蓄电池的充放电特性

合集下载

铅酸电池充放电特性

铅酸电池充放电特性

密封铅酸蓄电池的充放电特性电源技术 2009-04-04 10:33 阅读360 评论0字号:大中小1、电池的放电特性电池的放电特性是一组曲线(见图1)。

在一定的环境温度下(图中为25℃),随放电电流的不同,电池端电压与放电时间的关系称为放电曲线。

由放电曲线可以看出如下特性:(1)放电时间最长的曲线,放电时间为10小时,电流恒定,我们称之为10小时放电率曲线,由此测定的电池容量用C10表示C10=6A×10h=60Ah如果用1小时恒流放电来测定这同一只电池,则C1=41.9A×1h=41.9Ah由此可见电池的容量是在标定了放电制式之后才是一个可比的确定值。

(2)无论放电电流大小,在放电的初始阶段都会使端电压下降较多,然后略有回升的现象,这是因为电池从充电状态转变为放电状态的瞬间,电池极板附近的电荷快速释放出来,而离极板较远的电荷需要逐渐运送到极板附近,然后才能释放出来,这个过程形成了电池端电压有较大的低谷。

(3)无论放电电流大小,电池端电压最终将出现急剧下降的拐点,以这些曲线的拐点连接得到的曲线就称为安全工作时的终止电压曲线,UPS的电池电压工作终点都是设计在这条拐点曲线附近的。

拐点之后的曲线具有电压急剧下降的趋势,直到放电曲线的终点,这些终点连接得到的曲线称为最小终止电压曲线,它表示放电电压低于此曲线后将造成电池的永久性失效,即电池不能再恢复储电能力。

由此可见UPS中设计有防止电池深度放电的保护功能是极为必要的。

2、电池的充电特性电池的充电特性曲线也是在25℃温度下测量和标度的(见图2)。

充电曲线通常有三条:(1)充电电流曲线:在充电开始阶段,充电电流是一个恒定值,随着充电时间的推移,充电电流逐渐下降,并最终趋于0。

这是由于在放电过程中,电池内的电荷大量流失,由放电转变为充电时,电荷的增长速度较快,化学反应将产生大量的气体和热量,对于密封电池来说,即使通过安全阀可以将气体和热量排放掉,但氢离子和水将同时损失掉,使电池的储能下降,因此必须限定充电的电流值,随着电池容量的恢复,充电电流将自动下降。

