二次函数知识点梳理及经典练习(超详细)

合集下载

中考数学专题复习《二次函数综合题》知识点梳理及典例讲解课件

中考数学专题复习《二次函数综合题》知识点梳理及典例讲解课件
















时,S有最大值,最大值为 ,此时点P的坐标为(3; =- m2+9m=- (m2-6m)=- (m-3)2+ .


∵- <0,∴ 当m=3
类型二面积问题
典例2 (2023·
湘潭)如图,二次函数y=x2+bx+c 的图象与x轴交于点
∴ 设M(t,-t2+2t+3)(0<t<3),则Q(t,-t+3).∴ MQ
=-t2+3t.过点Q作QD⊥OC,垂足为D,则易得△CDQ是等腰直
角三角形.∴ CQ= t.
∴ MQ+ CQ=-t2+3t+2t=-t2+5t=-




+ .∴


时,MQ+ CQ 有最大值,此时点M的坐标为
式,当x=1时求出y的值,从而求出点P的坐标,此时PA+PC的最
小值就是BC的长,利用勾股定理求解即可;(3) 由抛物线与直线
BC对应的函数解析式,分别设出点M,Q的坐标,过点Q作
QD⊥OC,垂足为D,将MQ+ 2CQ用含参数的代数式表示出来,
再结合二次函数的性质求解问题.
解:(1) ∵ 抛物线y=ax2+bx+3(a≠0)的对称轴是直线x=1,点A的坐标为(-
1,0),∴ 由抛物线的对称性,可知点B的坐标为(3,0).
(2) 由题意,可知抛物线对应的函数解析式为y=a(x+1)(x-
3)=a(x2-2x-3).∵ 抛物线y=ax2+bx+3(a≠0)与y轴交于点
C,
∴ 易得C(0,3).将C(0,3)代入y=a(x2-2x-3),得-3a=
3,解得a=-1.∴ 抛物线对应的函数解析式为y=-x2+2x+3.如图

二次函数各知识点、考点、典型例题及练习

二次函数各知识点、考点、典型例题及练习

二次函数各知识点、考点、典型例题及对应练习(超全)【典型例题】题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式 例2.(拓展,2008年武汉市中考题,12) 下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。

