行测数量关系:排列组合常用方法(一)

行测数量关系:排列组合常用方法(一)

中公教育研究与辅导专家葛阳

高中时我们就学习过排列组合,并且学习了常见的几种方法:优限法,捆绑法,插空法等,接下来中公教育专家简单地举例说明其中几种方法的应用。

一、优限法

例1:小明所在的班级学习小组共5个人,现要求5个人站成一排去参加校园图书节,小明不站在排头,也不站在排尾,请问一共有多少种排队方式?

A 120

B 72

C 60

D 24

中公解析:根据题目中所说小明不站在排头,也不站在排尾,那么小明只能从中间的3个位置中选一个,所以一共有3种选法,剩余的4个人没有任何要求,由于是不同的元素有序地进行排队,所以其他人总的排列情况为A4 4=4×3×2×1=24,故,一共有3×24= 72种排队方式。选B。

总结:优限法应用于一些具有绝对限制条件的元素,让其优先进行安排,已达到让其满意的效果。

二、捆绑法

例2:某电影院有新电影上映,现在有两个三口之家以及一个两口之家站排买票,恰好这八个人能够凑成一排,现在要求每个家庭都不能分开坐,请问共有几种坐法?

A 36

B 72

C 216

D 432

中公解析:由于每个家庭不能分开,所以先把每个家庭看成一个整体,共三个整体先排列为A33=3×2×1=6,然后每个家庭在内部排列,共有:A33A33A22=3×2×3×2×2=72,因此总的坐法有:6×72=432种,选择D。

总结:适用于相邻问题。将相邻的元素看成一个整体,然后和其他的元素进行排列,最后相邻元素内部在进行排列。

三、插空法

例3:快毕业了,某班级的六个班级干部准备拍一张合照,合照要求六个人站成一排,并且班长和团支书不能挨在一起,满足情况的排列方式共有多少种?

A 20

B 24 C240 D 480

中公解析:由于合照的要求是班长和团支书不能挨在一起,因此,我们需要先安排其他

没有要求的班级干部,共有:A4 4=4×3×2×1=24,之后从其他班级干部站排之后产生的中间三个位置以及旁边两个位置,共五个位置中选择出两个位置,分别给班长和团支书共:A52=5×4=20种,因此总的情况数共有:24×20=480种,选择D。

总结:适用于不相邻问题。将没有要求的元素先进行安排,之后在从已安排的元素之间和两边产生的空位中选出N个空位,给N个不相邻元素。

四、间接法

例4:某社团共有7个人,其中有3个是高中生,剩余的是大学生,现在从中招募3个志愿者,从事街道清扫志愿活动,要求至少有一个是大学生,问共有多少种选择方式?

A 21

B 34 C35 D 68

中公解析:法一:要求至少有一个大学生包含:有一个大学生,两个大学生和三个大学

×3+4=34种,选择B。法二:生情况,所以总情况为:C4 1C3 2+C4 2C3 1+C4 3=4×3+4×3

2

-1=34种,选择B。

从总情况中除去三个都是高中生的情况:C7 3−C3 3=7×6×5

3×2×1

总结:正难则反。如果一些题目正面计算思考的内容比较多或者计算麻烦,那就考虑从总的情况中减掉相反的情况,会相对减轻难度。标志性语言“至少”。

当然排列组合中不仅仅是这几种方法,还有很多种,譬如:隔板法,错位重排等,把方法掌握了,做题会达到事半功倍的效果。

完整版)排列组合的二十种解法(最全的排列组合方法总结)

完整版)排列组合的二十种解法(最全的排 列组合方法总结) 教学目标: 1.理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略,能运用解题策略解 决简单的综合应用题。提高学生解决问题分析问题的能力。 3.学会应用数学思想和方法解决排列组合问题。 复巩固: 1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2 种不同的方法,…,在第n类办法中有mn种不同的方法,那 么完成这件事共有N=m1+m2+…+mn种不同的方法。 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有m1种不同的方法,做第2步有m2种不 同的方法,…,做第n步有mn种不同的方法,那么完成这件 事共有N=m1×m2×…×mn种不同的方法。 3.分类计数原理和分步计数原理区别:

分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事。 2.确定采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素。 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。 一、特殊元素和特殊位置优先策略: 例1:由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。先排末位共有C3,然后排首

