2008年第七届中国女子数学奥林匹克试题及解答

合集下载

2023中国女子数学奥林匹克竞赛试题解答与评注

2023中国女子数学奥林匹克竞赛试题解答与评注

2023中国女子数学奥林匹克竞赛试题及评注哎呀,说起今年子那个2023中国女子数学奥林匹克竞赛的题啊,简直是“烧脑”级别的高端操作!我们这些吃瓜群众,虽
然看不懂那些个复杂公式和几何图形,但听那些娃儿们说起来,那叫一个精彩纷呈。

第一题,就像是走迷宫一样,绕来绕去,非得你脑筋转得飞快,还得有股子钻牛角尖的劲儿,才能找到那扇通往答案的秘密门。

听说好多女娃子都被它卡壳了,但最后解出来的,那成就感,简直比吃了火锅还巴适!
第二题呢,更绝了,跟耍杂技似的,要你在一堆数字里玩平衡,既要快又要准,稍微一晃神,就全盘皆输。

这题考的不光是数学能力,还有心理素质,就跟咱们四川人打麻将一样,心态要好,手气更要稳。

后头那些题,更是一个比一个难啃,但咱们的女娃子们,那是真不含糊,一个个都跟小诸葛似的,思路清晰,解题如行云流水。

看得人那叫一个佩服,心想这数学界,以后怕是要多出些女中豪杰了!
评注嘛,就是一句话:这次竞赛,不仅展现了女娃子们在数学领域的天赋和实力,更证明了咱们四川的妹儿,不管干啥子,都能整得巴巴适适,绝不输人!。

2023中国女子数学奥林匹克竞赛试题解析

2023中国女子数学奥林匹克竞赛试题解析

2023中国女子数学奥林匹克竞赛试题解析2023年的中国女子数学奥林匹克竞赛试题备受瞩目,让我们一起来仔细解析其中的题目,看看这些问题究竟有哪些特点和解法。

题目一:三角形的内切圆已知三角形ABC的三个顶点坐标分别为A(a, b),B(c, d),C(e, f),求证三角形的内切圆存在且唯一。

解析:为了证明三角形ABC的内切圆存在且唯一,我们需要从几何和代数两个角度来进行证明。

首先,在几何上,我们可以根据三角形ABC的三个顶点坐标绘制出三个边长,分别为AB、BC、AC。

然后,通过作垂线等方法找到三角形的内切圆的圆心O。

根据内切圆的定义,三角形的三条边分别与内切圆相切,即OA、OB、OC都是相切线段。

同时,由于切线与半径垂直,所以OA⊥AB,OB⊥BC,OC⊥AC。

因此,根据几何性质,三条垂线OA、OB、OC三点共线,即圆心O位于三角形ABC的内切圆心构成的直角三角形HOI的垂心上。

其次,在代数上,我们可以利用三角形的面积和三角形内切圆的半径之间的关系进行证明。

设三角形ABC的面积为S,半周长为p,三角形ABC的内切圆半径为r。

根据三角形面积公式可知,S = √[p(p-AB)(p-BC)(p-AC)]。

同时,根据三角形面积和半周长之间的关系可知,S = p * r。

将这两个等式相等,得到r = √[(p-AB)(p-BC)(p-AC)/p],即三角形的内切圆半径可以用三角形的边长表示。

综上所述,我们以几何和代数两个角度完成了对三角形内切圆存在且唯一的证明。

题目二:函数的极限已知函数f(x) = (3x + 2) / (2x - 1),求lim(x→∞)(f(x))。

解析:要求函数f(x)在极限x→∞时的值,我们可以通过分子和分母的次数来判断极限的值。

首先,观察函数f(x)的分子和分母,分别为3x + 2和2x - 1。

其中,分子的次数为x,分母的次数也为x,因此可以得出结论:当x→∞时,分子和分母的增长速度相当。

2008年全国 初中数学联赛(含答案)

2008年全国 初中数学联赛(含答案)

