平面直角坐标系综合检测题

合集下载

九年级下学期平面直角坐标系检测题

九年级下学期平面直角坐标系检测题

2005年如皋市九年级下学期平面直角坐标系检测题 班级: 姓名: 学号:一、填空题:1、如果点M ()ab b a ,+在第二象限,那么点N ()b a ,在第___象限。

2、若点M ()m m -+3,12关于y 轴的对称点M ′在第二象限,则m 的取值范围是____。

3、点A ()m ,1在函数x y 2=的图像上,则点A 关于y 轴的对称点的坐标是_____。

4、若点P 到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标为_____,它到原点的距离为_____。

5、点K ()n m ,在坐标平面内,若0>mn ,则点K 位于___象限;若0<mn ,则点K 不在___象限。

6、已知点P()3,3b a +与点Q ()b a 2,5+-关于x 轴对称,则___________==b a 。

7、已知点M ()a a -+4,3在y 轴上,则点M 的坐标为_____。

8、若点M()2,3-+b a 在第三象限内,化简161648154922+-+++a b a a =____。

9、已知点M()y x ,与点N ()3,2--关于x 轴对称,则______=+y x 。

10、已知点P ()y x ,的坐标满足()0622=++-y x ,则点P 关于原点的对称点的坐标是______。

二、选择题:11、在平面直角坐标系中,点()1,12+-m 一定在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限12、若点P ()n m ,在第二象限,则点Q ()n m --,在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限13、已知两圆的圆心都在x 轴上,A 、B 为两圆的交点,若点A 的坐标为()1,1-,则点B 坐标为( )A 、()1,1B 、()1,1--C 、()1,1-D 、无法求出14、已知点A ()2,2-,如果点A 关于x 轴的对称点是B ,点B 关于原点的对称点是C ,那么C 点的坐标是( )A 、()2,2B 、()2,2-C 、()1,1--D 、()2,2--15、在平面直角坐标系中,以点P ()2,1为圆心,1为半径的圆必与( )A 、x 轴相交B 、y 轴相交C 、x 轴相切D 、y 轴相切16、已知二次三项式c x ax ++22在实数范围内不能分解,则点N ()c a ,在( )A 、第一、二象限内B 、第三、四象限C 、第一、三象限D 、第二、四象限17、已知点A ()b a 2,3在x 轴上方,y 轴的左边,则点A 到x 轴、y 轴的距离分别为( )A 、b a 2,3-B 、b a 2,3-C 、a b 3,2-D 、a b 3,2-18、将点P()3,4-先向左平移2个单位,再向下平移2个单位得点P ′,则点P ′的坐标为( )A 、()5,2-B 、()1,6-C 、()5,6-D 、()1,2-三、解答题:19、已知点M ()p q p +4,4和点N ()22,35--p q 关于x 轴对称,求P 和Q 的值,若M ,N 关于y 轴对称呢?关于原点对称呢?20、如果点A ()n m -3,2在第二象限内,那么点B ()4,1--n m 在第几象限?如果点M ()m m -+4,13在第几象限?如果点M ()m m -+4,13在第四象限内,那么m 的取值范围是怎样的?21、如图,已知直角坐标系内两点A()0,33和B ()3,0,以线段AB 为边作等边三角形ABC ,求顶点C 的坐标。

(完整word版)初二平面直角坐标系经典综合练习题

(完整word版)初二平面直角坐标系经典综合练习题

初二独立练习满分 100 分第一卷( 60 分)一、选择题:(每题 2 分,共 20 分)1.若点 P(a,b)到x轴的距离是 2 ,到 y 轴的距离是 3,则这样的点P 有()A. 1个B. 2个C. 3个D.4个2.已知点 A( 2,- 2),假如点 A 对于 x 轴的对称点是B,点 B 对于原点对称点是C,那么点 C 的坐标是()A. (2,2)B. (- 2, 2)C. (- 1,- 1)D. (- 2,- 2)3.若点 P( 1m ,m )在第二象限,则以下关系正确的选项是()A. 0 m 1B.m 0C.m 0D.m 14.如图,若在象棋盘上成立直角坐标系,使“帥”位于点( -1,-2 ),“馬”位于点(2, -2 ),则“兵”位于点()A.( -1,1 )B.(-2 ,-1 )C.(-3,1 )D. ( 1,-2 )5.已知坐标平面内点M(a,b) 在第三象限,那么点N(b,- a) 在()A.第一象限B.第二象限C.第三象限D.第四象限6.若点 P( x,y )的坐标知足xy=0(x≠ y) ,则点 P()yA.原点上 B . x 轴上 C . y 轴上 D .x 轴上或 y 轴上7.如图,在平面直角坐标系中,平行四边形 OABC的极点 O、A、 C 的坐标分别是( 0, 0)、( 5, 0)、( 2,3),则极点B 的坐标是()CF BO G A E xA、( 3, 7) B 、( 5, 3) C、( 7, 3) D 、( 8, 2)8.线段 CD是由线段 AB 平移获得的 . 点 A(– 1,4)的对应点为 C( 4,7),则点 B(– 4,– 1 )的对应点 D 的坐标为()A. (2,9)B. (5,3)C. ( 1,2)D. (-9,-4)9.已知△ ABC的面积为 3,边 BC长为 2,以 B 原点, BC所在的直线为 x 轴,则点 A 的纵坐标为()A. 3B.- 3C.6 D. ±310.如图,已知直角坐标系中的点A,点 B 的坐标分别为A( 2,4),B( 4,0),且 P 为 AB的中点,若将线段 AB向右平移 3 个单位后,与点 P 对应的点为 Q,则点 Q的坐标为()A. (3,2)B. ( 6,2)C.(6,4)D.(3, 5)二、填空题:(每题 2 分,共20 分)11.已知两点P1,2、P3,6,那么 P P长为- 1 -12.点 A( 5 ,7 )到原点的距离是.点A 在第二象限,它到x轴、y轴的距离分别是 3 、2,则点A坐标是;1314.已知点 A(1,2),AC ∥ X 轴 , AC=5, 则点 C的坐标是 _____________.15.当 b=______时 , 点 B(3,|b-1|) 在第一 . 三象限角均分线上 .16.假如点 P( m+3, m+1)在直角坐标系的 x 轴上,则点 P 的坐标为 _________17.点 A (-3,4),点B在座标轴上,且AB=5,那么点B坐标为18.假如点A(0,0),B(3,0),点C在y轴上,且ABC 的面积是5,C点坐标为.19. 正方形 ABCD在平面直角坐标系中的地点如下图,已知 A 点的坐标( 0,4),B 点的坐标(- 3, 0),则 C 点的坐标是.20.如图,△ DEF是由△ ABC绕着某点旋转获得的,则这点的坐标是.第19题三、解答题:A21.对于边长为 6 的正△ ABC,成立适合的直角坐标系,并在图上注明各个极点的坐标 .B C22. 如图,方格纸中有一条漂亮可爱的小金鱼.( 1)在同一方格纸中,画出将小金鱼图案上每一个点的横坐标乘以-1 ,而纵坐标不变后获得的图案;( 4 分)( 2)在同一方格纸中,在y轴的右边,将原小金鱼图案上全部的点的坐标以同样的规律进行变化,使图案的形状不变,而且对应线段放大为本来的 2 倍,画出放大后小金鱼的图案,并简述你将点的坐标进行了如何的变化.( 6 分)x第二卷( 40 分)一、(每 4 分,共 16 分)1. 随意数x,点P( x,x22x) 必定不在()..A.第一象限B.第二象限C.第三象限D.第四象限2.如的坐平面上有一正五形ABCDE,此中C、D 两点坐分 (1,0) 、(2,0) .若在没有滑的状况下,将此正五形沿着x 向右,程中,以下会(75 , 0)的点是()A.AB.BC.CD.D3. 在一次夏令活中,小霞同学从地 A 点出,要到距离 A 点1000 m 的C地去,先沿北偏70 方向抵达B地,而后再沿北偏西20方向走了500 m抵达目的地 C ,此小霞在地 A 的()A.北偏C.北偏2040方向上 B.北偏30方向上方向上 D.北偏西30方向上4.在直角坐系中,我把横、坐都是整数的点叫做整点.且定,正方形的内部不包括界上的点.察如所示的中心在原点、一平行于 x 的正方形:1的正方形内部有 1 个整点,2 的正方形内部有 1 个整点,3的正方形内部有 9 个整点,⋯ 8的正方形内部的整点的个数()A. 64.B. 49.C.36.D. 25.二、填空(每 4 分,共 20 分)5.在直角坐平面内的机器人接受指令“, A”(≥, 0< A <180)后的行果:在原地旋 A 后,再向正前面沿直行走. 若机器人的地点在原点,正前方为 y 轴的负半轴,则它达成一次指令2,60后地点的坐标为6. 已知点P1,0 ,O为原点, POQ150 ,PQ 2,则点 Q 坐标为7.如图,在平面直角坐标系中有一矩形 ABCD,此中yE(0,0),B(8,0),C(0,4,)若将△ ABC沿 AC所在直线翻折 , 点 B 落在点D CE 处 , 则 E点的坐标是 __________.A B8. 如图,将正六边形放在直角坐标系中中心与坐标原点重合,若A点的坐标为( -1,0) ,则点 C 的坐标为 ______.9. 已知:如图, O为坐标原点,四边形OABC为矩形, A(10 , 0) ,C(0, 4) ,点 D 是 OA的中点,点P 在 BC上运动,当△ODP是腰长为 5 的等腰三角形时,则P 点的坐标为.三、解答题(24 分)1.( 12 分)已知在平面直角坐标系中点A( -3,4 ),O为坐标原点,点 P 为坐标轴上一点,且PAO 为等腰三角形,请你画出草图并在图上注明点P 的坐标(不写过程)。

