合)2(≥n ,满足对任意的S A A j i ∈,,均有S A A j i ∈ ,若2min 1≥=≤≤i ni A k ,证明:存在i ni A x 1=∈ ,使得x 属于n A A A ,,,21⋅⋅⋅中的至少kn个集合.证明:不妨设1||A k =.设在12,,,n A A A 中与1A 不相交的集合有s 个,重新记为12,,,s B B B ,设包含1A 的集合有t 个,重新记为12,,,t C C C .由已知条件,1()i B A S ∈,即112(){,,,}i t B A C C C ∈,这样我们得到一个映射12121:{,,,}{,,,},()s t i i f B B B C C C f B B A →=. 显然f 是单映射,于是,s t ≤. 10 分设112{,,,}k A a a a =.在n A A A ,,,21⋅⋅⋅中除去12,,,s B B B ,12,,,t C C C 后,在剩下的n s t --个集合中,设包含i a 的集合有i x 个(1i k ≤≤),由于剩下的n s t --个集合中每个集合与从的交非空,即包含某个i a ,从而12k x x x n s t +++≥--. 20 分不妨设11max i i k x x ≤≤=,则由上式知i n s tx k --≥,即在剩下的n s t --个集合中,包含1a的集合至少有n s tk--个.又由于),,2,1(1t i C A i ⋅⋅⋅=⊆,故12,,,t C C C 都包含1a ,因此包含1a 的集合个数至少为(1)n s t n s k t n s tt k k k---+---+=≥(利用2k ≥) nk ≥(利用s t ≤). 40 分 3.(本题满分50分)如图,ABC ∆内接于圆O ,P 为BC 弧上一点,点K 在AP 上,使得BK 平分ABC ∠,过C P K ,,三点的圆Ω与边AC 交于D ,连接BD 交圆Ω于E ,连接PE ,延长交AB 于F ,证明:FCB ABC ∠=∠2.证法一:设CF 与圆Q 交于点L (异于C),连接PB 、PC 、 BL 、KL .注意此时C 、D 、L 、K 、E 、P 六点均在圆Ω上,结合A 、 B 、P 、C 四点共圆,可知∠FEB=∠DEP=180°-∠DCP=∠ABP=∠FBP ,因此△FB E ∽△FPB ,故FB 2=FE ·FP .10分又由圆幂定理知,FE ·FP= FL ·FC ,所以FB 2=FL ·FC . 从而△FBL ∽△FCB .因此, ∠FLB=∠FBC=∠APC=∠KPC=∠FLK, 即B 、K 、L 三点共线. 30 分再根据△FBL ∽△FCB 得,∠FCB=∠FBL=12∠ABC, 即∠ABC=2∠FCB .证法二:设CF 与圆Ω交于点L (异于C).对圆内接广义六边形DCLKPE 应用帕斯卡定理可知, DC 与KP 的交点A 、CL 与PE 的交点F 、LK 与ED 的交点了共线,因此B ’是AF 与ED 的交点,即B ’=B .所以B 、K 、L 共线.10分根据A 、B 、P 、C 四点共圆及L 、K 、P 、C 四点共圆,得 ∠ABC=∠APC=∠FLK=∠FCB+∠LBC,又由BK 平分∠ABC 知,∠FBL=12∠ABC ,从而 ∠ABC=2∠FCB .4.(本题满分50分)求具有下述性质的所有正整数k :对任意正整数n 都有1)1(2+-n k 不整除!)!(n kn . 解:对正整数m ,设2()v m 表示正整数m 的标准分解中素因子2的方幂,则熟知2(!)()v m m S m =-,①这里()S m 表示正整数m 在二进制表示下的数码之和.由于1)1(2+-n k 不整除()!!kn n ,等价于2()!()(1)!kn v k n n ≤-,即22(()!)(!)kn v kn n v n -≥-,进而由①知,本题等价于求所有正整数k ,使得()()S kn S n ≥对任意正整数n 成立. 10分我们证明,所有符合条件的k 为2(0,1,2,)aa =.一方面,由于(2)()aS n S n =对任意正整数n 成立,故2ak =符合条件. 20 分另一方面,若k 不是2的方幂,设2,0,ak q a q =⋅≥是大于1的奇数.下面构造一个正整数n ,使得()()S kn S n <.