12008年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为 ( ) A .5 B .7 C .9 D .11.【答案】B【解析】 由题设条件可知2310a a -+=,2310b b -+=,且a b ≠,所以a ,b 是一元二次方程2310x x -+=的两根,故3a b +=,1ab =,因此222222222211()23217()1a b a b ab a b a b ab ++--⨯+====. 故选B 2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为( )EFDCBA2A .185B .4C .215D .245【答案】D【解析】 因为AD ,BE ,CF 为三角形ABC 的三条高,易知B ,C ,E ,F 四点共圆,于是AEF ABC △∽△,故35AF EF AC BC ==,即3cos 5BAC ∠=,所以4sin 5BAC ∠=. 在Rt ABE △中,424sin 655BE AB BAC =∠=⨯=.故选D3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( )A .15B .310C .25D .12. 【答案】C【解析】 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个.所以所组成的数是3的倍数的概率是82205=.故选C 4.在ABC △中,12ABC ∠=o ,132ACB ∠=o ,BM 和CN 分别是这两个角的外角平分线,且点M ,N 分别在直线AC 和直线AB 上,则 ( )3A .BM CN >B .BM CN =C .BM CN <D .BM 和CN 的大小关系不确定【答案】B【解析】 ∵12ABC ∠=o ,BM 为ABC ∠的外角平分线,∴1(18012)842MBC ∠=-=o o o.又180********BCM ACB ∠=-∠=-=o o o o ,∴180844848BMC ∠=--=o o o o ,∴BM BC =.又11(180)(180132)2422ACN ACB ∠=-∠=-=o o o o,∴18018012()BNC ABC BCN ACB ACN ∠=-∠-∠=--∠+∠o o o 168(13224)=-+o o o12ABC ==∠o ,∴CN CB =. 因此,BM BC CN ==.故选B5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为 ( )A .398T ⎛⎫ ⎪⎝⎭.B .498⎛⎫ ⎪⎝⎭.C .598⎛⎫⎪⎝⎭. D .98.【答案】B.【解析】 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为a ,过了n 天. n 天后每种商品的价格一定可以表示为4()()98110%120%1010kn kkn ka a --⎛⎫⎛⎫⋅-⋅-=⋅⋅ ⎪⎪⎝⎭⎝⎭,其中k 为自然数,且0k n ≤≤.要使r 的值最小,五种商品的价格应该分别为:981010in ia -⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,1188(1010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,22991010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,33981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,44981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,其中i 为不超过n 的自然数.所以r 的最小值为44498910108981010i n i i n ia a +---⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎛⎫⎝⎭⎝⎭= ⎪⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭.故选B . 6.已知实数x ,y 满足(22200820082008x x y y --=,则223233x y x y -+-2007-的值为( )A .2008-B .2008C .1-D .1.【答案】D .【解析】 ∵(22200820082008x x y y --=,∴222200820082008x x y y y y -=---222200820082008y y x x x x -=---由以上两式可得x y =.所以(2220082008x x -=,解得22008x =,所以522222323320073233200720071x y x y x x x x x -+--=-+--=-=.故选D .二、填空题(本题满分28分,每小题7分)1.设51a -,则5432322a a a a a a a +---+=- . 【答案】 2-【解析】 ∵2251351a a --==-⎝⎭,∴21a a +=, ∴()()32325432322222a a a a a a a a a a a a a a a a+--+++---+=-⋅- ()()333322212111(11)211a a a a a a a a a a a--+--===-=-++=-+=-⋅----. 2.如图,正方形ABCD 的边长为1,M ,N 为BD 所在直线上的两点,且5AM 135MAN ∠=o ,则四边形AMCN 的面积为 .【答案】 52【解析】 设正方形ABCD 的中心为O ,连AO ,则AO BD ⊥,2AO OB = ()222223252MO AM AO ⎛⎫-- ⎪ ⎪⎝⎭O MND CBA6∴2MB MO OB =-又135ABM NDA ∠=∠=o ,13590NAD MAN DAB MAB MAB ∠=∠-∠-∠=--∠o o 45MAB AMB =-∠=∠o ,所以ADN MBA △∽△,故AD DN MB BA =,从而212AD DN BA MB =⋅=. 根据对称性可知,四边形AMCN 的面积1122522222222MAN S S MN AO ==⨯⨯⨯=⨯⨯+=⎝△. 3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q += .【答案】 12【解析】 根据题意,m ,n 是一元二次方程20x ax b ++=的两根,所以m n a +=-,mn b =.∵1m n +≤,∴1m n m n ++≤≤,1m n m n -+≤≤.∵方程20x ax b ++=的判别式240a b ∆=-≥,∴22()1444a m nb +=≤≤. 22244()()()11b mn m n m n m n ==+--+--≥≥,故14b -≥,等号当且仅当12m n =-=时取得;22244()()1()1b mn m n m n m n ==+----≤≤,故14b ≤,等号当且仅当12m n ==时取得.7所以14p =,14q =-,于是12p q +=.4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 .【答案】 1【解析】 21到23,结果都只各占1个数位,共占133⨯=个数位;24到29,结果都只各占2个数位,共占2612⨯=个数位;210到231,结果都只各占3个数位,共占32266⨯=个数位;232到299,结果都只各占4个数位,共占468272⨯=个数位;2100到2316,结果都只各占5个数位,共占52171085⨯=个数位;此时还差2008(312662721085)570-++++=个数位.2317到2411,结果都只各占6个数位,共占695570⨯=个数位.所以,排在第2008个位置的数字恰好应该是2411的个位数字,即为1.第二试 (A )一.(本题满分20分)8已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式(1)(1)()0a x x ax bx b x bx ------≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 整理不等式①并将221a b +=代入,得2(1)(21)0a b x a x a ++-++≥ ②在不等式②中,令0x =,得0a ≥;令1x =,得0b ≥.易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥.由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=. 又因为0a ≥,所以62a -或62a +,9于是方程组③的解为6262a b ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以ab 的最小值为14,此时,a b 的值有两组,分别为 62a -,62b +和62a +=,62b -=.二.(本题满分25分)如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.⑴ 证明:点O 在圆D 的圆周上.⑵ 设△ABC 的面积为S ,求圆D 的的半径r 的最小值.【解析】 ⑴ 连OA ,OB ,OC ,AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为OD AB ⊥,DB BC ⊥,所以9090DOB OBA OBC DBO ∠=-∠=-∠=∠o o ,所以DB DO =,因此点O 在圆D 的圆周上.⑵ 设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知CE OABD10BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aSl y a x y a ax x a ax a a x y=++=+++=+=+=. 因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以BDO ABC △∽△,所以BD BOAB AC=,即2r a l y =,故2al r y =.所以322222224422a l a aS S a S r y y y y ⎛⎫==⋅=⋅ ⎪⎝⎭≥,即2S r 其中等号当a y =时成立,这时AC是圆O 的直径.所以圆D 的的半径r 2S三.(本题满分25分)设a 为质数,b 为正整数,且()()2925094511a b a b +=+①求a ,b 的值.【解析】 ①式即2634511509509a b a b++⎛⎫= ⎪⎝⎭,设63509a b m +=,4511509a b n +=,则 509650943511m a n ab --== ②故351160n m a -+=,又2n m =,所以2351160m m a -+=③由①式可知,2(2)a b +能被509整除,而509是质数,于是2a b +能被509整除,故m 为整数,即关于m 的一元二次方程③有整数根,所以它的判别式251172a ∆=-为完全平方数.11不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解.②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解. ③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =.此时方程③的解为3m =或5023m =(舍去). 把251a =,3m =代入②式,得5093625173b ⨯-⨯==.第二试 (B )12一.(本题满分20分)已知221a b +=,对于满足条件1x y +=,0xy ≥的一切实数对()x y ,,不等式220ay xy bx -+≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 由1x y +=,0xy ≥可知01x ≤≤,01y ≤≤.在①式中,令0x =,1y =,得0a ≥;令1x =,0y =,得0b ≥.将1y x =-代入①式,得22(1)(1)0a x x x bx ---+≥,即()()21210a b x a x a ++-++≥ ②易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=,13又因为0a ≥,所以62a -或62a +. 于是方程组③的解为6262ab ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以满足条件的a ,b 的值有两组,分别为62a -=,62b +和62a +,62b -= 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设a 为质数,b ,c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩①②14求()a b c +的值.【解析】 ①式即266341022511509509a b c a b c+-+-⎛⎫=⎪⎝⎭, 设663509a b c m +-=,41022511509a b cn +-=,则5096509423511m a n ab c ---== ③ 故351160n m a -+=,又2n m =,所以2351160m m a -+= ④由①式可知,2(22)a b c +-能被509整除,而509是质数,于是22a b c +-能被509整除,故m 为整数,即关于m 的一元二次方程④有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解. ②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.15⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =,此时方程④的解为3m =或5023m =(舍去). 把251a =,3m =代入③式,得50936251273b c ⨯-⨯-==,即27c b =-.代入②式得(27)2b b --=,所以5b =,3c =,因此()251(53)2008a b c +=⨯+=.。