铅酸蓄电池充电方法及特性说明

铅酸蓄电池充电方法及特性说明

铅酸蓄电池充电方法及特性说明铅蓄电池的充电特征就是指蓄电池在恒定流充电状态下,电解液相对密度ρ(15℃)、蓄电池端电压UC随充电时间的变化规律。

图5-12是将某型号铅蓄电池以5A进行恒流充电时测得的规律曲线。

充电过程中,电解液相对密度基本以直线逐渐上升。

这是因为采用等流充电,充电机每单位时间向蓄电池输入的电量相等,每单位时间内电解液中的水变为硫酸的量也基本相等。

充电过程中,铅蓄电池端电压上升的规律由四个阶段组成:第一阶段:充电开始,端电压上升较快。

这是由于极板活性物质孔隙内部的水迅速变为硫酸,孔隙外部的水还未来得及渗透入补充,极板内部电解液相对密度迅速上升所致。

第二阶段:端电压上升较平稳,至单格电压2.4V。

该阶段,每单位时间内极板内部消耗的水与外部渗入的水基本相等,处于动态平衡状态。

第三阶段:端电压由2.4V迅速上升至2.7V,该阶段电解液中的水开始电解,正极板表面逸出氧气,负极板处逸出氢气电解液中冒出气泡,出现所谓的电解液“沸腾”现象。

第四阶段:该阶段过充电阶段,端电压不再上升。

为了观察端电压和电解液相对密度不再上升的现象,保证蓄电池充分充电,一般需要过充电2h~3h。

由于过充电时剧烈地放出气泡会导致活性物质脱落,造成蓄电池容量降低,使用寿命缩短,因此应尽量避免长的时间过充电。

过充电时,蓄电池逸出的氢气与氧气混合,混合气体具有易烯、易爆特点,因此充电的蓄电池附近应免明火出现。

铅蓄电池充电终了的特征是:(1)端电压和电解液相对密度上升到最大值,且2h~3h内不再上升。

(2)电解液中产生大量气泡,呈现“沸腾”状态。

3.蓄电池的充放电控制技术在实际光伏发电系统的蓄池中,为了实现设定的充电模式,须对充电过程进行控制,运用正确的充电控制方法,有利于提高蓄电池的充电效率和使用寿命。