因为()(2)()aS kn S q S qn <⋅=, 因此问题等价于我们选取q 的一个倍数m ,使得()()m S m S q <. 由(2,q )=l ,熟知存在正整数u ,使得21(mod )uq ≡.(事实上,由欧拉定理知,u 可以取()q ϕ的.)设奇数q 的二进制表示为1212222,0,2t a a at a a a t +++=<<<≥.取1122222t t a a tu aa-+++++,则()S m t =,且2(21)0(mod )t a tu m q q =+-≡.我们有1(1)02121211212(122)12t t ttu uu t a a lu a u t ul m q q q q q -+-=---=++⋅=+⋅+++=+⋅∑由于2102u uq -<<,故正整数21u q -的二进制表示中的最高次幂小于u ,由此易知,对任意整数,(01)i j i j t ≤<≤-,数212t u iu a q +-⋅与212tu ju a q+-⋅的二进制表示中没有相同的项.又因为0i a >,故212(0,1,,1)tu lu a l t q +-⋅=-的二进制表示中均不包含1,故由②可知21()1()()u m S S t t S m q q-=+⋅>=, 因此上述选取的m 满足要求.综合上述的两个方面可知,所求的k 为2(0,1,2,)aa =.50分。
2015年全国高中数学联赛福建赛区预赛试题精编(附答案)

2015年福建省高中数学竞赛暨2015年全国高中数学联赛(福建省赛区)预赛试卷参考答案(考试时间:2015年5月24日上午9:00-11:30,满分160分)f x+=+3.1F、2F为椭圆C:22221x ya b+=(0a b>>)的左、右焦点,若椭圆C上存在一点P,使得12PF PF⊥,则椭圆离心率e的取值范围为。
【答案】12⎫⎪⎪⎣⎭,【解答】设A为椭圆C的上顶点,依题意有1290F AF∠≥︒。
∴245F AO∠≥︒,1cb≥。
222c a c≥-,2212ca≥,12e≤<。
4.已知实数x,y,z满足2222324x y z++=,则23x y z++的最小值为。
【答案】12-【解答】由柯西不等式,知22222222(23)(1)1(23)x y z x x y z⎡⎤++=⋅≤++⋅++⎣⎦)=14∴231x y z++≥-,当且仅当1x==,即2x y z===-时等号成立。
∴23x y z++的最小值为12-。
5.已知函数2()cos2xf x xπ=,数列{}n a中,()(1)na f n f n=++(*n N∈),则数列{}na的前100项之和100S=。
【答案】10200【解答】依题意,有1002222221001()2468981004(3799)n T f n ===-+-+--+=+++∑L L39942551002+=⨯⨯=。
∴1001002(1)(101)251000010200S T f f =-+=⨯-+=。
6.如图,在四面体ABCD 中,2DA DB DC ===,DA DB ⊥,DA DC ⊥,且DA 与平面ABC该四面体外接球半径R = 。
【答案】【解答】如图,作DO ABC ⊥面于O ,连结AO ,并延长交BC 于点E ,连结DE 。
则DAE ∠是DA 与平面ABC 所成的角,cos 3DAE ∠=。
∵ 2DA DB DC ===,DA DB ⊥,DA DC ⊥,∴ DA DBC ⊥面,O 为ABC △的外心,且AB AC ==∴ DA DE ⊥,E 为BC 中点,结合c o s 3D AE ∠=知,AE =,BE ===∴2B C B E ==DB DC ⊥。
2015年全国高中数学联赛试题答案

…………………20 分
包含 a1 的集合至少有
n− s −t 个.又由于 A1 ⊆ Ci ( i = 1, , t ) ,故 C1 , C2 , , Ct 都 k
n− s −t ,即在剩下的 n − s − t 个集合中, k
包含 a1 ,因此包含 a1 的集合个数至少为
n− s −t n − s + (k − 1)t n − s + t (利用 k ≥ 2 ) = +t ≥ k k k n . ……………40 分 ≥ (利用 t ≥ s ) k
n ≤ (n + 1) ∑ห้องสมุดไป่ตู้ai2 , i =1 所以①得证,从而本题得证.