2008年建华中学初一数学竞赛试题

2008年建华中学初一数学竞赛试题

2008年全国数学联赛竞赛(初中一年级)试题班级: 姓名: 指导教师: 成绩:一、选择题:(每题4分,共48分)1.已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么 ( )A .ab <bB .ab >bC .a +b >0D .a -b >02.有理数a 等于它的倒数,有理数b 等于它的相反数,则a 2008+b 2008= ( )A .0B .1C .-1D .23.下面的四个判断中,不正确的是 ( ) A .34x 3y 6与34a 3b 6不是同类项B .3x 和-3x +1不能互为相反数 C.3和113a +不能互为倒数D .4(x -7)=6(5-27x )和6(5-27y )=4(y -7)不是同解方程4.已知关于x 的一次方程(3a +8b )x +7=0无解,则ab 是 ( )A .正数B .非正数C .负数D .非负数5.如果a -b >a +b ,那么 ( )A .|a -b |>|a +b |B .ab <0C .-2b >2bD .-2a >2b6.方程组375831x y x y +=⎧⎨-=⎩的解(x,y)是( ) A .(3,-2) B .(2,1) C .(4,-5) D .(0,7)7.一条直线上距离相等地立有10根标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6.6秒,则当他走到第10杆时所用时间是 ( )A .11秒B .13.2秒 C. 11.88秒 D .9.9秒8.设[a ]是有理数,用[a ]表示不超过a 的最大整数,如[1.7]=1,[-1]=-1,[0]=0,[-1.2]=-2,则在以下四个结论中,正确的是( )A. [a ]+[-a ]=0B. [a ]+[-a ]等于0或-1C. [a ]+[-a ]≠0D. [a ]+[-a ]等于0或19.如图1,所示,S △ABC =1,若S △BDE =S △DEC =S △ACE ,则S △ADE = ( ) A.15 B.16 C.17 D.18. 10.若关于x 的方程|2x -3|+m =0无解,|3x -4|+n =0只有一个解,|4x -5|+k =0有两个解,则m ,n ,k 的大小关系是 ( )A .m >n >kB .n >k >mC .k >m >nD .m >k >n11. On the number axis ,there are two points A and B corresponding to numbers 7 and b respectively ,and the distance between A and B is less than 10.Let m =5-2b ,then the range of the value of m is ( )A.-1<m <39B.-39<m <1C.-29<m <11D.-11<m <29(英汉字典:number axis 数轴;point 点;corresponding to 对应于…;respectively 分别地;distance 距离;less than 小于;value 值;range 范围)12. “希望杯”四校足球邀请赛规定:(1)比赛采用单循环赛形式;(2)有胜负时,胜队得3分,负队得O 分; (3)踢平时每队各得1分.比赛结束后,四个队各自的总得分中不可能出现( ).A .8分B .7分C .6分D .5分二、填空题(每题4分,共52分)13.计算:3322782278782222+-⨯+=________. 14.若a +19=b +9=c +8,则(a -b )2+(b -c )2+(c -a )2=________.15.初一(2)班的同学站成一排,他们先自左向右从“1”开始报数,然后又自右向左从“1”开始报数,结果发现两次报数时,报“20”的两名同学之间(包括这两名同学)恰有15人,则全班同学共有________人.16.甲、乙两列客车的长分别为150米和200米,它们相向行驶在平行的轨道上,已知甲车上某乘客测得乙车在他窗口外经过的时间是10秒,那么乙车上的乘客看见甲车在他窗口外经过的时间是_________秒.17.某人以4千米/时的速度步行由甲地到乙地,然后又以6千米/时的速度从乙地返回甲地,那么某人往返一次的平均速度是______千米/时.18.对于不小于3的自然数n ,规定如下一种操作:<n >表示不是n 的约数的最小自然数,如<7>=2,<12>=5等等,则<<19>×<98>>=_______.(式中的×表示乘法)19.一个布袋中装有红、黄、蓝三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2,蓝球上标有数字3,小明从布袋中摸出10个球,它们上面所标数字的和等于21,则小明摸出的球中红球的个数最多不超过_________.20.图2,中,两个半径为1的14圆扇形 '''AO B 与 AOB 叠放在一起, POQO ,是正方形,则整个阴影图形的面积是__________.21.(3a +2b )x 2+ax +b =0是关于x 的一元一次方程,且x 有唯一解,则x =__________.22.某校运动会在400米球形跑道上进行10000米比赛,甲、乙两运动员同时起跑后,乙速超过甲速,在第15分时甲加快速度,在第18分时甲追上乙并且开始超过乙,在第23分时,甲再次追上乙,而在第23分50秒时,甲到达终点,那么乙匀速跑完全程所用的时间是________分.23. 如图3,中的大、小正方形的边长均为整数(厘米),它们的面积之和等于74平方厘米。

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

CMO 中国数学奥林匹克竞赛试题1987第二届年中国数学奥林匹克1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整除。

2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。

已知i.A、B、C三点上放置的数分别为a、b、c。

ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。

试求3.放置最大数的点积放置最小数的点之间的最短距离。

4.所有结点上数的总和S。

3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。

结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。

4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。

5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们两两相切。

如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。

6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m与n,问3m+4的最大值是多少?请证明你的结论。

1.设a1, a2, ... , a n是给定的不全为零的实数,r1, r2, ... , r n为实数,如果不等式r1(x1-a1)+r2(x2-a2)+...+r n(x n-a n)≦√(x12+ x22+ ... + x n2) + √(a12+ a22+ ... + a n2)对任何实数x1, x2, ... , x n成立,求r1, r2, ... , r n的值。

2007年第六届中国女子数学奥林匹克试题及解答

2007年第六届中国女子数学奥林匹克试题及解答

综上 ,最少取出 11 枚棋子 ,才可能满足要求 . 三、 定义集合 A = { m
k + 1| m ∈N+ , k ∈P} . k +1
.
i +1 数 ,则对任意的 k1 、 k2 ∈P 和正整数 m 1 、 m2 , m1 k1 + 1 = m2
由于对任意的 k 、 i ∈P ,且 k ≠i ,
是无理
由 m1 是正整数知 , 对 i = 1 ,2 ,3 ,4 ,5 , 满足这个 条件的 m1 的个数为 m
5
k +1 i +1 k +1 i +1
.
k 2 + 1 Ζ m 1 = m 2 , k1 = k 2 .
从而 , n =
注意到 A 是一个无穷集 . 现将 A 中的元素按从 小到大的顺序排成一个无穷数列 . 对于任意的正整 数 n ,设此数列中第 n 项为 m k + 1 . 接下来确定 n 与 m 、 k 间的关系 .
yx
2
当 x = 0 时 ,上式也成立 .
a1 a2 a2 a3 a n a1 故 2 + 2 + …+ 2 a2 + 1 a3 + 1 a1 + 1
2 2 2
4 . (1) 记 S 中的 n 个点为 A 1 , A 2 , …, A n .
建立直角坐标系 ,设 A i ( x i , y i ) ( i = 1 ,2 , …, n) . 易证
32
中 等 数 学
2007 女子数学奥林匹克
第一天
1. 设 m 为正整数 ,如果存在某个正整数
n ,使得 m 可以表示为 n 和 n 的正约数个数 (包括 1 和自身 ) 的商 , 则称 m 是 “好数” .求