七年级下册数学平面直角坐标系练习题

七年级下册数学平面直角坐标系练习题

七年级下册数学平面直角坐标系练习题(一)课堂学习检测1.填空(1)平面内两条互相______并且原点______的______,组成平面直角坐标系.其中,水平的数轴称为______或______,习惯上取______为正方向;竖直的数轴称为______或______,取______为正方向;两坐标轴的交点叫做平面直角坐标系的______.直角坐标系所在的______叫做坐标平面.(2)有了平面直角坐标系,平面内的点就可以用一个______来表示.如果有序数对(a,b)表示坐标平面内的点A,那么有序数对(a,b)叫做______.其中,a叫做A点的______;b叫做A点的______.(3)建立了平面直角坐标系以后,坐标平面就被______分成了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,如图所示,分别叫做______、______、______、______.注意______不属于任何象限.(4)坐标平面内,点所在的位置不同,它的坐标的符号特征如下:(请用“+”、“-”、“0”分别填写)点的位置点的横坐标符号点的纵坐标符号在第一象限在第二象限在第三象限在第四象限在x轴的正半轴上在x轴的负半轴上在y轴的正半轴上在y轴的负半轴上在原点2.如图,写出图中各点的坐标.A( , );B( , );C( , );D( , );E( , );F( , );G( , );H( , );L( , );M( , );N( , );O( , );3.分别在平面直角坐标系中描出下列各点,并将各组内的点用线段依次连结起来.(1)A(-6,-4)、B(-4,-3)、C(-2,-2)、D(0,-1)、E(2,0)、F(4,1)、G(6,2)、H(8,3).(2)A(-5,-2)、B(-4,-1)、C(-3,0)、D(-2,1)、E(-1,2)、F(0,3)、G (1,2)、H (2,1)、L (3,0)、M (4,-1)、N (5,-2).4.分别在平面直角坐标系中描出下列各点,并将各组内的点,用平滑的曲线依次连结起来.(1)A (1,4)、 B (2,2)、C (1,34)、D (4,1)、E (6,32)、 F (-1,-4)、 G (-2,-2)、 H (-3,-34)、 L (-4,-1)、 M (-6,-32)(2)A (0,-4)、 B (1,-3)、C (-1,-3)、D (2,0)、E (-2,0)、F (2.5,2.25)、G (-2.5,2.25)、 H (3,5)、L (-3,5).5.下列各点A (-6,-3),B (5,2),C (-4,3.5),)43,2(D ,E (0,-9),F (3,0)中,属于第一象限的有______;属于第三象限的有______;在坐标轴上的有______.6.设P (x ,y )是坐标平面上的任一点,根据下列条件填空:(1)若xy >0,则点P 在______象限;(2)若xy <0,则点P 在______象限;(3)若y >0,则点P 在______象限或在______上;(4)若x <0,则点P 在______象限或在______上;(5)若y =0,则点P 在______上;(6)若x =0,则点P 在______上.7.已知正方形ABCD 的边长为4,它在坐标系内的位置如图所示,请你求出下列情况下四个顶点的坐标.(二)综合运用诊断8.试分别指出坐标平面内以下各直线上各点的横坐标、纵坐标的特征以及与两条坐标轴的位置关系.(1)在图1中,过A (-2,3)、B (4,3)两点作直线AB ,则直线AB 上的任意一点P (a ,b )的横坐标可以取______,纵坐标是______.直线AB 与y 轴______,垂足的坐标是______;直线AB 与x 轴______,AB与x 轴的距离是______.(2)在图1中,过A (-2,3)、C (-2,-3)两点作直线AC ,则直线AC 上的任意一点Q (c ,d )的横坐标是______,纵坐标可以是______.直线AC 与x 轴______,垂足的坐标是______;直线AC 与y 轴______,AC 与y 轴的距离是______.(3)在图2中,过原点O 和点E (4,4)两点作直线OE ,我们发现,直线OE 上的任意一点P (x ,y )的横坐标与纵坐标______,并且直线OE ______∠xOy .9.选择题 (1)已知点A (1,2),AC ⊥x 轴于C ,则点C 坐标为( ).A .(1,0)B .(2,0)C .(0,2)D .(0,1)(2)若点P 位于y 轴左侧,距y 轴3个单位长,位于x 轴上方,距x 轴4个单位长,则点P 的坐标是( ).A .(3,-4)B .(-4,3)C .(4,-3)D .(-3,4)(3)在平面直角坐标系中,点P (7,6)关于原点的对称点P ′在( ).A .第一象限B .第二象限C .第三象限D .第四象限(4)如果点E (-a ,-a )在第一象限,那么点F (-a 2,-2a )在( ).A .第四象限B .第三象限C .第二象限D .第一象限(5)给出下列四个命题,其中真命题的个数为( ).①坐标平面内的点可以用有序数对来表示;②若a >0,b 不大于0,则P (-a ,b )在第三象限内;③在x 轴上的点,其纵坐标都为0;④当m ≠0时,点P (m 2,-m )在第四象限内.A .1B .2C .3D .410.点P (-m ,m -1)在第三象限,则m 的取值范围是______.11.若点P (m ,n )在第二象限,则点Q (|m |,-n )在第______象限.12.已知点A 到x 轴、y 轴的距离分别为2和6,若A 点在y 轴左侧,则A 点坐标是______. 图1 图213.A(-3,4)和点B(3,-4)关于______对称.14.若A(m+4,n)和点B(n-1,2m+1)关于x轴对称,则m=______,n=______.(三)拓广、探究、思考15.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋①的坐标应该为______.16.如图,已知长方形ABCD的边长AB=3,BC=6,建立适当的坐标系并求A、B、C、D的坐标.17.求三角形ABC的面积.(1)已知:A(-4,-5)、B(-2,0)、C(4,0).(2)已知:A(-5,4)、B(-2,-2)、C(0,2).18.已知点A(a,-4),B(3,b),根据下列条件求a、b的值.(1)A、B关于x轴对称;(2)A、B关于y轴对称;(3)A、B关于原点对称.19.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3.(4)点P在过A(2,-3)点,且与x轴平行的直线上.20.x取不同的值时,点P(x-1,x+1)的位置不同,讨论当点P在不同象限或不同坐标轴上时,x的取值范围;并说明点P不可能在哪一个象限.。