(1)充电过程阶段的划分在实际光伏发电系统的蓄池中,为了实现设定的充电模式,须对充电过程进行控制,运用正确的充电控制方法,有利于提高蓄电池的充电效率和使用寿命。

第4章 蓄电池及其充放电模式分析

第4章 蓄电池及其充放电模式分析

第4章蓄电池及其充放电模式蓄电池是太阳能光伏发电系统主要储能设备。

本章主要介绍蓄电池的基本概念、运行模式、工作原理和充放电控制。

4.1 蓄电池的基本概念与特性蓄电池的功能是储存太阳能电池方阵受光照时发出电能并可随之向负载供电。

太阳能光伏发电系统对蓄电池的基本要求:①自放电率低;②使用寿命长;③深放电能力强;④充电效率髙;⑤少维护或免维护;⑥工作温度范围宽;⑦价格低廉。

目前我国与光伏发电系统配套使用的蓄电池主要是铅酸蓄电池,特别是阀控式密封铅酸蓄电池,因此,本章主要以铅酸蓄电池为研究对象。

4.1.1蓄电池的基本概念蓄电池的主要功能是当日照量减少或者夜间不发电时补充负荷要求的功率。

一般系统当太阳能发电功率急剧下降时,蓄电池起缓冲作用,保证电压的稳定。

蓄电池属于电化学电池,它把化学中的氧化还原所释放出来的能量直接转变为直流电能,因此,它是一种储藏电能的装置。

蓄电池的结构图如图4.1所示;图4.2为蓄电池内部结构组成图。

下面对蓄电池内部的结构做一个详细的说明:正极活性物质:蓄电池正极中的填充物质,蓄电池放电时得到电子,发生还原反应。

负极活性物质:蓄电池负极中的填充物质,蓄电池放电时放出电子,发生氧化反应。

电解质:为蓄电池内部离子提供导电的一种介质。

隔膜:一般为绝缘性比较好的材料,为了防止正负极活性物质直接接触导致短路而增加的隔片。

外壳:为蓄电池的容器,能耐电解液的腐蚀,耐髙温,能抗一定的机械强度。

放电:蓄电池内部发生自发反应,向外部用电设备输送电流的过程。

充电:外部向蓄电池内输入电能,形成与放电电流方向相反的电流,使蓄电池内部发生与放电反应相反的反应,此过程称为充电。

充电后,两个电极分别有平衡电势为和φ+和φ-。

4.1.2 蓄电池的主要参数了解蓄电池主要参数的物理意义是光伏发电系统中有效使用蓄电池的前提之一。

蓄电池的主要参数归纳如下:1. 蓄电池的电动势电动势体现了电源把其他形式的能量转换成电能的本领,电动势使电源两端产生电压。

铅酸蓄电池充放电的原理

铅酸蓄电池充放电的原理

铅酸蓄电池充放电的原理铅酸蓄电池作为一种化学电源,广泛应用于各个领域。

接下来,我们将详细介绍铅酸蓄电池的充放电原理。

一、铅酸蓄电池结构铅酸蓄电池的基本结构由正负极板和电解液组成。

正极板上的活性物质为二氧化铅(PbO2),负极板上的活性物质为绒状铅(Pb)。

电解液主要为硫酸(H2SO4)。

在电池内部,正负极板分别与电解液形成半电池,两个半电池相互连接,构成一个完整的铅酸蓄电池。

二、充放电过程1.放电过程放电过程中,正极板上的二氧化铅得到电子,负极板上的绒状铅失去电子。

电子通过外部电路流动,形成电流。

同时,正负极板上的硫酸铅(PbSO4)逐渐积累,电解液浓度下降。

2.充电过程充电过程中,外部电源对电池进行反向充电,使得负极板上的硫酸铅逐渐转化为二氧化铅,正极板上的二氧化铅转化为硫酸铅。

电解液中的硫酸铅离子得到电子,生成硫酸。

随着充电的进行,电解液浓度逐渐升高,直至达到充电完成。

三、充放电特性1. 自放电特性铅酸蓄电池在储存过程中,由于内部化学反应的进行,会自然放电。

自放电速率受温度、电解液密度等因素影响。

2.极化现象随着放电过程的进行,正负极板上的硫酸铅逐渐积累,导致极板电势发生变化。

正极板电势逐渐趋向于负,负极板电势逐渐趋向于正。

极化现象加剧,会影响电池的放电性能。

3.充电特性充电过程中,电池内部发生化学反应,电解液浓度逐渐升高。

当电解液浓度达到一定值时,电池充电完成。

此时,正负极板上的活性物质分别为二氧化铅和绒状铅。

总之,铅酸蓄电池的充放电原理涉及活性物质的转化、电解液浓度的变化以及电流的流动。

了解这些原理,有助于我们更好地掌握铅酸蓄电池的使用和维护方法,确保电池性能的稳定。

蓄电池的工作原理和特性

蓄电池的工作原理和特性
(2)电解液密度降到最小终止值
(1)充电开始阶段 端电压迅速上升。
开始充电时,孔隙内迅速生成硫酸, 浓差极化增大,端电压迅速上升。
4.充电特性
在恒流充电过程中,蓄电池的端电压UC 和电解液密度ρ25℃ 随时间tC而变化的 规律。
恒流充电特性曲线见图1-13。
ρ25℃按直线规律上升。恒流放电,电流 值一定,化学反应速度一定,单位时间生 成的硫酸量一定。
负极板: Pb-2e→Pb2+ Pb2++SO42-→PbSO4
电解液:H++OH-→H2O
蓄电池放电特征
(1)活性物质PbO2和Pb均逐渐变为 PbSO4。
(2)放电过程中,电解液密度下降,所以, 可通过电解液密度判断放电程度
(3)蓄电池内阻逐渐增大。
3.充电过程 将电能转换成蓄电池化学能的过程称为充 电过程,它是放电反应的逆过程。 化学反应过程见图1-10所示: PbSO4→Pb2++SO42- H20→2H++OH-
OH-留在电解液中,Pb4+ 沉附在正极
表面,使正极板有+2.0V
在外电路未接通时,反应达到动态平 衡时,静止电动势为:
E=2.0-(-0.1)=2.1V
2.放电过程
将蓄电池的化学能转换成电能的过程 称为放电过程。
化学反应过程将按图1-9所示
正极板: Pb4++2e→Pb2+ Pb2++SO42-→PbSO4
蓄电池的工作原理和特性