2008IMO

2008年国际数学奥林匹克(第49届IMO )第一天1.已知H 是锐角三角形ABC 的垂心,以边BC 的中点为圆心,过点H 的圆与直线BC 交于12,A A 两点;以边CA 的中点为圆心,过点H 的圆与直线CA 交于12,B B 两点;以边AB 的中点为圆心,过点H 的圆与直线AB 交于12,C C 两点. 证明:六点121212,,,,,A A B B C C 共圆.(俄罗斯提供) 证明:00,B C 分别是边CA ,AB 的中点.设以边0B 为圆心,过点H 的圆与以0C 为圆心,过点H 的圆的另一个交点为'A ,则00'A H C B ⊥.由于00,B C 分别是边CA ,AB 的中点,所以00C B BC ,从而'A H BC ⊥,于是点'A 在AH 上. 由切割线定理:1212'AC AC AA AH AB AB ⋅=⋅=⋅,所以,1212,,,B B C C 四点共圆.分别作1212,B B C C 的垂直平分线,设它们相交于点O ,则O 是四边形1212B B C C 的外心,且1212OB OB OC OC ===.同理可得,1212OA OA OB OB ===,所以,121212,,,,,A A B B C C 六点都是在以O 为圆心,1OA 为半径的圆上,故六点121212,,,,,A A B B C C 共圆.2.(1)设实数,,x y z 都不等于1,满足1xyz =,求证:()()()2222221111x y z x y z ++≥---.(2)证明:存在无穷多组三元有理数组(),,x y z ,,,x y z 都不等于1,且1xyz =,使得上述不等式等号成立.(奥地利提供)证明:(1)令1x a x =-,1yb y =-,1zc z =-,则1a x a =-,1b y b =-,1c z c =-. 由题设条件1xyz =得()()()111abc a b c =---,即 1ab bc ca a b c ++=++-,()()()()()22222222111 1.a b c a b c ab bc ca a b c a b c a b c ++=++-++=++-++-=++-+≥所以 从而()()()2222221111x y z x y z ++≥---.(2)令()()2221,,,,1k k x y z k k k k ⎛⎫-=-- ⎪ ⎪-⎝⎭,k 是正整数,则(),,x y z 是三元有理数组,,,x y z 都不等于1,且对于不同的正整数k ,三元有理数组(),,x y z 是互不影响的.此时()()()222222111x y z x y z ++---()()()()()()2222222222432221111232111k k k kk k k k k k k k k k kk --=++-+-+-+-+-+==-+从而命题得证.3.证明:存在无穷多个正整数n ,使得21n +有一个大于2n 的素因子.(立陶宛提供) 证明:设(20)m ≥是一个整数,p 是()!1m +的一个素因子,则20p m >≥.令整数n 满足02pn <<,且()!mod n m p ≡±. 于是0n p n p <<-<,且()21m od n p ≡-,(1) 故()()2222444mod p n p pn n p -=-+≡-,所以()224p n p -≥-,222p n n n≥≥>+.(2)由(1),(2)便知,命题成立.第二天4.求所有的函数()():0,0,f+∞→+∞,满足对所有的正实数,,,w x y z,wx yz=,都有()()()()()()22222222f w f x w zy zf y f z++=++.(韩国提供)解:令1w x y z====,得()()()211f f=,所以()11f=.对任意0t>,令,1,w t x y z====,得()()()221122f t tf t t++=,去分母整理得()()()()10tf t f t t--=,所以,对每个0t>,()f t t=,或者()1f tt=.(*)若存在(),0,b c∈+∞,使得()f b b≠,()1f cc≠,则由(*)知,,b c都不为1,且()1f bb=,()f c c=.令,,w b x c y z===()2222122c b cbf bc bc++=,所以()()2222c b cf bcb b c+=+.因为()f bc bc=,或者()1f bcbc=.若()f bc bc=,则()2222c b cbcb b c+=+,得4,1b c c b==,矛盾!若()1f bcbc=,则()22221c b cbc b b c+=+,得242,1b c b c==,矛盾!所以,或者()(),0,f x x x=∈+∞,或者()()1,0,f x xx=∈+∞.经检验,()(),0,f x x x=∈+∞,和()()1,0,f x xx=∈+∞都满足要求.5.设n 和k 是正整数,k n ≥,且k n -是一个偶数.2n 盏灯依次编号为1,2,...,2n ,每一盏灯可以“开”和“关”.开始时,所有的灯都是“关”的.对这些灯可进行操作只改变其中的一盏灯的开关状态(即“开”变成“关”,“关”变成“开”),我们考虑长度为k 的操作序列,序列中的第i 项就是第i 次操作是被改变开关状态的那盏灯的编号.设N 是k 次操作后使灯1,,n ⋅⋅⋅是“开”的,灯1,,2n n +⋅⋅⋅是“关”的状态的所有不同的操作序列的个数.