第7章 平面直角坐标系 综合训练2022-2023学年人教版七年级数学下册

第7章   平面直角坐标系  综合训练2022-2023学年人教版七年级数学下册

第7章平面直角坐标系综合训练一、选择题1.如图,在平面直角坐标系中,被手盖住的点的坐标可能为( )A.(4,5)B.(−4,5)C.(−4,−5)D.(4,−5)2.以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°3.在平面直角坐标系中,一个长方形三个顶点的坐标为(−1,−1),(−1,2),(3,−1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)4.若点P在y轴负半轴上,则点P的坐标有可能是( )A.(−1,0)B.(0,−2)C.(3,0)D.(0,4)5.在大型爱国主义电影《长津湖》中,我军缴获了敌人防御工程的坐标地图碎片(如图),若一号暗堡坐标为(4,2),四号暗堡坐标为(﹣2,4),指挥部坐标为(0,0),则敌人指挥部可能在()A.A处B.B处C.C处D.D处6.在平面直角坐标系中,已知线段AB的两个端点分别是A(−4,−1),B(1,1),将线段AB平移后得到线段AʹBʹ,若点Aʹ的坐标为(−2,2),则点Bʹ的坐标为( )A.(4,3)B.(3,4)C.(−1,−2)D.(−2,−1)7.在平面直角坐标系中,若m为实数,则点(−2,m2+1)在( )A.第一象限B.第二象限C.第三象限D.第四象限8.平面直角坐标系内,AB∥y轴,AB=5,点A的坐标为(−5,3),则点B的坐标为( )A.(−5,2)B.(0,3)C.(0,3)或(−10,3)D.(−5,8)或(−5,−2)9.如图,在5×5的方格纸中,每个小正方形的边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使三角形ABC的面积为3,则这样的点C共有( )A.2个B.3个C.4个D.5个10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)⋯根据这个规律探索可得,第100个点的坐标为( )A.(14,8)B.(13,0)C.(100,99)D.(15,14)二、填空题11.点A的坐标(−4,−3),它到y轴的距离为.12.若点P(x,y)在第四象限,且∣x∣=2,∣y∣=3,则x+y=.13.如图,建立适当的平面直角坐标系,使点B,C的坐标分别为(−2,0)和(2,0),则点D的坐标是.14.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是.15.对有序数对(m,n)定义“f运算”:f(m,n)=(12m+a,12n−b),其中a,b为常数,f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”;点A(x,y)在F变换下的对应点,即为坐标为f(x,y)的点Aʹ.若点P(4,−4)在F变换下的对应点是它本身,则a=,b=.16.一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2;第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去⋯⋯最后落点为OA2021的中点A2022.则点A2022表示的数为.三、解答题17.已知点A(a−3,1−a)在第三象限且它的坐标都是整数,求点A的坐标.18.在平面直角坐标系中,有四点A(4,0),B(3,2),C(−2,3),D(−3,0),请你画出图形,并求四边形ABCD的面积.19.如图,在平面直角坐标系中,小方格边长为1,点A,B,P都在格点上.且P(1,−3).(1) 写出点A,B的坐标;(2) 将线段AB平移,使点B与点P重合,请在图中画出平移得到的线段并写出此时点A的对应点Aʹ坐标.20.“若点P,Q的坐标分别是(x1,y1),(x2,y2),则线段PQ中点的坐标为(x1+x22,y1+y22)”.如图,已知点A,B,C的坐标分别为(−5,0),(3,0),(1,4),利用上述结论求线段AC,BC的中点D,E的坐标,并判断DE与AB的位置关系.21.已知平面直角坐标系中有一点M(2m−3,m+1).(1) 点M到y轴的距离为1时,求M的坐标.(2) 点N(5,−1),且MN∥x轴时,求M的坐标.(3) 点M在第二象限的角平分线上,求M的坐标.22.如图,在平面直角坐标系中,已知A(−1,0),B(3,0).(1) 如果在第三象限内有一点M(−2,m)请用含m的式子表示△ABM的面积;(2) 在(1)的条件下,当m=−3时,在y轴上有一点P,使得△BMP的面积与△ABM2的面积相等,请求出点P的坐标.23.已知整点(横纵坐标都是整数)P0在平面直角坐标系内做“跳马运动”(即中国象棋“日”字型跳跃).例如在图1中,从点A做一次“跳马运动”,可以到点B,也可以到达点C.设P0做一次跳马运动到点P1,做第二次跳马运动到点P2,做第三次跳马运动到点P3,…,如此依次进行.(1)若P0(1,0),则P1可能是下列的点.D(﹣1,2);E(﹣2,0);F(0,2).(2)已知点P0(4,2),P2(1,3),则点P1的所有可能坐标为;(3)若P0(0,0),则P12、P13可能与P0重合的是.(4)如图2,点P0(1,0)沿x轴正方向向右上方做跳马运动,若P跳到Q1位置,称为做一次“正横跳马”;若P跳到Q2位置,称为做一次“正竖跳马”.当点P连续做了a次“正横跳马”和b次“正竖跳马”后,到达点P n(14,11),求a+b的值.24.如图,在平面直角坐标系中,A(m,0),B(n,0),C(−1,2),且满足式子∣m+2∣+(m+n−2)2=0.(1) 求出m,n的值.(2) 解答下列问题:①在x轴的正半轴上存在M,使△COM的面积等于△ABC面积的一半,求出点M的坐标.②在坐标轴的其他位置是否存在点M,使△COM的面积等于△ABC面积的一半仍然成立,若存在,请直接写出符合条件的点M的坐标.(3) 如图,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE,当点P运动时,∠OPD的值是否会改变?若不变,求其值;若∠DOE改变,说明理由.。