2023山西省考行测数量关系必考题型排列组合问题

2023山西省考行测数量关系必考题型排列组合问题 排列组合是在数量关系里面比较特殊的题型,说它特殊是因为他的研究对象独特,研究问题的方法和我们以前学习的不同,知识系统也相对独立。同时也是我们学习概率问题的一个基础。从最近几年的公务员考试形势来看,这部分考题的难度有逐年上升的趋势,而且题型也越来越灵活。 一.排列 1、概念:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n 个不同元素中取出m(m≤n)个元素的一个排列。 2、排列数:从n个不同元素中,任取m(m≤n)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号表示。 3、排列数的计算:=n(n-1)(n-2)??(n-m+1)二、组合 1、概念:从n个不同元素中取出m(m≤n)个元素组成一组,称为从n 个不同元素中取出m(m≤n)个元素的一个组合。 2、组合数:从n个不同元素中,任取m(m≤n)个元素的所有组合的个数叫做从n个元素中取出m元素的组合数,用符号表示。 3、组合数的计算:=n(n-1)(n-2)??(n-m+1)/m!三、常用方法 1、优先法:对于有限制条件的元素(或位置)的排列组合问题,在解题时优先考虑这些元素(或位置),再去解决其它元素(或位置)。 【例题】由数字1、2、3、4、5、6、7组成无重复数字的七位数,求数字1必须在首位或末尾的七位数的个数。 A.720 B.1440 C.4801600

【中公解析】B。使用优先法,先排1,有2种排法,再将剩下的数字全排列,有=720种排法,因此共有2×720=1440种排法,所以共有1440个满足条件的七位数。 2、捆绑法:在解决对于几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略。 【例题】学校举行六一儿童节联欢活动,整个活动由2个舞蹈、2个演唱和3个小品组成。要求同类型的节目连续演出,有多少种不同的出场顺序? A.24 B.72 C.144 D.288 【中公解析】C。解析:要求同类型的节目连续演出,可以将同类型的节目捆绑起来作为一个整体,显然有3个整体进行全排列,同时,各类节目内部的次序也要进行全排列。所以,出场顺序总数为: =144种。 3、插空法:插空法就是先将其他元素排好,再将所指定的不相邻的元素插入它们的间隙或两端位置,从而将问题解决的策略。 【例题】甲、乙、丙、丁、戊、己六人站成一排进行排队。问:甲乙不相邻的排法有多少种? A.240 B.320 C.480D720 【中公解析】甲乙不相邻,则先排剩余的四人,共个空中,有 种,再将甲乙放到四人形成的5

数量关系:排列组合的多种方法

在事业单位的考试中,排列组合问题是常考题型之一,也是大家感觉比较难的部分。之所以感觉难就是没有掌握做这类题的解题方法,这里就给大家介绍解排列组合问题常用的几种方法。 一、优限法: 1、题型特征:有绝对位置要求的元素 2、操作方式:优先排有绝对位置要求的元素,再排其他元素; 【例题1】两个三口之家在列车上相对的两排3人座位上就座,如果孩子必须靠窗或靠过道就座,而每个家庭都必须坐在同一排,问有多少种不同的就座方式? A.16 B.32 C.48 D.64 【答案】B 【解析】优限法。两个家庭的相对位置有两种情况,确定相对位置之后,每个家庭有4种坐法,则就座方式共有2×4×4=32种,故本题答案为B选项。 二、捆绑法: 1、题型特征:有“相邻”要求的元素 2、操作方式:将相邻元素看作整体,与其他元素排序,然后再考虑相邻元素内部排序; 【例题2】四对情侣排成一队买演唱会门票,已知每对情侣必须排在一起,问共有多少种不同的排队顺序? A.24种 B.96种 C.384种 D.40320种 【答案】C