设M 是k 次操作后使灯1,,n ⋅⋅⋅是“开”的,灯1,,2n n +⋅⋅⋅是“关”的,但是灯1,,2n n +⋅⋅⋅始终没有被开过的所有不同的操作序列的个数.求比值NM.(法国提供) 解:所求的比值为2k n-.引理:设t 是正整数,如果一个t 元0,1数组()12,,,t a a a ⋅⋅⋅{}()12,,,0,1t a a a ⋅⋅⋅∈其中共有奇数个0,那么称其为“好的”.则好数组共有12t -个.事实上,对于相同的12,,,t a a a ⋅⋅⋅,在t a 取0,1时得到的两个数组中的奇偶性不同,则恰好有一个为“好的”,于是我们可将总共2t个不同的可能数组两两配对,每对数组中仅有t a 不同,则每对恰好有一个好数组,故好数组占总体的一半,即有12t -.引理得证.称k 次操作后灯1,,n ⋅⋅⋅是“开”的,灯1,,2n n +⋅⋅⋅是“关”的状态的操作序列的全体记为A 类型;k 次操作后使灯1,,n ⋅⋅⋅是“开”的,灯1,,2n n +⋅⋅⋅是“关”的,但是灯1,,2n n+⋅⋅⋅始终没有被开过的操作序列的全体记为B 类型.对于任意一个B 类列b ,将有如下性质的A 类列a 全部与它对应:“a 的各元素在模n 的意义下对应相同”(例如,2,4n k ==时,()2,2,2,1b =可对应如()4,4,2,1a =, ()2,2,2,1a =,()2,4,4,1a =等),那么由于b 是B 类列,其中1,,n ⋅⋅⋅的个数必定为全为奇数,而a 是 A 类列,又要求a 中1,,n ⋅⋅⋅的个数全为奇数,且1,,2n n +⋅⋅⋅的个数全为偶数.于是对于任意的{}1,2,,i n ∈⋅⋅⋅,设b 中有i b 个i ,则a 必须且只需满足:对任意{}1,2,,i n ∈⋅⋅⋅,b 中是i 的i b 个元所在的位上在a 中都是i 或者n i +,且i 有奇数个(自然n i +就有偶数个),那么由引理及乘法原理,b 中恰可对应1122i nb k ni --==∏个不同的a ,而每个A 中的元a 均有B 中的一元(唯一的一个元)b (它是把a 的各位变成它除以n 的最小正余数)可以对应它,从而必有2k nA B -=,即2k n N M -=.又易知0M ≠(因为操作列()1,2,,,,,n n n B ⋅⋅⋅⋅⋅⋅∈),所以2k n NM-=.6.在凸四边形ABCD 中,BA BC ≠.1ω和2ω分别是ABC 和ADC 的内切圆.假设存在一个圆ω与射线BA 相切(切点不在线段BA 上),与射线BC 相切(切点不在线段BC 上),且与直线AD 和直线CD 都相切. 明:圆1ω和2ω的两条公切线的交点在圆ω上.(俄罗斯提供) 证明:先证两个引理:引理1:设ABCD 是凸四边形,圆ω与射线BA (不包括线段BA )相切,与射线BC (不包括线段BC )相切,且与直线AD 和直线CD 都相切.则AB AD CB CD +=+.引理1的证明:设直线AB,BC,CD,DA 分别与圆ω相切于P,Q,R,S ,如图1,则AB AD CB CD +=+()()AB AD DS CB CD DR AB AS CB CR AB AP CB CQ BP BQ⇔++=++⇔+=+⇔+=+⇔=从而引理1得证.引理2:设三个圆:123,,O O O 的半径两两不等,则它们的外位似中心共线.引理2的证明:设3X 是1O 与2O 的外位似中心,2X 是3O 与1O 的外位似中心,1X 是2O 与3O 的外位似中心,i r 是i O (1,2,3i =)的半径,由位似的性质知131232O X rr X O =-,这里13O X 表示有向线段13O X ,如图2所示.同理212313O X rr X O =-,323121O X r r X O =-,所以1332321122313213211O X O X r O X r r r r r X O X O X O ⎛⎫⎛⎫⎛⎫=---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ , 由梅内劳斯定理知,123,,X X X 三点共线.图 1图 23如图3,设U,V 分别是圆1ω,2ω与AC 的切点. 则222AD AC CD AC AD CDAV +--==+22()2AC CB AB AC CB AB CU -=++-==由引理1所以,ABC 的关于顶点B 的旁切圆3ω与边AC 的切点亦为V . 因此,2ω与3ω内切于点V ,即V 为2ω与3ω的外位似中心.设K 是1ω与2ω的外位似中心(即两条外公切线的交点),由引理2知,K,V ,B 三点共线. 完全类似可得K,D,U 三点共线.因为BA BC ≠,所以,U V ≠(否则,由AV CU =知,U V =是边AC 的中点,与BA BC≠矛盾).因此,直线BV 与DU 不重合. 故K BV DU =⋂.于是,只需证明直线BV 与DU 的交点K 在圆ω上. 作圆ω的一条平行于AC 的切线l (靠近边AC 的那条),设l 与圆ω切于点T .下证:B,V,T 三点共线.如图4,设l 与射线BA,BC 分别交于点11,A C .则圆ω是11BAC 的关于顶点B 的旁切圆,T 是其与11AC 的切点.而圆3ω是BAC 关于点B 的旁切圆,圆3ω与AC 切于点V .由11AC AC 知,BAC 与11BAC 以B 为中心位似,而V ,T 分别是对应旁切圆与对应边的切点,因此,V ,T 是这一对位似形中的对应点.而B 是位似中心,故B,V ,T 三点共线. 同理可证D,U,T 三点共线. 从而,命题得证.B图 4。