…………………40 分
证法二:首先,由于问题中 a1 , a2 , , an 的对称性,可设 a1 ≥ a2 ≥ ≥ an .此 n 外,若将 a1 , a2 , , an 中的负数均改变符号,则问题中的不等式左边的 ∑ ai 不 i =1 减,而右边的 ∑ ai2 不变,并且这一手续不影响 ε i = ±1 的选取,因此我们可进一
2t u − 1 2u − 1 m 1 2αt ⋅ 1 2αt ⋅ 1 + 2u + + 2(t −1)u ) =+ =+ ( q q q
…………………10 分
n + 2 ∑ aj n = j +1 2
2
2
n 2 n n n 2 2 ≤ 2 ∑ ai + 2 n − ∑ a j (柯西不等式) …………30 分 2 i =1 2 = n j +1 2 n n 2 2 n + 1 n n n + 1 2 a j (利用 n − = = 2 ∑ ai + 2 ) ∑ 2 2 2 i =1 2 = n j +1 2 n n 2 2 2 ≤ n ∑ ai + (n + 1) ∑ a j (利用 [ x ] ≤ x ) n = i =1 j +1 2
历年全国高中数学竞赛试卷及答案(77套)
9.若 是双曲线 上的点,则 的最小值是_________.
10. 如图,设正方体 的棱长为1,α为过直线 的平面,则α截该正方体的截面面积的取值范围是_________.
11.已知实数 满足: 的最大值是____.
12.设集合 则集合A中元素的个数是___________
二.填空题(本大题共4小题,每小题10分):
1.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么 =.
解:a2-a1= (y-x),b4-b3= (y-x), = .
2.( +2)2n+1的展开式中,x的整数次幂的各项系数之和为.
解:( +2)2n+1-( -2)2n+1=2(C 2xn22n+1).
1.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么 =.
2.( +2)2n+1的展开式中,x的整数次幂的各项系数之和为.
3.在△ABC中,已知∠A=α,CD、BE分别是AB、AC上的高,则 =.
4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为.
⑴ 点(1,1)∈ln,(n=1,2,3,……);
⑵kn+1=an-bn,其中kn+1是ln+1的斜率,an和bn分别是ln在x轴和y轴上的截距,(n=1,2,3,……);
⑶knkn+1≥0,(n=1,2,3,……).