【解析】捆绑法。每对情侣必须排在一起,则每对情侣看成一个整体,四对情侣的排队方式有A(4,4)=24种,每对情侣又有2种排列方式,因此共有24×24=384种排队方式,故本题答案为C选项。 三、插空法: 1、题型特征:有“不相邻”要求的元素 2、操作方式:先将其他元素排好,再将指定的不相邻的元素插入空隙或两端的位置; 【例题3】某条道路一侧共有20盏路灯。为了节约用电,计划只打开其中的10盏。但为了不影响行路安全,要求相邻的两盏路灯中至少有一盏是打开的,则共有( )种开灯方案。 A.2 B.6 C.11 D.13 【答案】C 【解析】插空法。要求20盏路灯必须打开其中10盏,且相邻的两盏路灯中至少有一盏是打开的,说明不开的两盏路灯不能相邻。则在10盏打开的路灯形成的11个空中,随机插入10盏不开的路灯,开灯方案有C(10,11)=C(1,11)=1 1种,故本题答案为C选项。 四、间接法: 1、题型特征:正难则反 2、操作方式:总方法数减去对立面的方法数。 【例4】单位工会组织拔河比赛,每支参赛队都由3名男职工和3名女职工组成。假设比赛时要求3名男职工的站位不能全部连在一起,则每支队伍有( )种不同的站位。

公务员常用排列组合

常用方法: 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中 间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁 也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法 乙 甲丁 丙 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能 C 14A 34C 13 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.

连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 4 6A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元 素与其他元素一起进行排列,然后用总排列数除以这几 个元素之间的全排列数,则共有不同排法种数是:73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4 7A 种 方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7 A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两定序问题可以用倍缩法,还可转化为占位插 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素

行测数量关系:排列组合常用方法(一)

行测数量关系:排列组合常用方法(一) 中公教育研究与辅导专家葛阳 高中时我们就学习过排列组合,并且学习了常见的几种方法:优限法,捆绑法,插空法等,接下来中公教育专家简单地举例说明其中几种方法的应用。 一、优限法 例1:小明所在的班级学习小组共5个人,现要求5个人站成一排去参加校园图书节,小明不站在排头,也不站在排尾,请问一共有多少种排队方式? A 120 B 72 C 60 D 24 中公解析:根据题目中所说小明不站在排头,也不站在排尾,那么小明只能从中间的3个位置中选一个,所以一共有3种选法,剩余的4个人没有任何要求,由于是不同的元素有序地进行排队,所以其他人总的排列情况为A4 4=4×3×2×1=24,故,一共有3×24= 72种排队方式。选B。 总结:优限法应用于一些具有绝对限制条件的元素,让其优先进行安排,已达到让其满意的效果。 二、捆绑法 例2:某电影院有新电影上映,现在有两个三口之家以及一个两口之家站排买票,恰好这八个人能够凑成一排,现在要求每个家庭都不能分开坐,请问共有几种坐法? A 36 B 72 C 216 D 432 中公解析:由于每个家庭不能分开,所以先把每个家庭看成一个整体,共三个整体先排列为A33=3×2×1=6,然后每个家庭在内部排列,共有:A33A33A22=3×2×3×2×2=72,因此总的坐法有:6×72=432种,选择D。 总结:适用于相邻问题。将相邻的元素看成一个整体,然后和其他的元素进行排列,最后相邻元素内部在进行排列。 三、插空法 例3:快毕业了,某班级的六个班级干部准备拍一张合照,合照要求六个人站成一排,并且班长和团支书不能挨在一起,满足情况的排列方式共有多少种? A 20 B 24 C240 D 480 中公解析:由于合照的要求是班长和团支书不能挨在一起,因此,我们需要先安排其他

排列组合常用方法总结(全)

解决排列组合问题常见策略 学习指导 1、排列组合的本质区别在于对所取出的元素是作有序排列还是无序排列。组合问题可理解为把元素取出后放到某一集合中去,集合中的元素是无序的。 较复杂的排列组合问题一般是先分组,再排列。必须完成所有的分组再排列,不能边分组边排列。 排列组合问题的常见错误是重复和遗漏。弄清问题的实质,适当的分类,合理的分步是解决这个错误的关键,采用不同的思路检验结果是否一致是解决这个错误的技巧。 集合是常用的工具之一。为了将抽象问题具体化,可以从特殊情形着手,通过画格子,画树图等帮助理解。 “正难则反”是处理问题常用的策略。 常用方法: 一. 合理选择主元 例1. 公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2. 公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同 的元素中任选3个元素放在3个位置上,共有种不同坐法。例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。 二. “至少”型组合问题用隔板法 对于“至少”型组合问题,先转化为“至少一个”型组合问题,再用n个隔板插在元素的空隙(不包括首尾)中,将元素分成n+1份。 例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法? 解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙,则分法有: (种) 三. 注意合理分类 元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)的特殊性进行合理分类,求出各类排列组合数。再用分类计数原理求出总数。 例6. 求用0,1,2,3,4,5六个数字组成的比2015大的无重复数字的四位数的个数。解:比2015大的四位数可分成以下三类: 第一类:3×××,4×××,5×××,共有:(个); 第二类:21××,23××,24××,25××,共有:(个); 第三类:203×,204×,205×,共有:(个) ∴比2015大的四位数共有237个。