一、工作原理
蓄电池的化学反应方程式为:
1.电动势的建立
蓄电池的电动势是正、负极浸入电解 液后产生的。其反应过程见图1-8所示

1---2-蓄电池的工作原理及特性

1---2-蓄电池的工作原理及特性

5min
单格电池终止电压(V)
1.75
1.70
1.65
1.55
1.50
C20——蓄电池的额定容量。
2、铅蓄电池的充电
充电时,蓄电池的正、负极分别与直流电源的正、 负极相连,当充电电源的端电压高于蓄电池的电动势时, 在电场的作用下,电流从蓄电池的正极流入,负极流出, 这一过程称为充电。蓄电池充电过程是电能转换为化学能 的过程。
蓄电池放电终了的特征是:
(1)单格电池电压降到放电终止电压; (2)电解液密度降到最小许可值。
放电终止电压与放电电流的大小有关。放电电 流越大,允许的放电时间就越短,放电终止电压 也越低。如下表所示。
放电电流(A)
0.05C20 0.1C20 0.25C20
C20
3C20
放电时间
20h
10h
3h
25min
8
二、 蓄电池的容量及其影响因素
蓄电池容量C等于放电电流If与放电时间tf的乘积:
C=If ·tf
1.额定容量
据国标GB5008.1-91规定,将充足电的新蓄电池,在电解 液温度为25±5℃的条件下,以20小时率的放电电流(即 0.05C20安培)连续放电至单池平均电压降到1.75V时,输出 的电量称为蓄电池的额定容量,用C20表示。单位为A·h。
2PbSO4+2H2O——PbO2+2H2SO4+Pb 解这从充液时电电中,解当时的充液过,H电中剩正2接逸的S、O近出充4负增终,电极多了负电板,时极流上密,板将的度P电附bP上S近解bO升S产水O4。已生,4还基H使原本2正从成还极电P原板b解成O附液P2和近b中OP产逸2b和生出,PO电 ,b2, 电解液液面高度降低。因此,铅蓄电池需要定期补充蒸馏 水。

蓄电池的特性1

以PA-NASONIC蓄电池为例,在30℃的环境温度下贮藏8个月,蓄电池的残存容量仅为出厂时的一半,因此对于新购买的与UPS配套的蓄电池,一般要进行一次较长时间的充电,这叫做初充电。蓄电池的初充电电流大小应按0.1C来充电,蓄电池在放电终了后可进行再充电,这叫正常充电。目前在UPS中普遍采用两种充电方式:浮充和脉充。所谓浮充电是指整流器的输出与蓄电池并联工作,并同时向负载供电,实际上此时整流器提供的电流分两路,一路送给负载,另一路送给蓄电池,以补充蓄电池自身内部损耗,浮充充电工作方式接线简单,对改善UPS输出瞬态响应特性有好处。脉冲充电的特点是充电电流随蓄电池容量而变化,用这种方式充电,可以缩短充电时间。
1.充电电压
由于UPS蓄电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长蓄电池的使用寿命,UPS的充电器一般采用恒压限流的方式控制,蓄电池充满后即转为浮充状态。
对于端电压为12V的蓄电池,正常的浮充电压在13.5~13.8V之间。浮充电压过低,蓄电池充不满,浮充电压过高,会造成过电压充电。当浮充电压超过14V时,即认为是过
出容量的百分之多少,而是要关注发现和处理落后蓄电池,经对落后蓄电池处理后再做核对性放电实验。这样可防止事故,以免放电中落后蓄电池恶化为反极蓄电池。
蓄电池的类型选择
蓄电池有多种类型,目前,风力发电普通采用于荷铅酸蓄电池。这种电池灌液
后,经过30分钟,待液温为l 5℃时即可使用,不需要进行初充电。对刚刚安装风力机,又不具备初充电条件的偏远地方,立即可以用电,是很优越的。这种电池的缺点是体积和重量较大,搬运不方便。市场销售的铝酸蓄电池多是机动车启动用电池,其极板结构和制造特点,使用在风力发电的充放运行条件下,是不适合的,使用命短,一般只有2~3年左右。在容量较大的风力发电站中,最好采用固定型防酸隔爆式铅蓄电池,这种电池具有容量大,电液比重较低(15℃时约在1.21左右),减少对极板和隔板的腐蚀,可延长蒸发时间,还有防渗漏措施,减少了对地的放电。