2015年全国高中数学联赛福建赛区预赛试题及参考标准答案
2015年福建省高中数学竞赛暨2015年全国高中数学联赛(福建省赛区)预赛试卷(考试时间:2015年5月24日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上)1.设集合403x A x x Z x +⎧⎫=≤∈⎨⎬-⎩⎭,,从集合A 中随机抽取一个元素x ,记2x ξ=,则随机变量ξ的数学期望E ξ= 。
2.已知()()f x x g x =+,其中()g x 是定义在R 上,最小正周期为2的函数。
若()f x 在区间[)24,上的最大值为1,则()f x 在区间[)1012,上的最大值为 。
3.1F 、2F 为椭圆C :22221x y a b+=(0a b >>)的左、右焦点,若椭圆C 上存在一点P ,使得12PF PF ⊥,则椭圆离心率e 的取值范围为 。
4.已知实数x ,y ,z 满足2222324x y z ++=,则23x y z ++的最小值为 。
5.已知函数2()cos 2xf x x π=,数列{}n a 中,()(1)n a f n f n =++(*n N ∈),则数列{}n a 的前100项之和100S = 。
6.如图,在四面体ABCD 中,2DA DB DC ===,DA DB ⊥,DA DC ⊥,且DA 与平面ABC 所成角的余弦值为63R = 。
7.在复平面内,复数1z 、2z 、3z 的对应点分别为1Z 、2Z 、3Z 。
若122z z ==120OZ OZ ⋅=,1231z z z +-=,则3z 的取值范围是 。
8.已知函数()()x x f x e x ae =-恰有两个极值点1x ,2x (12x x <),则a 的取值范围为 。
9.已知2()2x f x m x nx =⋅++,若{}{}()0(())0x f x x f f x φ===≠,则m n +的取值范围为 。
二00六年全国高中数学联赛(福建赛区)预赛试卷
二00六年全国高中数学联赛(福建赛区)预赛试卷一、选择题:1、对于[]x 0,1∈的一切值,a 2b 0+>是使ax b 0+>恒成立的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既非充分条件,也非必要条件2、已知抛物线2y ax bx c =++与抛物线2y x 8x 3=-+关于点()3,4对称,那么a b c ++的值为( )A 、28-B 、4-C 、20D 、183、方程x x x x 827761218+=+的解的个数是( ) A 、1 B 、2 C 、3 D 、无穷多4、正方体1111ABCD A B C D -的棱长为1,点M 为11D C 上的点,且11D M :MC 3:1=,CM 和平面11AB D 所成角的大小是θ,则sin θ等于( )A 、12 BCD5、已知:x,y 0,2π⎛⎫∈ ⎪⎝⎭,且若()()2221tan x y cot x y 3x x 4+++=--,则[][]x y +等于( ) (其中[]x 表示不超过x 的最大整数)A 、0B 、1C 、2D 、3 62007+=的正整数解()x ,y 的组数是( )A 、1组B 、2组C 、4组D 、8组二、填空题:7、有10张卡片,编号为1,2,3,……,10,一张一张有放回地抽取3张,这3张中至多有两张同号的概率是________________________。
8、设{}n a 是公比为q 的等比数列,其前n 项的积为n T ,并且满足条件1a 1>,99100a a 10->,99100a 10a 1-<-。
给出下列结论:(1)0q 1<<;(2)198T 1<; (3)99101a a 1<;(4)使n T 1<成立的最小自然数n 等于199。
其中正确结论的编号是__________________________。
9、函数y ________________________。
1_2020年全国高中数学联赛(福建赛区)预赛暨2020年福建省高中数学竞赛试题(2020.06.27)