○3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。

○4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。

○5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC=6,则抛物线解析式为y=x 2-5x+4。

○6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。

○7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。

○8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。

○9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。

○10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。

○11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。

点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。

二次函数知识点总结及典型例题和练习极好

二次函数知识点总结及典型例题和练习极好

二次函数知识点总结及典型例题和练习极好知识点一:二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数;)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式;2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线; 抛物线的主要特征:①有开口方向;②有对称轴;③有顶点; 3、二次函数图像的画法--------五点作图法:1先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 2求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D;将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像;当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D;由C 、M 、D 三点可粗略地画出二次函数的草图;如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像; 例1 已知函数y=x 2-2x-3,1写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点;然后画出函数图象的草图;2求图象与坐标轴交点构成的三角形的面积:3根据第1题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0知识点二:二次函数的解析式二次函数的解析式有三种形式:1一般式:)0,,(2≠++=a c b a c bx ax y 是常数,2 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=;如果没有交点,则不能这样表示;3顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁;例1 抛物线c bx ax y ++=2与x 轴交于A1,0,B3,0两点,且过-1,16,求抛物线的解析式;例2 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点-2,0和-1,0之间包括这两点,顶点C 是矩形DEFG 上包括边界和内部的一个动点,则: 1abc 0 >或<或=2a 的取值范围是例3 下列二次函数中,图象以直线x = 2为对称轴,且经过点0,1的是A .y = x − 22 + 1B .y = x + 22 + 1C .y = x − 22 − 3 D.y = x + 22 – 3知识点三:二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值或最小值,即当ab x 2-=时,ab ac y 442-=最值;如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小;例1 已知二次函数的图像0≤x≤3如图所示,关于该函数在所给自变量取值范围内, 下列说法正确的是 A .有最小值0,有最大值3 B .有最小值-1,有最大值0 C .有最小值-1,有最大值3D .有最小值-1,无最大值例2某宾馆有50个房间供游客住宿,当每个房间的房价为每天l80元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元x为10的正整数倍.1设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;2设宾馆一天的利润为w元,求w与x的函数关系式;3一天订住多少个房间时,宾馆的利润最大最大利润是多少元知识点四、二次函数的性质1、二次函数的性质2、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义:a 表示开口方向:a >0时,抛物线开口向上a <0时,抛物线开口向下b 与对称轴有关:对称轴为x=ab 2-c 表示抛物线与y 轴的交点坐标:0,c3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点横坐标;因此一元二次方程中的ac 4b 2-=∆,在二次函数中表示图像与x 轴是否有交点; 当∆>0时,图像与x 轴有两个交点; 当∆=0时,图像与x 轴有一个交点; 当∆<0时,图像与x 轴没有交点;例1 抛物线y=x 2-2x -3的顶点坐标是 .例2 二次函数522-+=x x y 有A . 最大值5-B . 最小值5-C . 最大值6-D . 最小值6- 例3 由二次函数1)3(22+-=x y ,可知A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大例4 已知函数12)3(2++-=x x k y 的图象与x 轴有交点,则k 的取值范围是 A.4<kB.4≤kC.4<k 且3≠kD.4≤k 且3≠k例5 下列函数中,当x >0时y 值随x 值增大而减小的是 . A .y = x 2 B .y = x -1 C . y = 错误! x D .y = 错误!例6 若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是A .m =lB .m >lC .m ≥l D.m ≤l知识点五、二次函数图象的平移① 对于抛物线y=ax 2+bx+c 的平移通常先将一般式转化成顶点式()2y a x h k =-+,再遵循左加右减,上加下减的的原则化为顶点式有两种方法:配方法,顶点坐标公式法;在用顶点坐标公式法求出顶点坐标后,在写顶点式时,要减去顶点的横坐标,加上顶点的纵坐标;② c bx ax y ++=2沿y 轴平移:向上下平移m m >0个单位,c bx ax y ++=2变成m c bx ax y +++=2或m c bx ax y -++=2③ 当然,对于抛物线的一般式平移时,也可以不把它化为顶点式c bx ax y ++=2:向左右平移m m >0个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2或c m x b m x a y +-+-=)()(2例1 将抛物线2y x =-向左平移2个单位后,得到的抛物线的解析式是 A .2(2)y x =-+ B .22y x =-+ C .2(2)y x =-- D .22y x =--例2 将抛物线y=x 2-2x 向上平移3个单位,再向右平移4个单位等到的抛物线是_______. 例3 抛物线2y x =可以由抛物线()223y x =+-平移得到,则下列平移过程正确的是 A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位 C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位补抛物线y=2x 2-3x-7在x 轴上截得的线段的长度为______________ 公式抛物线y=ax 2+bx+c 在x 轴上截得的线段的长度为______________知识点六:抛物线c bx ax y ++=2中, a 、b 、c 的作用 1a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.2b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;②0>a b 即a 、b 同号时,对称轴在y 轴左侧;③0<ab即a 、b 异号时,对称轴在y 轴右侧.口诀---左同,右异 a 、b 同号,对称轴在y 轴左侧 3c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点0,c :①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴; ③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab. 