蓄电池的放电特性和放电要求

蓄电池的放电特性和放电要求发布者:dcxfy发布时间:2008-3-22 12:46:26 阅读:195次1.放电特性蓄电池在出厂前都会进行容量试验。

依据YD/T799-1996标准,容量试验的步骤如下:①将被试验蓄电池完全充电。

②将被试验蓄电池静置1~24h,使蓄电池表明温度达到25℃±5℃。

③固定型蓄电池采用0.1C10连续对负载恒流放电,在放电过程中定期测试蓄电池的端电压。

蓄电池电压达到1.80V/单格时为放电终止。

最后累积放电量达到100%即为合格。

对于蓄电池来说,放电终止的依据是蓄电池的端电压,即单体蓄电池的终止电压约为1.80V。

但是蓄电池的端电压与正、负极的3种极化密切相关,终止电压1.80V/单格是针对0.1C10左右的放电速率而设置的。

由于极化的存在,放电速率减小时,放电终止电压也应该越来越高,否则极有可能导致蓄电池过放电,出现不可逆硫酸盐化、寿命提前终止。

2.放电终止电压在蓄电池放电时需要注意的是放电速率和放电终止电压,尤其是不同环境温度下放电速率和放电终止电压的设定。

由于不同的环境温度会极大的影响蓄电池中电解液的冰点和活性物质的活性,为保证化学反应的充分进行,蓄电池最低温度最好控制在25℃左右。

而蓄电池放电时终止电压的设定是为了防止在放电过程中蓄电池组内出现各单体蓄电池的电压和容量不平衡的现象。

通常过放电越严重,下次充电时落后的蓄电池越不容易恢复,这就将严重影响蓄电池组的寿命。

通常蓄电池放电速率为0.02C10、0.1C10、0.2C10或0.3C10。

为了防止过充电,不仅要尽可能的避免放电速率过小,而且还必须根据放电速率,同时结合环境温度,精确地设计放电的终止电压。

在一般情况下,如果放电速率为(0.01~0.025)C,终止电压可设定为2.00V;放电速率为(0.5~0.25)C时,终止电压可设定为1.80V。

由于浓差极化的存在,放电速率增大时,伴随着放电电流的增大,放电终止电压也应该越来越低。

试析铅酸蓄电池结构与充放电特性

试析铅酸蓄电池结构与充放电特性摘要:铅酸蓄电池分固定式和移动式两种。

移动式铅酸蓄电池主要用于车辆和船舶,设计时着重考虑使其体积小、重量轻、耐振动和移动方便;固定式铅酸蓄电池在设计时则可少考虑移动的要求,而着重考虑容量大、寿命长,可制成大容量蓄电池。

目前,发电厂中普遍采用固定式铅酸蓄电池,以下试析铅酸蓄电池基本构造及充放电特性等。

关键词:铅酸蓄电池;基本构造;充电;放电;特性1 铅酸蓄电池基本结构铅酸蓄电池的主要组成部分为正极板、负极板、电解液和容器。

正极板一般做成玻璃丝管式结构,增大极板与电解液的接触面积,以减小内电阻和增大单位体积的蓄电容量。

玻璃丝管内部充填有多孔性的有效物质,通常为铅的氧化物;玻璃丝管可以防止多孔性有效物质的脱落。

负极板为涂膏式结构,即将铅粉用稀硫酸及少量的硫酸钡、松香等调制成糊状混合物,填在铅质或铅合金栅格骨架上。

为了增大极板与电解液的接触面积,表面有棱纹凸起。

极板经过特殊处理加工后,正极板的有效物质为褐色的二氧化铅PbO2,负极板的有效物为灰色的铅棉。

为了防止极板之间发生短路,在正、负极板之间用微孔材料隔板隔开。

而正、负极板浸没于电解液中,上缘比电解液面低10mm以上。

电解液是由纯硫酸(H2SO4)和蒸馏水配制而成的稀硫酸。

电解液密度的高低,影响着蓄电池容量的大小。

电解液密度过小,产生的离子少,蓄电池的内阻相应加大,使放电时消耗的电能加大,容量减小。

电解液密度愈大,蓄电池容量愈大。

但如果电解液密度过高,蓄电池极板受腐蚀和隔离物损坏也就愈快,缩短了蓄电池的寿命。

2 蓄电池的充电特性蓄电池充电后,正极板恢复为原来的二氧化铅PbO2,负极板恢复为原来的铅棉Pb ,并生成硫酸H2SO4 ,电解液由稀变浓,即其密度将恢复为原来的规定值。