公考行测数量关系-排列组合

1.在一排10个花盆中种植3种不同的花,要求每3个相邻的花盆中花的种类各不相同,问有多少种不同的种植方法: 显然前3个相邻的花盆中就分别种3种不同的花,情况数为。但当前3盆花确定之后,第4盆花必然与第1盆相同,第5盆必然与第2盆相同。依次类推,可知后7盆中种什么花是唯一确定的。因此总的种植方法共计6种。 2.由1—9中的数字组成一个三位数,有数字重复的情形有多少种: 组成任意三位数的方法数为,其中没有数字重复的情形为,因此肯定有 种是重复的。 3.相邻的4个车位中停放了4辆不同的车,现将所有车开出后再重新停入这4个车位,要求所有车都不得停在原来的车位中,则一共有多少种不同的停放方式: 此题为排列组合中的特殊题型——错位重排问题,只需记住错位重排的几组常用数据即可。其中:、、、、、。4元素的错位重排共有9种方式。 4.某社区组织开展知识竞赛,有5个家庭成功晋级决赛的抢答环节,抢答环节共5道题。计分方式如下:每个家庭有10分为基础分;若抢答到题目,答对一题得5分,答错一题扣2分;抢答不到题目不得分。那么一个家庭在抢答环节有可能获得多少种不同的分数? 总共 5 道题,每题答对得 5 分,答错扣 2 分,各种情况的得分不会重复出现。抢到 0 题,得分情况:对 0 题;抢到 1 题,得分情况:对 0 题(错 1 题)、对 1题;抢到 2 题,得分情况:对 0 题(错 2 题)、对 1 题(错 1 题)、对 2 题;同理可推知,抢到 n题,得分情况有(n+ 1)种,而共有 5 题,所以总得分情况为 1 + 2 + 3 + 4 +5 + 6 = 21 种。 5.数字3、5至少都出现一次的三位数有多少个: 数字3、5至少都出现一次的三位数,一共有以下情况: (1)当百位不是3且不是5时,百位可有1、2、4、6、7、8、9七种选择,十位有3 或5两种选择,个位只能选择余下的一个3或一个5一种选择。故当百位不是3且不是5时,满足条件的情况数共有7×2×1=14种。 (2)当百位为3时,5必须要出现在十位或个位一次。当出现在十位时,个位可以有0~9十种选择;当出现在个位时,十位可以有0、1、2、3、4、6、7、8、9九种选择(355在5在十位时已出现,在这排除)。故当百位为3时,有10+9=19种选择。 (3)当百位为5时,3必须要出现在十位或个位一次。当出现在十位时,个位可以有0~9十种选择;当出现在个位时,十位可以有0、1、2、4、5、6、7、8、9九种选择(533在3在十位时已出现,在这排除)。故当百位为5时,也有10+9=19种选择; 则全部的情况数一共有14+19+19=52种情况。 6.某班期中考试和期末考试有四个人两次成绩都排前4名,已知有一名同学两次排名都一样,则这四个人期末排名有几种可能: 已知有一名同学排名两次都一样,有4种情况,剩下三名同学两次考试排名不同,符合错位排列的条件,3人错位排列的情况数是2,所以总的排名情况有种。

国家公务员行测:备考-排列组合七大解题方法

一些排列组合问题条件比较多,直接使用分类或分步来考虑较为复杂,在这种情况下,掌握一些特定的解题方法和公式有助于大家快速解题。在此,中公教育专家介绍七种解题方法,其适用范围如下: 1.特殊定位法 排列组合问题中,有些元素有特殊的要求,如甲必须入选或甲必须排第一位;或者有些位置有特殊的元素要求,如第一位只能站甲或乙。此时,应该优先考虑特殊元素或者特殊位置,确定它们的选法。 例题1: 1名老师和6名学生排成一排,要求老师不能站在两端,那么有多少种不同的排法? A.720 B.3600 C.4320 D.7200 中公解析:此题答案为B。此题中特殊元素是老师,特殊位置是两端,可优先考虑。 2.反面考虑法 有些题目所给的特殊条件较多或者较为复杂,直接考虑需要分许多类,而它的反面却往往只有一种或者两种情况,此时我们先求出反面的情况,然后将总情况数减去反面情况数就可以了。 例题2:从6名男生、5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同选法?