《平面直角坐标系》综合测试题(A)

《平面直角坐标系》综合测试题(A)

B 第 二象 限 .
C 第三象 限 .
D 第 四象 限 .
曩l 8 已知点 P 一 ,) ̄ : 轴的对称点为 Q a¨ , 0 的值是( l . l (23Y- Y 7 (, 则 +b
) .
0 A 1 .
0 J
B一 .1
楚河 汉界
≯ 9 图 已 棋 “ ” 坐 为 -, ,子 马 的 标 (3, i . ,知 子 卒 的 标 ( 3 棋 “ ” 坐 为 1 ) ◆ 如 2) , _l 则 子 炮 的 标 ) ll 棋 “ ” 坐 为( . l l
告诉 我 你 的朋 友 , 就 可 以 说 出你 的为 人 。— — 塞万 提 斯 我
3 2
、 一
W aiarn?As g ud ei o oi . hts ed nls lwln it d s f i i e o lgnw b e
什 么是 朋友 ?两 人 同 心 。— — 亚 里 士 多 德
B B 2 1 . ( ,)
C C( , ) . 12
D D( l一 ) . 一 ,2
0 7 直 坐 系 ,点 (6 左 移 个 位 度再 下 移8 单 长 后得 f ≯ . 角 标 中将 P ,向 平 4 单 长 ,向 平 个 位 度 ,到 在 3)

位于(
) .
◆ l


_

A3 .
A ( ,) . 2 1
B一 .3
B ( 12 . 一 ,)
C4 .
C ( ,2 . 1一 )
D一 .4
D ( 1一 ) . 一 ,2
0 4 平 直 坐 系 ,A1)于 轴 称 的 标 ( ) . 面 角 标 中点 (2 对 点 坐 是 . 在 ,关

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)一、选择题(每小题3分,共18分)1.根据下列表述,能确定位置的是( ).A.红星电影院第2排 B.北京市四环路C.北偏东30° D.东经118°,北纬40°2.下列关于有序数对的说法正确的是( ).A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置3.点P(3,﹣1)在第()象限.A.一 B.二 C.三 D.四a a>,那4.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)么所得的图案与原来图案相比().A.形状不变,大小扩大到原来的a倍; B.图案向右平移了a个单位;C .图案向上平移了a 个单位;D .图案向右平移了a 个单位,并且向上平移了a 个单位.5.雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(m ,α),其中,m 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A ,B ,C 处有目标出现,其中,目标A 的位置表示为A (5,30°),用这种方法表示目标B 的位置,正确的是( ).A .(﹣4,150°) B .(4,150°)C .(﹣2,150°) D .(2,150°)6.已知点P 在第二象限,有序数对(m ,n )中的整数m ,n 满足m -n =-6,则符合条件的点P 共有( )A .5个B .6个C .7个D .无数个 二,填空题(每小题3分,共18分)7.七(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 8.如果点P (x -4,y +1)是坐标原点,则2xy =_________9.若点P (x ,y )在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是_________10. 在平面直角坐标系中,若A 点坐标为(﹣3,3), B 点坐标为(2,0),则△ABO 的面积为__________. 11.若点P (a ,b )在第四象限,则点M (b -a ,a -b ) 在第________象限.(第5题)(第10题)12.线段AB与线段CD平行且相等,若端点坐标为A(1,3),B(2,7),C(2,-4),则另一个端点D的坐标为__________.三,解答题(每小题6分,共30分)13.已知平面直角坐标系中有一点)1m2(mM+,3-(1)若点M在y轴上,求M的坐标.(2)若点M在x轴上,求M的坐标.14.已知△ABC中,点A(1,-2),B(3,-2),C(2,0),D(4,1),E(2,4),F(0,1).在直角坐标系中,标出各点并按A—B—C—D—E—F—C—A顺次连接.(第14题)15.如图,如果“士”所在位置的坐标为(-2,-2),“相”所在位置的坐标为(1,-2),(1)画出直角坐标系.(2)“炮”现在所在位置的坐标为____ _. (3)下一步如果走“相”则走完后其坐标是______________.16.如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系,然后写出点B,点B’的坐标:B(_____________),B’(______________).17.一个等腰直角三角形如图放置于直角坐标系内,∠ABO=90°,∠AOB=45°,若A点坐标为(8-6x,3x+1),求B点的坐标. (第15题)(第16题)(第17题)四,解答题(每小题8分,共24分)18.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足0+b2a,点C的坐标为(0,3).4-=+(1)求A,B的坐标(2)求三角形ABC的面积(第18题)19.在平面直角坐标系中,点M的坐标为(a+3,a﹣3).(1)当a=﹣1时,点M在坐标系的第______象限;(直接填写答案)(2)无论a为何值,点M一定不在第______象限;(直接填写答案)(3)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N到两坐标轴距离相等时,求a的值.20.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.(第20题)五,解答题(每小题9分,共18分)21.如图,长方形ABCD 的各边与坐标轴都平行,点A ,C 的坐标分别为 (-1,1),(2,-3).(1)求点B 的坐标是_____.点D 的坐标是_____.(2)一动点P 从点A 出发,沿长方形的边AB ,BC 运动至点C 停止,运动速度为每秒1个单位长度,设运动时间为t s . ①当t =1 时,点P 的坐标是_____. ②当t =4.5 时,点P 的坐标是_____. ③当t =4.5 时,求三角形PDC 的面积.22.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P 1(x 1,y 1)、P 2(x 2,y 2),其两点间的距离公式P 1P 2=212212)()(y y x x -+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2-x 1|或|y 2-y 1|. (1)已知P (-3,4)试求线段OP ;(第21题)(2)已知M、N在平行于y轴的直线上,点M的纵坐标为5,点N的纵坐标为-1,试求M、N两点间的距离.(3)已知A(3,2),点B在x轴上,若AB=5,求点B 的坐标.六,解答题(12分)23.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B 的对应点C,D,连接AC,BD,CD.(1)点C的坐标为,点D的坐标为(2)在y轴上是否存在一点P,连接P A,PB,使△P AB的面积与四边形ABDC的面积相等,若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点Q从点C出发,沿“CD→DB”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,∠QOB=∠CAB;②当t= 秒时,∠QBA=∠CAB;(第23题)参考答案一、选择题(每小题3分,共18分)1. D. 2.C 3.D 4.D. 5.B. 6.A.二、填空题(每小题3分,共18分)7.(5,2) 8.-8 9.(-2,-3)10.3 11.二 12.(3,0)或(1,-8)三、解答题(每小题6分,共30分)13.解:(1)∵点M在y轴上∴2m-3=0解得:m=1.5 则m+1=2.5∴M的坐标为(0,2.5)(2)∵点M在x轴上∴m+1=0解得:m=-1 则2m-3=-5∴M的坐标为(-5,0)14.解:如图15.解:(1)如图所示(2) (-4,1) (3)(-1,0)或(3,0)16.解:(1)如图所示(2)B (1,2),B ’(3,5).17.解:由题意可知AB =BO ∵A 点坐标为(8-6x ,3x +1) ∴-(8-6x )=3x +1解得:x =3, 则8-6x= -10 ∴ B 点的坐标为(-10,0) 四、解答题(每小题8分,共24分) 18.解:(1)∵0=4-+2+b a ∴a =-2,b =4yxO∴A点的坐标为(-2,0), B点的坐标为(4,0)(2)∵A(-2,0), B(4,0)∴AB=6∵C(0,3).∴OC=3∴三角形ABC的面积S=6×3÷2=919.解:(1)四(2)二(3)∵M(a+3,a﹣3)向左平移2个单位向上平移1个单位得到点N∴N(a+1,a﹣2)∵点N到两坐标轴距离相等∴∣a+1│=∣a﹣2│∵a+1≠a﹣2∴a+1=-(a﹣2)解得a=0.520.解:S△ABO=S△ADO+S梯形ABCD-S△OBC=1×3÷2+(1+3)×2÷2-3×1÷2=4五、解答题(每小题9分,共18分)21.解(1)B的坐标是(2,1).点D的坐标是(-1,-3)P(2)①点P的坐标坐标是(0,1)②∵A(-1,1),B(2,1),C(2,-3).∴DC=AB=3,BC=4∵当t =4.5 时AB+BP=4.5,∴CP=3+4-4.5=2.5∴P 的坐标坐标是(2,-0.5)三角形PDC 的面积=3×2.5÷2=415 22.解(1)OP=525040322==+)()(---(2)MN=|y 2-y 1|=|5-(-1)|=6(3)由点B 在x 轴上可设B 的坐标为(x,0) 则AB =4)3)02()3222+=+x x ---(( ∵AB =5∴54)32=+x -(∴(3-x )2=1 解得:x =2或x =4∴B 的坐标为(2,0)或(4,0)六、解答题(12分)23.解(1)点C 的坐标为(0,2),点D 的坐标为(4,2)(2)由题意可知OC=2,AB=4,∴四边形ABDC 的面积=2×4=8∵△P AB 的面积=四边形ABDC 的面积=8且AB=4, ∴OP=4∴P的坐标为(0,4)或(0,-4)(3)①当t=1秒时,∠QOB=∠CAB;②当t=2秒时,∠QBA=∠CABQ。