2023中国女子数学奥林匹克竞赛试题解析

2023中国女子数学奥林匹克竞赛试题解析2023年中国女子数学奥林匹克竞赛(CGMO)试题在秉承往年试题风格的基础上,进行了适当的调整和创新,以适应女孩子们的数学学习兴趣和特长。

以下是对2023年CGMO试题的详细解析:一、试题结构与内容1. 第一天考试:第一天考试通常包括填空题、解答题和证明题,主要考查选手的基础知识和逻辑思维能力。

题目内容涉及实数、代数、几何、数论等领域。

2. 第二天考试:第二天考试包括解答题和证明题,难度相对更高,考查选手的抽象思维和问题解决能力。

题目内容可能涉及组合数学、概率论、图论、数列等领域。

二、试题特点1. 基础知识与创新思维相结合:试题既注重考查选手的基础知识,如实数运算、代数表达、几何作图等,又鼓励选手运用创新思维解决新问题。

2. 理论与实际应用相结合:试题中包含一定数量的理论与实际应用相结合的题目,要求选手能够将所学知识运用到实际问题的解决中。

3. 学科交叉与综合能力考查:试题涉及到多个学科的知识点,考查选手的学科交叉能力和综合运用知识的能力。

4. 试题情境贴近生活:试题情境设置贴近生活,使选手能够在熟悉的环境中发挥自己的数学才能。

三、试题解析1. 填空题:填空题通常要求选手填写合适的数学术语、表达式或结论。

这类题目主要考查选手对基础知识的掌握。

2. 解答题:解答题要求选手详细阐述解题过程和推理步骤,主要考查选手的逻辑思维和问题解决能力。

3. 证明题:证明题要求选手运用数学原理和逻辑推理证明给定的结论。

这类题目主要考查选手的抽象思维和证明能力。

四、备考建议1. 扎实基础知识:选手应扎实掌握数学基础知识,如实数、代数、几何、数论等,为解答高难度题目奠定基础。

2. 提高解题技巧:选手应通过大量练习,提高解题技巧,学会灵活运用各种数学方法和策略。

3. 培养创新思维:选手应在学习过程中,培养自己的创新思维,善于从不同角度审视问题,寻找解决方案。

4. 注重学科交叉:选手应关注学科交叉的知识点,提高自己的综合运用知识的能力。

2008年全国初中数学联赛决赛试题(江西卷)参考答案

2008年全国初中数学联赛决赛试题(江西卷)参考答案(2008年4月19日 上午9:00—11:30)-、选择题(每小题7分,共42分)1 、解:由1114123+=,而1111,236++=故删去11810与后,可使剩下的数之和为1.故选C2====12.故选A . 3、解:555=5×545=5×18125,因125被8除余l ,所以18125被8除余l ,故知555被8除余5,而在125、375、625、875四数中,只有125被8除余5,故选A4 、解:由(1)、(3)得2x y x =-,63x z x =-,故x ≠0,代人(2)解得2710x =,所以277y =, z =-54.检验知此组解满足原方程组.于是10X +7y +Z =0.故选D5、解:图中只有边长为1或2的两种菱形,每个菱形恰有一条与其边长相等的对角线,原正三角形内部每条长为1的线段,恰是一个边长为1的菱形的对角线;这种线段有18条,对应着18个边长为1的菱形;原正三角形的每条中位线恰是一个边长为2的菱形的对角线,三条中位线对应着3个边长为2的菱形;共得21个菱形. 选C6、解:设28abcd =3()xy ,则据末位数字特征得y =2,进而确定xy :因360=216000,370=343000,所以60<xy <70,故只有,xy =62,而262=238328,则ab =38,cd =32,ab +cd =70. 故选D二.填空题(每小题7分,共28分)7、解:据条件式9........1xy +=()令z ,则(1)式化为:z xy ++9,即有9-z =xy81-18z +2z =2222(1)(4)2x y x y xy ++++……(2),又由2z =2(=2222(4)(1)2x y y x xy ++++代入(2)得,81-18z=4,所以7718z =. 8、解:l +2+…+61=1891,2008—1891=117,由于形如ab 的页码被当成ba 后,加得的和数将相差9a b -,因为,a b 只能在1,2,…,9中取值,a b -≤8,得9a b -≤72,由于117=72+45=63+54,设弄错的两位数是ab和cd,若9a b-=72,9c d-=45,只有ab =19,而cd可以取l6,27,38,49;这时ab+cd的最大值是68;若9a b-=63,9c d-=54,则ab可以取18,29,而cd可以取17,28,39,ab+cd的最大值也是68.9、解:如右图,连OA,OB,OC,线段OA将阴影的上方部分剖分成两个弓形,将这两个弓形分别按顺时针及反时针绕点O旋转0120后,阴影部分便合并成△OBC,它的面积等于△A BC10、解:6=3(8+,令8+a,8-b,得 a+b=16,ab=4,a,b 是方程21640x x-+=的两个根,故得2a=16a-4,2b=16b-4;3a=162a-4a,32164b b b=-;所以3a+3b=16(2a+2b)-4(a+b)=16(16(a+b)一8)-4(a+b)=252(a+b)-128=3904.∵0<b<1,∴0<3b<1,∴3a的最大整数值不超过3903.三.解答题(共70分)11、解:当a=0时,方程的有理根为75x=;……5分以下考虑a≠0的情况,此时原方程为一元二次方程,由判别式2(5)4(7)0,a a a+-+≥即32a+18a-25≤0a≤≤整数a只能在其中的非零整数1,-1,-2,-3,-4,-5,-6,-7中取值,…… 10 分由方程得x= (1)当a=1,由(1)得x=2和4;当a=-1时,方程无有理根;当a=-2,由(1)得x=1和-52;当a=-3时,方程无有理根;……15分当a=-4,由(1)得x=-1和34;当a=-5时,方程无有理根;当a=-6,由(1)得x=12和-13;当a=-7时,由(1)得x=37和17-;…… 20分A P 12、证明:EF 截△PMN ,则.. 1..........(1)NK MF PE KM FP EN=……5分 BC 截 △PAE ,则.. 1...........(2)EB AC PN BA CP NE =,即有2,PN CP NE AC = 所以2..............(3)PE CP AC EN AC+=, ……10分AD 截△PCF ,则..1,FD CA PM DC AP MF=即22,............(4)PM AP PF AP AC MF AC MF AC-=∴=……15分 因AP =AC +CP ,得2CP + AC =2AP -AC ,由(3),(4)得,,........20PE FP EN MF=分 —即.1,MF PE FP EN =所以由(1)得 NK =KM ,即K 是线段 AM 的中点 ……25分 13、解:将这120人分别编号为12120,,....,P P P ,并视为数轴上的120个点,用k A 表示这120人之中未答对第k 题的人所成的组,k A 为该组人数, k=l ,2,3,4,5,则1A =24,234537,46,54,85,A A A A ==== ……5分将以上五个组分别赋予五种颜色,如果某人未做对第k 题,则将表示该人点染第k 色,k=l ,2,3,4,5,问题转化为,求出至少染有三色的点最多有几个?由于1A +2345A A A A +++=246,故至少染有三色的点不多于2463=82个,……10分 右上图是满足条件的一个最佳染法,即点1285,,....,P P P 这85 个点染第五色;点1237,,....,P P P这37个点染第二色;点383983,,....,P P P 这46个点染第四色;点1224,,....,P P P 这24 个点染第一色;点252678,,....,P P P 这54个点染第三色;于是染有三色的点最多有78个. …20分因此染色数不多于两种的点至少有42个,即获奖人数至少有42个人(他们每人至多答错两题,而至少答对三题,例如7980120,,...,P P P 这 42 个人) …… 25分85 46 5437 24。

全国小学生数学奥林匹克竞赛真题及答案收集

全国小学生数学奥林匹克竞赛真题及答案收集目录2006 年小学数学奥林匹克预赛试卷及答案 (1)2006 年小学数学奥林匹克决赛试题 (4)2007 年全国小学数学奥林匹克预赛试卷 (7)2008 年小学数学奥林匹克决赛试题 (8)2008 年小学数学奥林匹克预赛试卷 (10)2006 年小学数学奥林匹克预赛试卷及答案1、计算4567-3456+1456-1567=__________2、计算 5 ×4+ 3 ÷4=___________3、计算12345 ×12346-12344×12343=__________ 。

4、三个连续奇数的乘积为1287,则这三个数之和为 _________ 。

5、定义新运算a※b=a b+a+b (例如3※4=3×4+3+4=19)。

计算(4※5)※(5※6)= ________ 。

6、在下图中,第一格内放着一个正方体木块,木块六个面上分别写着 A 、B 、C、D、E、F六个字母,其中 A 与D,B与E,C与F相对。

将木块沿着图中的方格滚动,当木块滚动到第2006个格时,木块向上的面写的那个字母是_________ 。

7、如图:在三角形ABC中,BD= BC ,AE=ED ,图中阴影部分的面积为250.75平方厘米,则三角形ABC面积为________ 平方厘米。

8、一个正整数,它与 13的和为 5的倍数,与 13的差为 3的倍数。

那么这个正整数最小是 _______ 。

9、若一个自然数中的某个数字等于其它所有数字之和,则称这样的数为“S 数 ”,(例:561, 6=5+ 1),则最大的三位数 “S 数”与最小的三位数 “S 数”之差为 __ 。