A.240 B.310 C.720 D.1080 中公解析:此题答案为B。从反面考虑,“男女至少各1名”的反面是“只选男生或只选女生”。 从6名男生、5名女生中任选4人的所有情况共有 =330种。 故所求为330-20=310种不同选法。 3.捆绑法 在排列问题中,如果题中要求两个或多个元素“相邻”时,可将这几个元素捆绑在一起,作为一个整体进行考虑。 例题3: 6个人站成一排,要求甲、乙必须相邻,那么有多少种不同的排法? A.280 B.120 C.240 D.360 4.插空法 在排列问题中,如果题中要求两个或多个元素“不相邻”时,可先将其余无限制的n个元素进行排列,再将不相邻的元素插入无限制元素之间及两端所形成的(n+1)个“空”中。 如果所有元素完全相同,即为组合问题,则不需要进行排列,只需要将不相邻的元素插入空中即可。 例题4: 6人站成一排,要求甲、乙必须不相邻,有多少种不同的排法? A.240 B.480 C.360 D.720 由乘法原理,不同的排法共有24×20=480种。 5.隔板法

公务员考试 行测 排列组合问题及计算公式

排列组合公式/排列组合计算公式 排列A------和顺序有关(P和A是一个意思) 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标))

公务员行测考试排列组合示例

公务员行测考试排列组合示例排列组合问题一直是行测考试中的一个热门,同时亦是一个难点。其实,对于排列组合问题有很多求解的方法,比如捆绑法、优限法等,而插空法是这些方法中相对容易知道且好用的方法。下面作者给大家带来关于公务员行测考试排列组合示例,期望会对大家的工作与学习有所帮助。 公务员行测考试排列组合示例 一、插空法的运用环境元素不相邻 二、插空法的操作步骤 1、将剩余元素(除不相邻元素)排序; 2、选空; 3、将不相邻元素排序。 三、插空法的运用例1.由数字1、2、3、4、5、6、7组成无重复数字的七位数,求三个偶数互不相邻的七位数的个数? A.360 B.720 C.1440 D.2880 【答案】C。解析:问题中显现三个偶数互不相邻,推敲用插空法解题。第一将除三个偶数外的数字1、3、5、7进行排序,有24种不同的排法;这4个数字会产生5个间隙,从5个间隙中选出3个,有10种不同的排法;最后将三个偶数进行排序,有6种不同的排法,所以总的排法有24×10×6=1440种,故挑选C选项。 例2.某单位举行职工大会,5名优秀员工坐一排,其中有2名男员工,若要求2名男员工不能坐在一起,则有多少种不同的座次安排? A.24种 B.36种 C.48种 D.72种 【答案】D。解析:问题中显现2名男员工不能坐在一起,表述的意思是男员工不相邻,推敲用插空法解题。第一将除男员工之外的3名女员工进行排序,有6种不同的排法;3名女员工会产生4个间隙,从4个间隙中选2个,有6种不同的排法;最后将2名男员工进行排序,有2种排法,所以总共的排序方式有6×6×2=72种,故挑选D选项。 例3.将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花不相邻,共有多少种不同的方法?

公务员考试行测数量关系:排列组合快速解题方法

新东方在线公务员网(https://www.360docs.net/doc/9719178669.html,/)分享公务员考试行测数量关系:排列组合快速解题方 法 分析历年公务员考试真题发现,其数学运算部分常用到排列组合知识解题。一些排列组合问题条件比较多,直接使用分类或分步来考虑较为复杂,在这种情况下,掌握一些特定的解题方法和公式有助于大家快速解题。常用的解题方法有特殊定位法、反面考虑法、捆绑法、插空法、隔板法、归一法、线排法等。在此,专家主要为考生介绍其中4种常用的方法,以备考生复习之用。 1.特殊定位法 排列组合问题中,有些元素有特殊的要求,如甲必须入选或甲必须排第一位;或者有些位置有特殊的元素要求,如第一位只能站甲或乙。此时,应该优先考虑特殊元素或者特殊位置,确定它们的选法。