12020年全国高中数学联赛(福建省赛区)预赛暨2020年福建省高中数学竞赛试卷(考试时间:2020年6月27日上午9:00-11:30)一、填空题(共10小题,每小题6分,满分60分. 请直接将答案写在答题卷相应位置上)1.已知复数z 满足1z z i -=-,若61z z z ---为正实数,则z = ★★★ . 2.已知()3cos()f x x ωϕ=+(0ω>,ϕπ<),若5()08f π=,11()38f π=,且()f x 的最小正周期大于2π,则ϕ= ★★★ .3.已知[]x 表示不超过x 的最大整数,集合{}260A x x x =--<,[]{}22350B x x x =--=,则A B = ★★★ .4.已知函数()f x 是定义在R 上的偶函数,且对任意实数x ,都有(1)(1)f x f x +=-成立,当12x ≤≤时,()ln f x x =. 若关于x 的方程()10f x ax +-=在[]35x ∈,上有两个不相等的实数根,则a 的取值范围为 ★★★ .5.设1F 、2F 为双曲线C :22221x y a b-= (0a >,0b >) 的左、右焦点,过2F 的直线l 交双曲线C 的右支于A 、B 两点,且120AF AF ⋅=,2220F B F A +=,则双曲线C 的离心率为 ★★ . 6.在以凸十八边形的顶点为顶点构成的三角形中,任取一个三角形,则所取的三角形与该十八边形无公共边的概率为 ★★★ .7.如图,在正方体1111ABCD A B C D -中,点E 、F 、G 分别在棱1AA 、11A D 、11D C 上,E 为1AA 中点,11111113D F D G D A D C ==. 记平面EFG 与平面11A B CD 的交线为m ,则直线m 与平面ABCD 所成角的正切值为 ★★★ .8.已知a 、b 、c 、d 为正数,且20202a b c d +=+=,则11a bcd+的最小值为 ★★★ . 9.已知实数m 满足:当关于x 的实系数一元二次方程20ax bx c ++=有实根时,2222()()()a b b c c a ma -+-+-≥总成立,则m 的最大值为 ★★★ .10.设正整数n 为合数,()f n 为n 的最小的三个正约数之和,()g n 为n 的最大的两个正约数之和. 若3()()g n f n =,则n 的所有可能值为 ★★★ .(第7题图)2 二、解答题(共5小题,每小题20分,满分100分.要求写出解题过程,写在答题卷相应位置上)11.已知数列{}n a 满足11a =,25a =,2143n n n a a a ++=-(*n N ∈).(1) 求数列{}n a 的通项公式;(2) 设13n n n n b a a +=,n T 是数列{}n b 的前n 项的和,求证:34n T <.12.已知椭圆C :22221x y a b+= (0a b >>) 的离心率为12,右焦点F 到直线20x y -+=的距离为22,1A 、2A 分别为椭圆C 的左、右顶点.(1) 求椭圆C 的方程;(2) 过点F 的直线l 交椭圆C 于A 、B 两点 (点A 在x 轴上方),T 为直线1A A 、2A B 的交点. 当点T 的纵坐标为63时,求直线l 的方程.13.如图,在ABC △中,AB AC <,ABC △的内切圆I 与边BC 、CA 分别切于点D 、E ,连AI 并延长交ABC △的外接圆O 于点N ,连ND 、NO 并延长分别交O 于点G 、M ,连GE 并延长交O 于点F .(1) 求证:NIG NDI △∽△;(2) 求证:MF AC ∥.14.已知2()(1)1x f x x a x e ⎡⎤=+-+⎣⎦,若2()0f x e +≥恒成立,求实数a 的取值范围.15.将一个20202020⨯方格表的每个小方格染黑、白两种颜色之一,满足以下条件:方格表中的任意一个小方格A ,它所在的行与列的所有小方格中,与A 异色的小方格多于与A 同色的小方格. 证明:染色后,方格表中每行、每列两种颜色的小方格一样多.(第13题图)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年福建省高中数学竞赛暨2015年全国高中数学联赛(福建省赛区)预赛试卷(考试时间:2015年5月24日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上) 1.设集合403x Ax x Z x +⎧⎫=≤∈⎨⎬-⎩⎭,,从集合A 中随机抽取一个元素x ,记2xξ=,则随机变量ξ的数学期望E ξ=。
2.已知()()f x x g x =+,其中()g x 是定义在R 上,最小正周期为2的函数。
若()f x 在区间[)24,上的最大值为1,则()f x 在区间[)1012,上的最大值为 。
3.1F 、2F 为椭圆C :22221x y ab+=(0a b >>)的左、右焦点,若椭圆C 上存在一点P ,使得12P F P F ⊥,则椭圆离心率e 的取值范围为 。
4.已知实数x ,y ,z 满足2222324x y z++=,则23x y z++的最小值为 。