10、某校原有男女同学 325人,新学年男生增加 25人,女生减少 5%,总人数增加 16人, 那么该校现有男同学 _____ 人。

11、小李、小王两人骑车同时从甲地出发,向同一方向行进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年第七届中国女子数学奥林匹克1.(a ) 问能否将集合{}1,2,,96 表示为它的32个三元子集的并集,且三元子集的元素之和都相等;(b ) 问能否将集合{}1,2,,99 表示为它的33个三元子集的并集,且三元子集的元素之和都相等.(刘诗雄供题)解:(a )不能.因为96(961)32|129648972⨯++++==⨯ .(b )能.每个三元集的元素和为129999(991)15033332+++⨯+==⨯ .将1,2,3,,66每两个一组,分成33个组,,每组两数之和可以排成一个公差为1的等差数列:150,349,,3334,+++ 266,465,,3251+++ .故如下33组数,每组三个数之和均相等:{}{}{}1,50,99,3,49,98,,33,34,83, {}{}{}2,66,82,4,65,81,,32,51,67. .注:此题的一般情况是设集合{}1,2,3,,3M n = 的三元子集族{},,i i i i A x y z =,1,2,i n = 满足12n A A A M ⋃⋃⋃= .记i i i s x y z =++,求所有的整数n ,使对任意,(1)i j i j n ≤≠≤,i j s s =.解:首先,|1233n n ++++ ,即3(31)2|312n n n n +⇒+.所以,n 为奇数.又当n 为奇数时,可将1,2,3,,2n 每两个一组,分成n 个组,每组两数之和可以排成一个公差为1的等差数列:111(),3(),,(1)22n n n n n n +-++++++ ;322,4(21),,(1)()2n n n n n +++--++.其通项公式为1121(1)1,2213[12(1)][2(1)].22k n n k n k k a n n n k n k k n ++⎧-+++-≤≤⎪⎪=⎨++⎪-+-++--≤≤⎪⎩ 易知93312k n a n k +++-=为一常数,故如下n 组数每组三个数之和均相等:1111,,3,3,,31,,,1,31222n n n n n n n n n n +-+⎧⎫⎧⎫⎧⎫++-++-⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭;332,2,31,,1,,2122n n n n n n n ++⎧⎫⎧⎫+--++⎨⎬⎨⎬⎩⎭⎩⎭.当n 为奇数时,依次取上述数组为12,,,n A A A ,则其为满足题设的三元子集族.故n 为所有的奇数.2.已知实系数多项式32()x ax bx cx d ϕ=+++有三个正根,且(0)0ϕ<.求证:322970b a d abc +-≤. ①证明:设实系数多项式32()x ax bx cx d ϕ=+++的三个正根分别为1x ,2x ,3x ,由韦达定理有123b x x x a++=-,122331c x x x x x x a++=,123d x x x a=-.由(0)0ϕ<,可得0d <,故0a >. 不等式①两边同除以3a ,不等式①等价于3729b c b d a a a a ⎛⎫⎛⎫⎛⎫-≤-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 31231223311231237()()2()9x x x x x x x x x x x x x x x ⇔++++≤+++, 2222223331213212331321232()x x x x x x x x x x x x x x x ⇔+++++≤++ ②因为1x ,2x ,3x 大于0,所以221212()()0.x x x x --≥也就是2233122112.x x x x x x +≤+同理22332233233223311331,.x x x x x x x x x x x x +≤++≤+三个不等式相加可得不等式②,当且仅当123x x x ==时不等式等号成立.3.求最小常数1a >,使得对正方形A B C D 内部任一点P ,都存在,,,P A B P B C P C D P D A ∆∆∆∆中的某两个三角形,使得它们的面积之比属于区间1[,]aa -.解:m i n 152a +=.首先证明m i n 152a +≤,记152ϕ+=.不妨设正方形边长为2.对正方形A B C D 内部一点P ,令1S ,2S ,3S ,4S 分别表示P A B ∆,P B C ∆,P C D ∆,P D A ∆的面积,不妨设1243S S S S ≥≥≥.令1224,S S S S λμ==,如果,λμϕ>,由13241S S S S +=+=,得221S S μ=-,得21S μμ=+.故2121111111S S λμλϕϕλμϕμϕ===>==++++,矛盾.故{}m in ,λμϕ≤,这表明m in a ϕ≤.反过来对于任意(1,)a ϕ∈,取定15(,)2t a +∈,使得2819tb t=>+.我们在正方形A B C D 内取点P ,使得12342,,,1b b S b S S S b tt====-,则我们有122315(,)2S S t a S S +==∈,3242,(1)4(1)S b b a S t b b =>>>--由此我们得到对任意{},1,2,3,4i j ∈,有1[,]i jS aa S-∉.这表明m in a ϕ=.4. 在凸四边形ABCD 的外部分别作正三角形ABQ ,正三角形BCR ,正三角形CDS ,正三角形DAP ,记四边形ABCD 的对角线之和为x ,四边形PQRS 的对边中点连线之和为y ,求y x的最大值.(熊斌供题)解:若四边形ABCD 是正方形时,可得y x132+=.下面证明:y x132+≤.设1111,,,P Q R S 分别是边DA ,AB ,BC ,CD 的中点,SP ,PQ ,QR ,RS 的中点分别为E ,F ,G ,H .则1111P Q R S 是平行四边形.连接11,P E S E ,设点M ,N 分别是DP ,DS 的中点,则11D S S N D N E M ===, 11D P P M M D E N ===,又113606060P D S P D S ∠=︒-︒-︒-∠240(180)60E N D E N D=︒-︒-∠=︒+∠11E N S E M P =∠=∠,所以 1111D P S M P E N E S ∆≅∆≅∆, 从而,△11E P S 是正三角形.同理可得,△11G Q R 也是正三角形.设U ,V 分别是11P S ,11Q R 的中点,于是有1111113322E G E U U V V G P S P Q Q R ≤++=++111113322P Q P S B D A C =+=+,同理可得 1322F H A C B D ≤+,把上面两式相加,得132y x +≤,即y x132+≤.5. 已知凸四边形ABCD 满足AB =BC ,AD =DC .E 是线段AB 上一点,F 是线段AD 上一点,满足B ,E ,F ,D 四点共圆.作△DPE 顺向相似于△ADC ;作△BQF 顺向相似于△ABC .求证:A ,P ,Q 三点共线.(叶中豪供题)(注:两个三角形顺向相似是指它们的对应顶点同按顺时针方向或同按逆时针方向排列.) 证明将B 、E 、F 、D 四点所共圆的圆心记作O .联结OB 、OF 、BD .QPCABDEF在△BDF 中,O 是外心,故∠BOF =2∠BDA ; 又△ABD ∽△CBD ,故∠CDA =2∠BDA . 于是∠BOF =∠CDA =∠EPD ,由此可知等腰△BOF ∽△EPD . ①另一方面,由B 、E 、F 、D 四点共圆知△ABF ∽△ADE . ② 综合①,②可知,四边形ABOF ∽四边形ADPE , 由此得∠BAO =∠DAP . ③同理,可得∠BAO =∠DAQ . ④ ③,④表明A 、P 、Q 三点共线. 【附注】事实上,当四边形ABCD 不是菱形时,A 、P 、Q 三点共线 与B 、E 、F 、D 四点共圆互为充要条件.可利用同一法给予说明:取定E 点,考虑让F 点沿着直线 AD 运动.根据相似变换可知,这时Q 点的轨迹必是一条直线,它经 过P 点(由充分性保证).以下只要说明这条轨迹与直线AP 不重合即可,即只要论 证A 点不在轨迹上.为此,作△BAA ′∽△BQF ∽△ABC .于是由∠BAA ′=∠ABC , 可得A ′A ∥BC .又因四边形ABCD 不是菱形,故AD 不平于BC .这就表明A ′、A 、D 三点不共线,也就保证了A 点不在轨迹上. 因此,只有当B 、E 、F 、D 四点共圆时,Q 点才落在直线AP 上. 而当四边形ABCD 是菱形时,不管E 、F 位置如何,所得到的 P 、Q 两点总位于对角线AC 上.6.设正数列12,,,,n x x x 满足721187)8x x x -=(及 88211171,2()k k k k k k k x x x x x k x x -+----=≥.求正实数a ,使得当1x a >时,有单调性12n x x x >>>> ; 当10x a <<时,不具有单调性. 解:由88211171()k k k k k k k x x x x x x x -+----=,有1881111k k kk k k x x x x x x +---=-即1288811111117==8k kkkk k x x x x x x x xx+---=-=-A'QPCABDEFP QCBDAFE。