新东方在线公务员网(https://www.360docs.net/doc/9719178669.html,/)分享 2.反面考虑法 有些题目所给的特殊条件较多或者较为复杂,直接考虑需要分许多类,而它的反面却往往只有一种或者两种情况,此时我们先求出反面的情况,然后将总情况数减去反面情况数就可以了。 例题:从6名男生、5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同选法? A.240 B.310 C.720 D.1080

新东方在线公务员网(https://www.360docs.net/doc/9719178669.html,/)分享 4.归一法 排列问题中,有些元素之间的排列顺序“已经固定”,这时候可以先将这些元素与其他元素进行排列,再除以这些元素的全排列数,即得到满足条件的排列数。 例题:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法? A.20 B.12 C.6 D.4 解析:此题答案为A。方法一:“添进去2个新节目”后,共有5个节目,因此,此题相当于“安排5个节目,其中3个节目相对顺序确定,有多少种方法?” 由于“3个节目相对顺序确定”,可以直接采用归一法。

行测数量:排列组合七大解题方法精解

行测数量:排列组合七大解题方法精解 一、排列和组合的概念 排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。 组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。 二、七大解题策略 1.间接法 即部分符合条件排除法,采用正难则反,等价转换的策略。为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数. 例:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法? A.240 B.310 C.720 D.1080 正确答案【B】 解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。

2.科学分类法 问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。 对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行https://www.360docs.net/doc/9719178669.html,科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。同时明确分类后的各种情况符合加法原理,要做相加运算。 例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有( )种。 A.84 B.98 C.112 D.140 正确答案【D】 解析:按要求:甲、乙不能同时参加分成以下几类: a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8, 5)=56种; b.乙参加,甲不参加,同(a)有56种; c.甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8, 6)=28种。 故共有56+56+28=140种。

行测排列组合解题技巧

行测排列组合解题技巧 行测排列组合是考生中必考的题目,所以很多学生在考生之前都会先多刷题,多掌握一些基本的解题技巧,今天就给大家介绍一下行测排列组合解题技巧是什么? 行测排列组合解题技巧是什么 一、优限法 (一)含义 对于有限制条件的元素(或位置),在解题时优先考虑这些元素(或位置),再去解决其它元素(或位置)。 (二)例题解析 例:甲、乙、丙、丁、戊五个人排成一列,其中甲不站在头或尾的位置,共有多少种不同的排列方法? 【解析】甲是这5个人里面有限制条件的元素,所以就优先考虑甲。让他站在除头尾以外的中间的3个位置,有3种选择;然后再安排除甲以外的另外4个人,有A4 4=24种方法。所以最终共有3×24=72种方法。 二、捆绑法 (一)含义 在解决对于某几个元素要求相邻的问题时,先相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略。 (二)例题解析 例:甲、乙、丙、丁、戊五个人排成一列,其中甲乙必须相邻,共有多少种不同的排列方法? 【解析】甲乙要求相邻,将甲乙捆绑变为一个大元素进行排序,这五个人变为4个元素,全排列共有A4 4=24种方法,甲乙内部两个人可以更换位置,共A2 2=2种方法。所以总共2×24=48种方法。 例:图书管理员要整理书籍,现在有3本教育类书籍,4本艺术类书籍,5本化学类书籍。把他们整理在同一层书架,且同类的书籍必须摆在一起,共有多少种不同的方法?

【解析】同类书籍必须摆在一起,属于元素相邻的问题,所以使用捆绑法。把这些有相邻要求的元素捆绑为3个大元素排列,然后再考虑各个大元素内部元素的排序,共有A3 3A3 3A4 4A5 5=103680种方法。 三、插空法 (一)含义 插空法就是先将其他元素排好,再要求不相邻的元素插入它们的间隙或两端位置。 (二)例题解析 例:甲、乙、丙、丁、戊五个人排成一列,其中甲乙不相邻,共有多少种不同的排列方法? 【解析】甲乙要求不相邻,属于插空问题。先把其他三个元素进行排序,共A3 3=6种方法,在将甲乙插空进去丙丁戊包含两端的4个位置,有A4 2=12种方法。所以总共的方法有6×12=72种。 四、间接法 (一)含义 有些题目所给的特殊条件较多或者较复杂,直接考虑分类过多,它的对立面却往往只有一种或者两种情况,考虑先算出总情况数再减去对立面情况数即可。 (二)例题解析 例:由1、2、3、4、5组成无重复数字的5位数,其中不能被4整除的数有多少个? 【解析】不能被4整除的5位数情况过多,分类计数比较复杂,所以间接考虑,先考虑能被4整除的情况,再用总的情况数减去能被4整除的剩下的即是不能被4整除的数。能被4整除的数的特点是末两位能被4整除,满足条件的两位数包括12、24、42、52。把这个四种情况当做5位数的末两位即可满足5位数被4整除,共有4×A3 3=24个,总的情况有A5 5=120种。所以不能被4整除的数有120-24=96个。 以上就是给大家介绍的行测排列组合解题技巧是什么?如果我们家