5.已知函数2()c o s 2xf x x π=,数列{}na 中,()(1)na f n f n =++(*n N∈),则数列{}na 的前100项之和100S =。
6.如图,在四面体A B C D 中,2D A D B D C ===,D AD B⊥,D AD C⊥,且D A 与平面A B C所成角的余弦值为3。
则该四面体外接球半径R=。
7.在复平面内,复数1z 、2z 、3z 的对应点分别为1Z 、2Z 、3Z 。
若12z z ==,120O Z O Z ⋅=uuu r uuur,1231z z z +-=,则3z 的取值范围是 。
8.已知函数()()xxf x ex a e=-恰有两个极值点1x ,2x (12x x <),则a 的取值范围为 。
9.已知2()2xf x m x n x=⋅++,若{}{}()0(())0xf x x f f x φ===≠,则m n +的取值范围为 。
214n ππππ二、解答题(共5小题,每小题20分,满分100分。
要求写出解题过程) 11.求函数2y x =+12.已知过点(01)P ,斜率为k 的直线l 交双曲线C :2213yx -=于A 、B 两点。
(1)求k 的取值范围;(2)若2F 为双曲线C 的右焦点,且226A FB F +=,求k 的值。
13.如图,I 、D 分别为A B C △的内心、旁心,B C 与圆I 、圆D 相切,切点分别为E 、F ,G为A D 与B C 的交点。
(1)求证:A I G E A DG F=;(2)若M 为E F 中点,求证:A E D M ∥。
(旁心:三角形旁切圆的圆心,它是三角形一个内角的平分线和其它两个内角的外角平分线的交点。
)14.在坐标平面内,横纵坐标都是整数的点称为整点,三个顶点都是整点的三角形称为整点三角形。
求以点(201572015)I ⨯,为内心且直角顶点在坐标原点O 的整点直角三角形O A B 的个数。
15.若对任意的正整数m ,集合{}1299m m m m +++L ,,,,的任意n (3n≥)元子集中,总有3个元素两两互素,求n 的最小值。
B2015年福建省高中数学竞赛暨2015年全国高中数学联赛(福建省赛区)预赛试卷参考答案(考试时间:2015年5月24日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上) 1.设集合403x Ax x Z x +⎧⎫=≤∈⎨⎬-⎩⎭,,从集合A 中随机抽取一个元素x ,记2xξ=,则随机变量ξ的数学期望E ξ=。
【答案】 5 【解答】{}4321012A=----,,,,,,,随机变量ξ的取值为0,1,4,9,16。
易得,ξ的概率分布列为∴12211014916577777E ξ=⨯+⨯+⨯+⨯+⨯=。
2.已知()()f x xg x =+,其中()g x 是定义在R 上,最小正周期为2的函数。
若()f x 在区间[)24,上的最大值为1,则()f x 在区间[)1012,上的最大值为 。
【答案】 9 【解答】依题意,有(2)(2)(2)()2()2f x xg x x g x f x +=+++=++=+。
∵ ()f x 在区间[)24,上的最大值为1,∴()f x 在区间[)46,上的最大值为3,在区间[)68,上的最大值为5,在区间[)810,上的最大值为7,在区间[)1012,上的最大值为9。
3.1F 、2F 为椭圆C :22221x y ab+=(0a b >>)的左、右焦点,若椭圆C 上存在一点P ,使得12P F P F ⊥,则椭圆离心率e 的取值范围为 。
【答案】12⎡⎫⎪⎢⎪⎣⎭, 【解答】设A 为椭圆C 的上顶点,依题意有1290F A F ∠≥︒。
∴245F A O ∠≥︒,1c b≥。
222ca c≥-,2212c a≥,12e ≤<。
4.已知实数x ,y ,z 满足2222324x y z ++=,则23x y z++的最小值为 。
【答案】12-【解答】由柯西不等式,知22222222(23)(1)1(23)144x y z x x y z ⎡⎤++=⋅++≤++⋅++=⎣⎦。
∴ 2312x y z ++≥-,当且仅当1x ==2xy z ===-时等号成立。
∴ 23x y z++的最小值为12-。
5.已知函数2()c o s 2xf x x π=,数列{}na 中,()(1)na f n f n =++(*n N∈),则数列{}na 的前100项之和100S =。