从充电和放电的化学反应式可看出,蓄电池的充电和放电过程是一个可逆的化学变化过程。

充电时,电解液变浓,密度增大,放电时,电解液变稀,密度减小。

2.1恒流充电特性当蓄电池以恒定不变的电流进行连续充电时,充电初期,两极板上立即有硫酸析出,有效物质细孔内的电解液密度骤增,蓄电池电动势很快上升,必须提高外加电压,才能保持恒定的电流充电。

蓄电池


2.定压充电 充电过程中,加在蓄电池两 端的电压保持不变的充电方法。 特点:
充电过程中,充电电压保 持不变。充电开始,充电电流 很大,随着蓄电池电动势的为 断升高,充电电流逐渐减小, 直至为零。
单格电池充电电压通常选 择为2.5V。
3.脉冲快速充电 脉冲快速充电电流波形如图 所示。
特点:
(1)充电速度快、充电时间短; (2)可以增加蓄电池的容量。 (3)去硫化效果好。 (4)充电过程中产生大量气泡, 对活性物质的冲刷力强,易使活性 物质脱落,蓄电池的使用寿命下降。
三、 蓄电池的容量及影响因素
主要内容: 1.蓄电池的容量 2.蓄电池容量的影响因素
蓄电池的容量
定义:蓄电池在完全充足电的情况下,在允许放电的 范围内对外输出的电量,单位为安培小时(A· h)。 类型:额定容量、起动容量 (1)额定容量 完全充足电的蓄电池在电解液平均温度为25℃的 情况下,以20h率放电电流连续放电至单格电压降至 1.75V时所输出的电量.
充电过程:
电路连接 充电时,外接直流电源 的正极接蓄电池的正极板,电源的负极 接蓄电池的负极板。 电流流向 当直流电源的电动势高 于蓄电池的电动势时,电流将以放电电 流相反的方向流过蓄电池。 充电结果 正极板上的正二价铅离 子失去2个电子成为正四价铅离子,与水 反应生成二氧化铅,附着在正极板上, 电位升高; 负极板上的正二价铅离子得到2个电 子生成一个铅分子而附着在负极板上; 从正、负极板上电离出来的硫酸根离 子与水中的氢离子结合生成硫酸。
且与底部垂直,以便充放电时,电解液能通过沟槽及时供给正极 板,当正极板上的活性物质PbO2脱落时能迅速通过沟槽沉入容器 底部。
3. 电解液
作用:由纯净硫酸和蒸馏水按一定比例配制而成。 密度一般为1.24~1.30 g/cm3。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蓄电池的充放电特性
2010-08-23 网络转载
蓄电池具有自放电效应。

从生产制造车间到用户使用,大约要延误数月的时间。

以PA-NASONIC 蓄电池为例,在30℃的环境温度下贮藏8个月,蓄电池的残存容量仅为出厂时的一半,因此对于新购买的与UPS配套的蓄电池,一般要进行一次较长时间的充电,这叫做初充电。

蓄电池的初充电电流大小应按0.1C来充电,蓄电池在放电终了后可进行再充电,这叫正常充电。

目前在UPS中普遍采用两种充电方式:浮充和脉充。

所谓浮充电是指整流器的输出与蓄电池并联工作,并同时向负载供电,实际上此时整流器提供的电流分两路,一路送给负载,另一路送给蓄电池,以补充蓄电池自身内部损耗,浮充充电工作方式接线简单,对改善UPS输出瞬态响应特性有好处。