数量关系解题技巧:排列组合中常用方法

数量关系解题技巧:排列组合中常用方法 【导读】 众所周知,在考试中行测数量关系是必考题型,也是比较难,大家容易放弃的一个模块。数量关系中排列组合是必考题型,而在排列组合中还得掌握一些常用的方法也是重中之重。在备考时应该重点复习,精确的解题。 一.捆绑法 在数学运算排列组合题型的题干中经常出现“在一起”、“相邻”特征的题型,这时候我们考虑捆绑法(有些老师也叫打包法),即把“在一起”的元素“捆绑”处理,具体步骤为:先“捆绑”内排序,再“捆绑体”和其他元素间排序。 例如:5个人去看电影要求相邻而坐,已知小王和老王必须在一起,则共有多少种排位方案? 先把必须在一起的小王和老王排序,有A(2,2)=2种排法;接着对其他三人和“捆绑体”共4个单位进行排序,有A(4,4)=24种排法。共有2×24=48种排法。 【例题1】 3个三口之家一起看演出,一起去看电影坐在一排上,,要求各家庭之间均不能分开,问有几种坐法。 A. 6 B. 36

C. 216 D. 1296 【解析】题干中“均不能分开”表明必须“在一起”,则用捆绑法解题。 先每个家庭内部进行排序,有A(3,3)×A(3,3)×A(3,3)=216种排法; 再“捆绑体”(即各个家庭间)间进行排序,有A(3,3)=6种排法。 共有6×216=1296种排法。因此,选择D选项。 【例题2】 单位工会组织拔河比赛,每支参赛队都由3名男职工和3名女职工组成。假设比赛时要求3名男职工的站位不能全部连在一起,则每支队伍有几种不同的站位方式? A. 432 B. 504 C. 576 D. 720 【解析】注意本题中为不能“全部连在一起”,那么从反面进行考虑噢! 第一步,计算总的情况数为A(6,6)=720种情况。 第二步,计算在一起的情况:先捆绑内排序有A(3,3)=6种情况,再“捆绑体”与其它剩下元素进行排序有A(4,4)=24种情况,共有6×24=144种情况。 第三步,计算不能“在一起”的情况为720-144=576种情况,因此,选择C选项。

排列组合问题常用方法(二十种)

解排列组合问题常用方法(二十种) 一、定位问题优先法(特殊元素和特殊位置优先法) 例1、由01,2,3,4,5, 可以组成多少个没有重复数字五位奇数 分析:特殊元素和特殊位置有特殊要求,应优先考虑。末位和首位有特殊要求。先排末位,从1,3,5三个数中任选一个共有1 3C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有1 4C 种组合;最后 排中间三个数,从剩余四个数中任选三个共有3 4A 种排列。由分步计数原理得113 344288C C A =。 变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多 少不同的种法 分析:先种两种不同的葵花在不受限制的四个花盒中共有2 4A 种排列,再种其它葵花有5 5A 种排列。由 分步计数原理得25451440A A =。 二、相邻问题捆绑法 例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法 分析:分三步。先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。由分步计数原理得 522522480A A A =。 变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。 分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有2 5A 种排列。 三、相离问题插空法 例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种 分析:相离问题即不相邻问题。分两步。第一步排2个相声和3个独唱共有5 5A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有4 6A 种排列,由分步计数原理得 545643200A A =。 变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节 目插入原节目单中且不相邻,那么不同插法的种数为 。 分析:将2个新节目插入原定5个节目排好后形成的6个空位中(包含首尾两个空位)共有2 6A 种排列, 由分步计数原理得2 630A =。

相关主题
相关文档
最新文档