七年级下学期压轴题(平面直角坐标系的综合题)含答案

七年级下学期压轴题(平面直角坐标系的综合题)1、如图,在长方形ABCD 中,边AB=8,BC=4,以点O 为原点,OA ,OC 所在的直线为y 轴和x 轴,建立直角坐标系.(1)点A 的坐标为(0,4),则B 点坐标为( ) ,C 点坐标为( ) ;(2)当点P 从C 出发,以2单位/秒速度向CO 方向移动(不过O 点),Q 从原点O 出发以1单位/秒速度向OA 方向移动(不过A 点),P ,Q 同时出发,在移动过程中,四边形OPBQ 的面积是否变化?若不变,求其值;若变化,求其变化范围.解:(1)∵长方形ABCD 中,AB=8,BC=4, ∴CD=AB=8,∴B (8,4),C (8,0);故答案为:(8,4),(8,0);(2)设运动时间为t ,则CP=2t ,AQ=4-t , S 四边形OPBQ=S 矩形ABCD-S △ABQ-S △BPC , =4×8-1/2×8(4-t )-1/2×4t , =32-16+4t-4t , =16,所以,四边形OPBQ 的面积不变,为16.2、如图,在平面直角坐标系中,已知A (0,a )、B (b ,0)、C (b ,c )三点,其中a 、b 、c 满足关系式|a-2|+(b-3)2+4-c =0, (1)求a 、b 、c 的值;(2)如果在第二象限内有一点⎪⎭⎫ ⎝⎛21,m P ,请用含m 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由。