FOPCABDE于是,7178k k k x x x -+=+,则当10x >时,0,2k x k >≥.由811()8k k k k x x x x -+-=-,则当8108k x --<,即188k x >时,有10k k x x +-<,即1,1k k x x k +<≥.而178817718=888k k k x x x -+=+≥,且当18=8k x 时,等号成立.于是,取18=8a ,则当18>8k x 时12n x x x >>> .当1818x <时,21x x >且23n x x x >>> .故所求常数18=8a .7.给定一个2008×2008的棋盘,棋盘上每个小方格的颜色均不相同.在棋盘的每一个小方格中填入C ,G ,M ,O 这4个字母中的一个,若棋盘中每一个2×2的小棋盘中都有C ,G ,M ,O 这4个字母,则称这个棋盘为“和谐棋盘”.问有多少种不同的“和谐棋盘”?(冯祖鸣供题)解:有200812224⨯-种不同的“和谐棋盘”.我们首先证明下面这个结论:在每个“和谐棋盘”中,至少出现以下情况中的某一种:(1) 每一行都是某两个字母交替出现;(2) 每一列都是某两个字母交替出现. 其实,假设某一行不是交替的,则这一行必定包含三个相邻的小方格填有不同的字母.不失一般性,假设这三个字母为C ,G ,M ,如图1所示.这很容易得到25X X O ==,并且14X X M ==和36X X C ==,如图2所示.图1 图2 同理,我们就可以得到这三列都是两个字母交替出现.从而容易得到每一列都是某两个字母交替出现.现在我们来计算“和谐棋盘”的个数.如果最左边一列是某两个字母(比如C 和M )交替出现,马上可以得到序号为奇数的列都是这两个字母交替出现,且序号为偶数的列都是另外两个字母(比如G 和O )交替出现.每一列的第一个字母可以是这一列所包含的两个字母的任意一个;容易验证任意这样的填写都可以得到“和谐棋盘”.从而我们有246C =种不同的方式选择第一列的两个字母,且有20082种方式决定每一列的第一个字母.所以,我们有200862⨯种填法使得每一列都是交替的.同样,我们也有200862⨯种填法使得每一行都是交替的.现在所要做的就是从中减去计算了两次的填法——行和列都是交替的.显然,四个不同字母在左上角的2×2方格中的任何排列都可以扩充到整个棋盘得到一个“和谐棋盘”,并且行和列都是交替的,其实,只要先填好前两列使得它们是交替的,再填所有的行使得它们是交替的即可;反过来,这种双交替的填法由左上角的2×2方格唯一决定.有4!=24种方式在左上角的2×2方格中排列四个不同的字母.所以我们得到24种不同的填法使得行和列都是交替的,由此可以得到上面结果.8. 对于正整数n ,令2200822009n nn f +⎡⎤⎡⎤=⎣⎦⎣⎦.求证:数列12,,f f 中有无穷多个奇数和无穷多个偶数.([x ]表示不超过x 的最大整数) (冯祖鸣供题) 证明:我们用二进制表示2008和2009:12(2)2008101100.a a = 和12(2)2009101100.b b =首先,我们证明数列中有无穷多个偶数.反证法,假设数列中只有有限个偶数,从而存在一个正整数N ,对每个正整数n N >,n f 都是奇数.我们考虑121,2,n N n N =+=+ 注意到,在二进制中,1212(2)(2)101100101100ii i n nnf b b b a a a =+ ,这个数模2同余于iin n b a +.因为in f 是奇数,所以{,}{0,1}iin n b a =.从而121(2)200820091011001.111m c c c -+= .由此得到20082009+在二进制中是有理数,这是不可能的,因为20082009+是无理数.这样,我们的假设是错误的,所以数列中有无穷多个偶数.我们同样可以证明数列中有无穷多个奇数.令20092008n n n g -⎢⎥⎢⎥=⎣⎦⎣⎦,显然n g 和n f 有相同的奇偶性.这样,对n N >,n g 都是偶数.注意到,在二进制中, 1212(2)(2)101100101100ii i n nng b b b a a a =- ,这个数模2同余于iin n b a -.因为in g 是奇数,所以iin n b a =.从而121(2)200920080.000m d d d --= .由此得到20092008-在二进制中是有理数,这是不可能的,因为20092008-是无理数.这样,我们的假设是错误的,所以数列中有无穷多个奇数.。

相关文档
最新文档