【答案】 10200【解答】依题意,有1002222221001()2468981004(3799)n T f n ===-+-+--+=+++∑L L39942551002+=⨯⨯=。
∴1001002(1)(101)251000010200S Tf f =-+=⨯-+=。
6.如图,在四面体A B C D 中,2D A D B D C ===,D AD B⊥,D AD C⊥,且D A 与平面A B C所成角的余弦值为3。
则该四面体外接球半径R=。
【答案】【解答】如图,作D O A B C⊥面于O ,连结A O ,并延长交B C 于点E,连结D E。
则D A E ∠是D A 与平面A B C所成的角,c o s 3D AE ∠=。
∵ 2D A D B D C ===,D AD B⊥,D AD C⊥,∴ D A D B C⊥面,O 为A B C △的外心,且A BA C ==。
∴D A D E⊥,E为B C中点,结合c o s 3D AE ∠=知,A E =B E===∴ 2B C B E ==D B D C ⊥。
∴D A、D B 、D C 两两互相垂直,四面体外接球半径R =。
7.在复平面内,复数1z 、2z 、3z 的对应点分别为1Z 、2Z 、3Z 。
若12z z ==,120O Z O Z ⋅=uuu r uuur,1231z z z +-=,则3z 的取值范围是 。
【答案】 []13, 【解答】设111z x y i =+,222z x y i=+(i 为虚数单位),∵ 12z z ==120O Z O Z ⋅=uuu r uuur,∴222211222x y x y +=+=,12120x x y y +=,122z z +===。
设复数12z z +对应的点为P 。
由1231z z z +-=知,点3Z 在以P为圆心,1为半径的圆上。
又2O P=,因此,32121O Z -≤≤+,即3z 的取值范围是[]13,。
8.已知函数()()xxf x ex a e=-恰有两个极值点1x ,2x (12x x <),则a 的取值范围为 。
【答案】 1(0)2, 【解答】()()(1)(12)xxxxxxf x e x a e e a e x a e e '=-+-=+-。
依题意,()(12)0xxf x x a e e'=+-=有两个不同的实根。
设()12xg x x a e=+-,则()12xg x a e'=-,()g x =有两个不同的实根。
若0a ≤,则()1g x '≥,()g x 为增函数,()0g x =至多1个实根,不符合要求。
若0a >,则当1ln2xa<时,()g x '>;1ln2xa >时,()0g x '<。
∴ ()g x 在区间1ln2a ⎛⎤-∞⎥⎝⎦,上为增函数,1ln2a ⎡⎫+∞⎪⎢⎣⎭,上为减函数。
∴ ()g x 的最大值为111(ln )ln11ln222g aaa=+-=。
又x→-∞时,()12xg x x a e =+-→-∞;x →+∞时,()12xg x x a e=+-→-∞。
∴ 当且仅当11(ln )ln22g aa=>,即102a <<时,()g x =恰有2个不同的实根。
设()g x =的两根为1x ,2x (12x x <)。
则1xx <时,()0g x <,()0f x '<;12x x x <<时,()g x >,()0f x '>;2xx >时,()0g x <,()0f x '<。
∴ 1x 为()f x 的极小值点,2x 为()f x 的极大值点。
102a <<符合要求。
∴a的取值范围为1(0)2,。
9.已知2()2xf x m x n x=⋅++,若{}{}()0(())0xf x x f f x φ===≠,则m n +的取值范围为 。
【答案】 [)04, 【解答】设{}1()0x x f x ∈=,则12111()2x f x m x n x =⋅++=。
∴ 2()f x x n x=+,222222(())()()()()()f f x f x n x x n x n x n x x n x x n x n =+=+++=+++。
由{}{}()0(())0xf x xf f x ===知,方程2x n x n ++=的解集A 是方程2x n x +=的解集B的子集。
若A φ=,则240n n =-<△,04n <<。
若A φ≠,设0x A ∈,则2002000x n x n x n x ⎧++=⎪⎨+=⎪⎩,得0n=。
又04n ≤<时,{}()0xf x φ=≠,所以,04n ≤<。
m n +的取值范围是[)04,。
10.若214sinsinsinta n99929n ππππ+++=L ,则正整数n 的最小值为 。