解:(1)a-2=0,a=2;b-3=0,b=3;c-4=0,c=4;(2)过点p 作PD ⊥y 轴于点D= ×2×3+ ×2×(-m)=3-m ;(3)存在点P 使四边形ABOP 的面积为△AOP 的面积的两倍 因为所以 ,即3-m=2×( ×2×3),解得m=-3所以P(-3, ).3、如图,△ABC 的三个顶点位置分别是A(1,0),B(-2,3),C(-3,0). (1)求△ABC 的面积;(2)若点P (0,m )在y 轴上,试用含m 的代数式表示三角形ACP 的面积; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使S △ACP =2S △ABC ; (4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使S △BCQ =2S △ABC .4、如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足(a+2)2+02-b,过C 作CB ⊥x 轴于B . (1)求△ABC 的面积.(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数.(3)在y 轴上是否存在点P ,使得△ABC 和△ACP 的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.解:(1)∵(a+2)2+√b-2=0, ∴a=2=0,b-2=0, ∴a=-2,b=2, ∵CB ⊥AB∴A (-2,0),B (2,2),C (2,0), ∴三角形ABC 的面积=1/2×2×4=4;(2)解:∵CB ∥y 轴,BD ∥AC ,∴∠CAB=∠5,∠ODB=∠6,∠CAB+∠ODB=∠5+∠6=90°, 过E 作EF ∥AC ,如图①, ∵BD ∥AC , ∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠3=1/2∠CAB=∠1,∠4=1/2∠ODB=∠2,∴∠AED=∠1+∠2=1/2(∠CAB+∠ODB )=45°;(3)解:①当P 在y 轴正半轴上时,如图②, 设P (0,t ),过P 作MN ∥x 轴,AN ∥y 轴,BM ∥y 轴, ∵S △APC=S 梯形MNAC-S △ANP-S △CMP=4, ∴4(t-2+t)/2-t-(t-2)=4,解得t=3, ②当P 在y 轴负半轴上时,如图③∵S △APC=S 梯形MNAC-S △ANP-S △CMP=4 ∴4(-t+2-t)/2+t-(2-t )=4,解得t=-1, ∴P (0,-1)或(0,3).5.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积(2)在y 轴上是否存在一点P ,连接PA ,PB ,使=,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①的值不变,②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.(1)依题意知,将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,故C 、D 两点点y 值为2. 所以点C ,D 的坐标分别为C (0,2),D(4,2) , 四边形ABDC 的面积S 四边形ABDC =CO ×AB=2×4=8(2)(2)在y 轴上是否存在一点P ,使S △PAB=S 四边形ABDC .理由如下: 设点P 到AB 的距离为h ,S △PAB=×AB ×h=2h ,由S △PAB=S 四边形ABDC ,得2h=8, 解得h=4,∴P (0,4)或(0,-4).(3)①是正确的结论,过点P 作PQ ∥CD , 因为AB ∥CD ,所以PQ ∥AB ∥CD (平行公理的推论)∴∠DCP =∠CPQ ,∵∠BOP =∠OPQ(两直线平行,内错角相等), ∴∠DCP +∠BOP =∠CPQ +∠OPQ =∠CPO所以==1.6.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足(a-2b )2+|b-2|=0.(1)则C 点的坐标为 ;A 点的坐标为 . (2)已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是(1,2),设运动时间为t (t >0)秒.问:是否存在这样的t ,使S △ODP =S △ODQ ?若存在,请求出t 的值;若不存在,请说明理由;(3)点F 是线段AC 上一点,满足∠FOC=∠FCO ,∠OEC=∠CAO+∠ACE ,点G 是第二象限中一点,连OG ,使得∠AOG=∠AOF .点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OECACEOHC ∠∠+∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.解:(1)∵(a-2b )2+|b-2|=0,∴a-2b=0,b-2=0,解得a=4,b=2,∴A(0,4),C(2,0);故答案为(2,0),(0,4).(2)如图1中,由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,∴0<t≤2时,点Q在线段AO上,即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=21OP•yD=21(2-t)×2=2-t,S△DOQ=21OQ•xD=21×2t×1=t,∵S△ODP=S△ODQ,∴2-t=t,∴t=1;(3)OECACEOHC∠∠+∠的值不变,其值为2.理由如下:如图2中,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴OECACEOHC∠∠+∠=241)41(2414421=∠+∠∠+∠=∠+∠∠+∠+∠+∠.7.在平面直角坐标系中,△ABC 的三个顶点坐标为A (4,-1),B (1,4),C (1,-1). (1)请画出△ABC ,并画出△ABC 向左平移6个单位长度后得到的图形△A 1B 1C 1; (2)点P 是线段AB 上的一动点,连接A 1P ,B 1P ,求证:∠BB 1P +∠AA 1P =∠A 1PB 1; (3)在坐标轴上是否存在一点D ,使得△BCD 的面积是△ACD 面积的2倍?若存在,求出点D 的坐标;若不存在,请说明理由.解:(1)△ABC ,△A 1B 1C 1如图所示:(2)如图,过点P 作PQ ∥AA 1交A 1B 1于点Q ,连接BB 1,AA 1,∴PQ ∥AA 1,PQ ∥BB 1,∴∠BB 1P =∠B 1PQ ,∠AA 1P =∠A 1PQ , ∴∠BB 1P +∠AA 1P =∠A 1PB 1; (3)假设存在,分情况讨论:①当点D 在y 上时,设点D (0,m ),则15=51=22BCD S ⨯⨯△,1=312ACD S m ⨯⨯+△,∴5=2=312BCD ACD S S m +=△△, 解得:116m =-,2116m =-,此时点D 的坐标为(0,16-)或(0,116-);②当点D 在x 轴上时,设点D (m ,0),则1=512BCD S m ⨯⨯-△,13=31=22ACD S ⨯⨯△,∴5=2=132BCD ACD S S m -=△△,解得:1115m =,215m =-, 此时点D 的坐标为(115,0)或(15-,0); 综上所述,存在点D 的坐标为(0,16-)或(0,116-)(115,0)或(15-,0)。

中考数学《平面直角坐标系》专项复习综合练习题-附带答案

中考数学《平面直角坐标系》专项复习综合练习题-附带答案一、单选题1.已知点P的坐标为(4 7),则点P到x轴的距离是()A.4 B.5 C.7 D.112.平面直角坐标系,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P坐标是()A.(2 ﹣5)B.(﹣5 2)C.(﹣2 5)D.(5 ﹣2)3.如图所示,若在象棋盘上建立平面直角坐标系使“将”位于点(1 -2),“象”位于点(3 -2) 则“炮”位于点()A.(1 3) B.(-2 0) C.(-1 2) D.(-2 2)4.如图,在四边形ABCD中,AD//BC//x轴,下列说法正确的...是().A.A与D的横坐标相同B.C与D的横坐标相同C.B与D的纵坐标相同D.B与C的纵坐标相同5.如图△ABC向下平移n个单位得到△A'B'C’,若点B的坐标为(﹣2 1),则点B的对应点B'的坐标为()A.(﹣2 1+n)B.(﹣2 1﹣n)C.(﹣2+n 1)D.(﹣2﹣n 1)6.在平面直角坐标系xOy中点P的坐标为(1 1).如果将x轴向上平移2个单位长度,y轴不变,得到新坐标系,那么点P在新坐标系中的坐标是()A.(1 -1) B.(-1 1) C.(3 1) D.(1 2)7.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b)则点P在A′B′上的对应点P′的坐标为()A.(a−2,b+3)B.(a−2,b−3)C.(a+2,b+3)D.(a+2,b−3)8.如图是利用平面直角坐标系画出的天安门附近的部分建筑分布图若这个坐标系分别以正东、正北方向为x轴、y轴的正方向表示弘义阁的点的坐标为(﹣1 ﹣1)表示本仁殿的点的坐标为(2 ﹣2)则表示中福海商店的点的坐标是()A.(﹣4 ﹣3)B.(﹣2 ﹣1)C.(﹣3 ﹣4)D.(﹣1 ﹣2)二、填空题9.点M(x-1 -3)在第四象限则x的取值范围是10.若点A(-2 n)在x轴上则点B(n-2 n+1)在第象限 .11.将点A(﹣2 5)先向下平移3个单位再向右平移2个单位后则得到点B 则点B的坐标为.12.如图,平面直角坐标系xOy中将四边形ABCD先向下平移再向右平移得到四边形A1B1C1D1已知A(-3 5) B(-4 3) A1(3 3)则点B1标为.13.如图,在平面直角坐标系中x轴上有一点A(2,0)点A第1次向上平移2个单位至点A1(2,2)接着又向左平移2个单位至点A2(0,2)然后再向上平移2个单位至点A3(0,4)向左平移2个单位至点A4(−2,4)照此规律平移下去点A平移至点A2023时点A2023的坐标是.三、解答题14.已知在平面直角坐标系中点P(3m−6,m+1)试分别根据下列条件求出点P的坐标.(1)若点P在y轴上求出点P的坐标.(2)点A的坐标(1,−2)若AP∥x轴求点P的坐标.15.如图所示△ABO中 A B两点的坐标分别为(2 4)(7 2) C G F E分别为过A B两点所作的y轴、x轴的垂线与y轴、x轴的交点.求△AOB的面积.16.下图是北京市三所大学位置的平面示意图图中小方格都是边长为1个单位长度的正方形若清华大学的坐标为(0 3)北京大学的坐标为(﹣3 2).(1)请在图中画出平面直角坐标系并写出北京语言大学的坐标;(2)若中国人民大学的坐标为(﹣3 ﹣4)请在坐标系中标出中国人民大学的位置.17.如图,△ABC的三个顶点坐标分别为A(0,2)B(−3,1)C(−2,−2).(1)将△ABC向右平移2个单位作出△A′B′C′;(2)直接写出A′B′C′三点的坐标.18.如图所示在平面内有四个点它们的坐标分别是A(﹣1 0) B(2+ √3 0) C(2 1) D(0 1).(1)依次连结A、B、C、D 围成的四边形是一个形;(2)求这个四边形的面积;(3)将这个四边形向左平移√3个单位长度四个顶点的坐标分别为多少?参考答案 1.C 2.D 3.B 4.D 5.B 6.A 7.A 8.A 9.x>1 10.二 11.(0 2) 12.(2 1) 13.(−2020,2024)14.(1)解:点P(3m −6,m +1) 点P 在y 轴上 ∴3m −6=0 解得m =2∴m +1=3∴点P 的坐标为(0,3).(2)解:点P(3m −6,m +1) 点A 的坐标(1,−2) AP ∥x 轴 ∴m +1=−2 解得m =−3∴3m −6=−15∴点P 的坐标为(−15,−2). 15.解:∵A (2 4) B (7 2)∴AC=2、CO=4、OE=7、BE=2、AF=4、EF=OE ﹣OF=7﹣2=5 由图可知 S △AOB =S 矩形ACOF +S 梯形AFEB ﹣S △ACO ﹣S △BOE =2×4+12(2+4)×5﹣12×2×4﹣12×7×2=8+15﹣4﹣7 =23﹣11 =12.16.(1)解:如图,北京语言大学的坐标:(3 1);(2)解:中国人民大学的位置如图所示:17.(1)解:如图,△A′B′C′即为所求.(2)解:据图可知:A′(2,2)B′(−1,1)C′(0,−2).18.(1)梯(2)解:∵A(﹣1 0) B(2+ √3 0) C(2 1) D(0 1)∴AB=3+ √3 CD=2∴四边形ABCD的面积= 12(AB+CD)•OD= 12(3+ √3)×1= 3+√32(3)解:A′(﹣1﹣√3 0) B′(2 0) C′(2﹣√3 1) D′(﹣√3 1)。