脉冲充电的特点是充电电流随蓄电池容量而变化,用这种方式充电,可以缩短充电时间。

1.充电电压
由于UPS蓄电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。

为延长蓄电池的使用寿命,UPS的充电器一般采用恒压限流的方式控制,蓄电池充满后即转为浮充状态。

对于端电压为12V的蓄电池,正常的浮充电压在13.5~13.8V之间。

浮充电压过低,蓄电池充不满,浮充电压过高,会造成过电压充电。

当浮充电压超过14V时,即认为是过电压充电。

严禁对蓄电池组过电压充电,因为过电压充电会造成蓄电池中的电解液所含的水被电解成氢和氧而逸出,使电解液浓度增大,导致蓄电池寿命缩短,甚至损坏。

2.充电电流
蓄电池充电电流一般以C来表示,C的实际值与蓄电池容量有关。

举例来讲,如果是100Ah 的蓄电池:C为100A。

松下铅酸免维护蓄电池的最佳充电电流为0.1C左右,充电电流决不能大于0.3C。

充电电流过大或过小都会影响蓄电池的使用寿命。

理想的充电电流应采用分阶段定流充电方式,即在充电初期采用较大的电流,充电一定时间后,改为较小的电流,至充电末期改用更小的电流。

充电电流的设计一般为0.1C,当充电电流超过0.3C时可认为是过电流充电。

避免用快速充电器充电,否则会使蓄电池处于“瞬时过电流充电”和“瞬时过电压充电”状态,造成蓄电池可供使用电量下降甚至损坏蓄电池。

过电流充电会导致蓄电池极板弯曲,活性物质脱落,造成蓄电池供电容量下降,严重时会损坏蓄电池。

3.充电方式
铅酸蓄电池放电产物是硫酸铅,若不及时转化掉,会使蓄电池处于充电不足状态,从而降低蓄电池放电容量和缩短蓄电池使用寿命。

因此,必须使蓄电池组处于充足电状态。

对不同情况,可分浮充和均充。

(1)浮充充电。

在线式蓄电池组是长期并联在充电器和负载线路上,作为后备电源的工作方式。

一般情况下,都采用浮充充电,单体蓄电池电压控制在2.25V(相对于2V蓄电池),并定期观察、记录浮充电压变化。

如果单体蓄电池电压偏低,说明蓄电池充电不足,容量不够,
应注意跟踪。

(2)均衡充电。

所谓均衡充电是把每个蓄电池单元并联起来,用统一的充电电压进行充电。

如果蓄电池组在浮充过程中存在落后蓄电池(单体电压低于2.20V,相对于2V蓄电池),或浮充3个月后,宜进行均充过程,其单体蓄电池控制在2.35V,充6~8h(注意,一次均充时间不宜太长),然后调回到浮充电压值,再观察落后蓄电池电压变化,如电压仍未到位,相隔两周后再均充一次。

一般情况下,新的蓄电池组经过6个月浮充、均充后,其电压会趋于一致。

均衡充电电流一般选0.3C或略小于0.3C。

额定电压为12V的蓄电池,均衡充电电压一般选14.5V。

当UPS的蓄电池在使用中遇到下述情况之一时,要想恢复蓄电池的可充放电特性,应采用均衡充电的办法来解决。

1)过量放电使得蓄电池的端电压低于蓄电池所允许的放电终了电压。

对12V的M型铅酸蓄电池而言,其放电终了电压为10.5V左右。

2)UPS蓄电池组中,各蓄电池单元之间的端电压差别超过1V左右。

3)长时间放置不用,超过静态存储时间的蓄电池。

常温环境,一般UPS蓄电池的静态存储时间为9个月。

当温度为31~40℃时,静态存储时间为5个月(包括新购蓄电池)。

4)重新更换了电解液的蓄电池。

5)放电后末能及时充电的蓄电池。

6)长期工作于浮充状态(即UPS长期工作于市电状态)并超过静态存储时间。

7)不慎放电,将蓄电池端电压放至低于终止电压。

对于NP6-12型密封式铅酸蓄电池,其均衡充电电压为14V左右,最大允许的均衡充电电流小于0.28C;对于LCL12V24P型密封式铅酸蓄电池,其均衡充电电压为14V左右最大允许的均衡充电电流小于8A。