人教版数学七年级下册《平面直角坐标系》综合训练题

人教版数学七年级下册《平面直角坐标系》综合训练题一、选择题1、下列各点中,在第一象限的点是( )A .(23),B .(23)-,C .(23)-,D .(23)--, 2、在平面直角坐标系中,下列各点在第二象限的是( )A.(2),1B.(21)-,C.(21)-,D .(21)--,3、在平面直角坐标系中,点(43)-,所在象限是( ) A.第一象限B.第二象限C.第三象限D.第四象限4、如果代数式mnm 1+-有意义,那么,直角坐标系中点()p m n ,的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限 5、已知P (-1,2),则点P 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限6是 ( ) A.(3300)-, B.(7500)-, C.(9600),D.(2800)--,7、在直角坐标系中,O 为坐标原点,已知(11)A ,,在x 轴上确定点P ,使AOP △为等腰三角形,则符合条件的点P 的个数共有( ) A.4个 B.3个 C.2个 D.1个8、点(a ,)b 关于y 轴的对称点的坐标是 ( ) A.(a -,)b -B.(a ,)b -C.(a ,)bD.(a -,)b9、已知外婆家在小明家的正东方,学校在外婆家的北偏西40o,外婆家到学校与小明家到学校的距离相等,则学校在小明家的( ) A.南偏东50oB.南偏东40oC.北偏东50oD.北偏东40o10、张老师住在学校的正东200米外,从张老师家出发向北走150米就到李老师家,若选取李老师家为原点,分别以正东、正北方向为x 轴,y 轴正方向建立平面直角坐标系,则学校的坐标是( )第6题图A 、(-200,-150)B 、(200,150)C 、(-150,-200)D 、(150,200) 二、填空题11、若点(P m ,)n 在第二象限,则点(Q m ,)n -在第 象限.12、若点(P a ,)b 在第二象限,(Q c ,)d 在第三象限,则点(a c +,)bd 在第 象限. 13、下列各点:(3A -,4)-,(5B ,2),(3C -,1)2,(2D ,3)2,(0E ,1)-,(3F ,0)中,位于第一象限的有 ,位于第三象限的有 ,位于坐标轴上的有 .14、如图,A 点的坐标是 ,B 点的坐标是 ,E 点的坐标是 ,坐标是(34)--,的点是 , 坐标是(30),的点是 ,D 点的坐标是(11)-,对吗? . (填“对”“不对”,并填出正确答案)15、已知点P 在第二象限,它的横坐标与纵坐标的和为1,则点P 的坐标是 (写出符合条件的一个点即可).16、小明从家里出发向正北方向走200m 就到了学校,如果以小明家为原点,学校的位置为 ,如果以学校为原点,他家的位置为 .17、某地震多发地区有互相垂直的两条交通主干线,以这两条主干线为轴建立直角坐标系,长度单位为100km ,地震监测部门预报该地区将有一次地震发生,震中位置为(12)-,,影响范围的半径为300km ,则下列主干线沿线的6个城市在地震影响范围内有 个.主干线沿线的6个城市为:(01)A -,,(02.5)B ,,(1.240)C ,,(0.50)D -,,(1.20)E ,,( 3.220)F -, 18、如图是某市市区四个旅游景点示意图 (图中每个小正方形的边长为1个单位长度),请以某景点为原点, 建立平面直角坐标系(保留坐标系的痕迹),并用坐标表示下列景 点的位置。

《平面直角坐标系》综合测试题(B)

≮ 裁§
0 囊
1考试时间6 分. . 0


2本套测试题共五道大题, 10 . 满分 0 分.
题 号 四 总 分






l每 小 题 3分 , 3 ( 共 0分 )
【 12 , 轴 于 c 则 点 c坐标 为 ( ( , )/C上 4 ,
— —

() 2 求经过 2 1 0 0次跳 动之后 , 子落点 到 0点 的距 离. 棋
i B
C D
A’ P

第 2 3题 图
四、 解答 题 ( 每小题 8分 , 1 共 6分 ) 2. 4 一个 长方 形 A C 的顶 点分 别是 4( , )B( , )c 2 3 , 13 . B D 1 1 , 2 1 , ( , )D( , ) ( ) 坐标 系 中描 出这个 长方 形 : 1在

3 2 l — -O
一 。 _r 。 二 ~
一 二

f l | 一
罔 1

二 、 空题 ( 小题 3分 , 3 填 每 共 O分 )
闭 2
≤ 1 点P 2 ) 于 轴 对 点 坐 是 ( ,关 的 称 的 标 1 一3 .