(8)温度补偿。

虽然蓄电池的工作温度范围很宽,可在-15~+45℃范围内运行,但是蓄电池运行最佳环境温度为25℃左右,如果环境温度变化较大,需用温度系数进行补偿(-3mV/℃)。

(9充电操作。

蓄电池的初充电电流大小一般按说明书中的规定值,或按额定容量1/10的电流来进行。

使用中正常充电时,最好采用分级定流充电方式,即在充电初期用较大电流,充电一定时间后,改用较小电流,至于充电后期,改用更小电流。

这种充电方法的充电效率较高,它所需充电时间较短,充电效果也好,对延长蓄电池寿命有利。

有的新型智UPS采用定期自动监测及循环充电的方式进行对蓄电池充电,以延长蓄电池寿命。

(10)治疗性充放电。

对于蓄电池治疗性充放电过程,从放电容量和蓄电池电压值判断每
只蓄电池的“健康情况”,因为不同放电容量过程中每只蓄电池的电压变化就代表了该蓄电池"健康"状况,如有不合格的蓄电池,应采取补救措施。

有些UPS蓄电池欠电压是由于UPS逆变器末级驱动电路损坏,造成蓄电池放电所致。

若在修好电路故障后,应及时将蓄电池接入原电路充电,仍然会使蓄电池复好如初。

问题在于欠电压的蓄电池无法使UPS启动成功。

此时,可用如下办法解决:
1)先用好的蓄电池将UPS启动到市电状态后,再撤掉好蓄电池换上待充电的欠电压蓄电池。

在调换蓄电池时,要求UPS空载运行。

一般UPS迸入市电状态后,只要保持输入市电正常,撤掉蓄电池不会影响市电供电状态。

给欠电压的蓄电池充电过程中,应注意观察蓄电池的充电电流。

2)将欠电压的蓄电池先充电到10.5V(相对于12V蓄电池)以上,便可使UPS成功启动。

4.放电要求
蓄电池实际放出的容量与放电电流有关,放电电流越大,蓄电池的效率越低。

例如,12V/24Ah的蓄电池当放电电流为0.4C时,放电至终止电压的时间是1小时50分,实际输出容量17.6Ah,效率为73.3%。

当放电电流为7C时,放电至终止电压的时间仅为20s,实际输出容量0.93Ah,效率为3.9%。

所以应避免大电流放电,以提高蓄电池的效率。

一般电路设计和用户选择负载时,都要保护UPS蓄电池逆变放电电流不超过2C。

放电深度对蓄电池使用寿命的影响也非常大,蓄电池放电深度越深,其循环使用次数就越少。

虽然UPS郡有蓄电池低电压保护功能,一般单节蓄电池放电至10.5V(相对于12V蓄电池)左右时,UPS就会自动关机,但是如果UPS处于轻载放电或空载放电的情况下,尽管小电流放电能提高蓄电池的效率,但是当用极小电流(小于0.05C)长时间放电时,将导致蓄电池实际放出容量超过其额定容量,从而造成蓄电池严重的深度放电。

当蓄电池放电深度为100%时,蓄电池实际使用寿命约为200~250次充放电循环;放电深度为50%时,约为500~600次充放电循环。

因此,在使用UPS时,既要避免重载过电流放电,又要避免长时间轻载放电造成蓄电池深度放电。

更要避免蓄电池短路放电,否则,会严重损坏蓄电池的再充电能力和储电能力,缩短使用寿命。

在蓄电池的实际应用中,不是首先追求放出容量的百分之多少,而是要关注发现和处理落后蓄电池,经对落后蓄电池处理后再做核对性放电实验。

这样可防止事故,以免放电中落后蓄电池恶化为反极蓄电池。

相关文档
最新文档