第1 图 0 题
第 2 5题 图
( 案在第 3 答 9页 )


, ,






_

_










结 交朋 友 只 在 一 念 之 问 . 友谊 却 是 慢 慢 成 熟 的果 实 。— — 亚 里十 多德
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学:第6章平面直角坐标系综合检测题A(人教新课标七年级下)一、选择题
1.在平面直角坐标系中,点P(-2,3)在()
A、第一象限
B、第二象限
C、第三象限
D、第四象限
2.. (2008年双柏县)如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是()
A.点A B.点B C.点C D.点D
3.点M(2,-3)关于y轴的对称点N的坐标是()
A.(-2,-3)
B.(-2, 3)
C.(2, 3)
D.(-3,2)
4.(已知点P(3,-2)与点Q关于x轴对称,则Q点的坐标为()
A.(-3,2) B.(-3,-2) C.(3,2) D.(
3,-2)
5.已知直线y=mx-1上有一点B(1,n),
角形的面积为((A)1
2
(B)
1
4

1
2
(C)
1
4

1
8
(D)
1
8

1
2
6.已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y轴对称,那么点A的对应点A'的坐标为().
A.(-4,2) B.(-4,-2) C.(4,-2) D.(4,2)
7.在平面直角坐标系中,□ABCD的顶点A、B、D
的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()
A.(3,7);
B.(5,3)
C.(7,3);
D.(8,2)
8.以如图所示的方格纸中,每个小正方形的边长为1,如果以MN所在的直线为Y轴,以小正方形的边长为单位长度建立平面直角坐标系,
使A点与B点关于原点对称,则这时C点的坐标可能是() A、(1,3);B、(2,-1);C、2,1);D、(3,1)
9.在平面直角坐标系中,若点P(x-2, x)
在第二象限,则x的取值范围为()
A.x>0 ;B.x<2 ;C.0<x<2;D.x>2
10.在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴的正方向的夹角为α,则用[ρ,α]表示点P的极坐标.显然,点P的坐标和它的极坐标存在一一对应关系.如点P的坐标(1,1)的
极坐标为P[2,45°],则极坐标Q[3
2,120°]的坐标为()
A.(-3,3)
B.(-3,3)
C.(3,3)
D.(3,3)
二、填空题
11.如图,已知A
l
(1,0)、A
2
(1,1)、A
3
(-1,1)、A
4
(-1,-1)、
A
5
(2,-1)、…。

则点A
2007
,的坐标为________.
12. P(3,-4)到x轴的距离是 .
13.将点()
31
A,绕原点O顺时针旋转90 到点B,
则点B的坐标是_____________.
14.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1、A2B2C2D2、A3B3C3D3……每个正方形四条边上的整点的个数,推算出正方形A10B10C10D10四条边上的整点共有个.
15.如图,将边长为1的正方形OAPB沿x轴正方向边连续翻转2006次,点P依次落在点1232006
,,
P P P P
的位置,则
2006
P的横坐标
2006
x=____________

2006
P的横坐标
2006
x=____________
16.先将一矩形ABCD置于直角坐标系中,使点A与坐标系的原点重合,边AB、AD分别落在x 轴、y轴上,如图16(1),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°如图16(2),若AB=4,BC=3,则图16(1)和图16(2)中点B点的坐标为.点C的坐标.
17.在平面直角坐标系中,已知点P
的坐标为(1, 0 ),将点P
绕着原点O按逆时针方向旋转600
得点P
1
,延长OP
1
到点P
2
,使OP
2
=2OP
1
,再将点P
2
绕着原点O按逆时针方向旋转600得点P
3
,则点
P
3
的坐标是 .
18.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小
第7
题图
第8题图
第11题图
第14题图
第15题图
第16(1)图第16(2)图
军的位置用(2,1)表示,那么你的位置可以表示成
19.如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成 。

20.如图,小强告诉小华图中A 、B 两点的坐标分别为(– 3,5)、(3,5),小华一下就说出了C
在同一坐标系下的坐标 。

小华
小军小刚
三、解答题
21.在平面直角坐标系内,已知点A (2,1),O 为原点,请你在坐标轴上确定点P ,使得△AOP 成为等腰三角形。

在给出的坐标系中把所有这样点P 都找出来,画上实心点,并在旁边标上P 1,P 2,….,P k 。

(有k 个就标到P k 为止,不必写出画法) 22.如图 ,是一个8×10正方形格纸,△ABC 中A 点坐标为(-2,1). (1)△ABC 和△A 'B 'C '满足什么几何变换(直接写答案)? (2)作△A 'B 'C '关于x 轴对称图形△A ''B ''C '';
(3)△ABC 和△A ''B ''C ''满足什么几何变换?求A ''、B ''、C ''三点坐标 (直接写答案).
23.如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P . ⑴写出下一步“马”可能到达的点的坐标
; ⑵顺次连接⑴中的所有点,得到的图形是 图形(填“中心对称”、“旋转对称”、“轴对称”);
⑶指出⑴中关于点P 成中心对称的点 .
24.如图,A B C △中,1204BAC AB AC BC ∠===
,,,请你建立适当的直角坐标系,并写
出A B C ,,各点的坐标.
25.如图,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形解答下列问题:
(1)图中的格点△DEF 是由格点△ABC 通过怎样的变换得到的?(写出变换过程) (2)在图中建立适当的直角坐标系,写出△DEF 各顶点的坐标.
A
B C A
B
C
A
B
C
第22
题图 第21题图
第24题图
第25题图
第19题
第18题第20题
参考答案
一、选择题 :BBACC DCBCA 二、填空题
11.-502,502;12.4;13.(1,-3);14.80;15.2006;16.B (4,0)、(23,2) C (4,3)、(
2
3
34-,
2
433+);17.(-l
;18.(4,3);19.(2,1);20.(-1,7)
三、解答题
21.解:通过在坐标系内,画等腰三角形,就很容易找出下列点的坐标:P 1(4,0);P 2(0,2);P 3
0);P 4
(0);P 5(0
;P 6(0
,; P 7(
54
,0);P 8(0,
52
);图略
22.略; 23.(1)(0,0),(0,2),(1,3),(3,3),(4,2),(4,0) (2)轴对称
(3)(0,0)点和(4,2)点;(0,2)点和(4,0)点
24.答案不唯一,可以是:如图,以B C 所在的直线为x 轴,B C 的垂直平分线为y 轴,垂直平分
线与B C 的交点为原点建立直角坐标系.
如图:0(20)(20)3A B C ⎛
∴-
⎪⎝⎭

,,,,
25.解:(1) 如:方法一:将△ABC 以点C 为旋转中心,按逆时针方向旋转90°得到△A 1B 1C ,再将△A 1B 1C 向右平移3个格就得到△DEF;
方法二:将△ABC 向右平移3个格得到△A 1B 1C 1,再将△A 1B 1C 1以点C 1为旋转中心,按逆时针方向旋转90°就得到了△DEF;
方法三:将△ABC 以点B 为旋转中心,按逆时针方向旋转90°得到△A 1BC 1,再将△A 1BC 1向下平移4个格得到△A 2B 2C 2,再将△A 2B 2C 2向右平移7个格就得到了△DEF.
方法四:将△ABC 以点A 为旋转中心,按逆时针方向旋转90°得到△AB 1C 1,再将△AB 1C 1向下平移4个格得到△A 2B 2C 2,再将△A 2B 2C 2向下平移5个格就得到了△DEF.
(2) 如: 方法一:如图①建立直角坐标系,则点D(0,0)、E(2,-1)、F(2,3); 方法二:如图②建立直角坐标系,则点D(-2,0)、E(0,-1)、F(0,3); 方法三:如图③建立直角坐标系,则点D(-2,-3)、E(0,-4)、F(0,0);
方法四:如图④建立直角坐标系,则点D(-2,1)、E(0,0)、F(0,4).
第24题。

相关文档
最新文档