例1 如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是A .a +b=-1B .a -b=-1C .b<2aD .ac<0例2 已知抛物线y =ax 2+bx +ca≠0在平面直角坐标系中的位置如图所示,则下列结论中正确的是 A .a>0 B .b <0 C .c <0 D .a +b +c>0例 3 如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:1240b ac ->;2c >1;32a -b <0;4a +b +c <0;你认为其中错误..的有 A .2个 B .3个C .4个D .1个例4 如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫⎪⎝⎭,下列结论:①ac <0;②a+b=0;③4ac -b 2=4a ;④a+b+c <0.其中正确的个数是 A. 1 B. 2 C. 3 D. 4 例5 如图,是二次函数 y =ax 2+bx +ca≠0的图象的一部分,给出下列命题 :①a+b+c=0;②b >2a ;③ax 2+bx+c=0的两根分别为-3和1;④a-2b+c >0.其中正确的命题是 .只要求填写正确命题的序号例6 如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是A .m =n ,k >hB .m =n ,k <hC .m >n,k =hD .m <n ,k =h知识点七:中考二次函数压轴题中常用到的公式1、两点间距离公式:如图:点A 坐标为x 1,y 1,点B 坐标为x 2,y 2,则AB 间的距离,即线段AB 的长度为()()221221y y x x -+- 这实际上是根据勾股定理得出来的2、中点坐标公式:如图,在平面直角坐标系中,A 、B 两点的坐标分别为11()A x y ,,22()B x y , ,AB 中点P 的坐标为()p p x y ,.由12p p x x x x -=-,得122p x x x +=, 同理122p y y y +=,所以AB 的中点坐标为1212()22x x y y++,. 3、两平行直线的解析式分别为:y=k 1x+b 1,y=k 2x+b 2,那么k 1=k 2,也就是说当我们知道一条直线的k 值,就一定能知道与它平行的另一条直线的k 值;4、两垂直直线的解析式分别为:y=k 1x+b 1,y=k 2x+b 2,那么k 1×k 2=-1,也就是说当我们知道一条直线的k 值,就一定能知道与它垂直的另一条直线的k 值;对于这一条,只要能灵活运用就行,不需要理解以上四条,我称它们为坐标系中的“四大金刚”1x px 2x 12x x -12y y -1y 2y Py APBO yx例1 如图,在平面直角坐标系中,抛物线y=﹣x 2+2x+3与x 轴交于A .B 两点,与y 轴交于点C,点D 是该抛物线的顶点.1求直线AC 的解析式及B .D 两点的坐标;2点P 是x 轴上一个动点,过P 作直线l ∥AC 交抛物线于点Q,试探究:随着P 点的运动,在抛物线上是否存在点Q,使以点A .P 、Q 、C 为顶点的四边形是平行四边形 若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由.3请在直线AC 上找一点M,使△BDM 的周长最小,求出M 点的坐标.例2 如图,已知抛物线y=﹣x 2+bx+c 与一直线相交于A ﹣1,0,C2,3两点,与y 轴交于点N .其顶点为D .1求抛物线及直线AC 的函数关系式; 2设点M3,m,求使MN+MD 的值最小时m 的值;3若抛物线的对称轴与直线AC 相交于点B,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F,以B,D,E,F 为顶点的四边形能否为平行四边形 若能,求点E 的坐标;若不能,请说明理由; 4若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.例3 如图,抛物线423412--=x x y 与x 轴交于A,B 两点点B 在点A 的右边,与y 轴交于C,连接BC,以BC 为一边,点O 为对称中心作菱形BDEC,点P 是x 轴上的一个动点,设点P 的坐标为m,0,过P 作x 轴的垂线l 交抛物线于点Q;ADCEBOADC EBOA DCEBO1求点A 、B 、C 的坐标;2当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N;试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;3当点P 在线段EB 上运动时,是否存在点Q,使⊿BDQ 为直角三角形,若存在,请直接写出Q 点坐标;若不存在,请说明理由;练 习1、平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m 、2.5 m 处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为建立的平面直角坐标系如右图所示A .1.5 mB .1.625 mC .1.66 mD .1.67 m2、已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为 A .0 B .1 C .2 D .33. 二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是 .4. 如图,已知二次函数c bx x y ++=2的图象经过点-1,0,1,-2,当y 随x 的增大而增大时,x 的取值范围是 .xyO11(1,-2)cbx x y ++=2-15. 在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是 .A .2(1)2y x =-++B .2(1)4y x =--+C .2(1)2y x =--+D .2(1)4y x =-++6. 已知二次函数c bx ax y ++=2的图像如图,其对称轴1-=x ,给出下列结果①ac b 42>②0>abc ③02=+b a ④0>++c b a ⑤0<+-c b a ,则正确的结论是A ①②③④B ②④⑤C ②③④D ①④⑤7.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如上表:从上表可知,下列说法中正确的是 .填写序号①抛物线与x 轴的一个交点为3,0; ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大.8. 如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标是-2,4,过点A 作AB ⊥y 轴,垂足为B ,连结OA .1求△OAB 的面积;2若抛物线22y x x c =--+经过点A .①求c 的值;②将抛物线向下平移m 个单位,使平移后得到的抛物线顶点落在△OAB 的内部不包括△OA B 的边界,求m 的取值范围直接写出答案即可.x … -2 -1 0 1 2 … y…4664…1的图象经过点Ac,-x=3;”题9、“已知函数c=+y+xbx2目中的矩形框部分是一段被墨水污染了无法辨认的文字;根据已知和结论中现有的信息,你能否求出题中的二次函数解析式若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由;10、如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD= 90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A-1,0,B -1,2,D 3,0,连接DM,并把线段DM 沿DA方向平移到ON,若抛物线y=ax2+bx+c经过点D、M、N.1求抛物线的解析式2抛物线上是否存在点P.使得PA= PC.若存在,求出点P的坐标;若不存在.请说明理由;3设抛物线与x轴的另—个交点为E.点Q是抛物线的对称轴上的—个动点,当点Q在什么位置时有QE QC-最大并求出最大值;11、如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A 一1,0.⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;⑶点Mm,0是x 轴上的一个动点,当CM+DM 的值最小时,求m 的值.ABCDO E NM xy图12、在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC 分别落在x轴和y轴的正半轴上;设抛物线y=ax2+bx+ca<0过矩形顶点B、C.1当n=1时,如果a=-1,试求b的值;2当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N 两点也在抛物线上,求出此时抛物线的解析式;3将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O,②直接写出a关于n的关系式.。

初三二次函数知识点和练习

初三二次函数知识点和练习

二次函数的图象与解析式一、二次函数的图象1.二次函数图象与系数的关系 (1)a 决定抛物线的开口方向及开口大小 正负性决定开口方向,绝对值大小决定开口大小.a 越大,抛物线开口越小;温馨提示:几条抛物线的解析式中,若a 相等,则其形状相同,图象经过平移、中心对称(旋转180︒)a 不变.(2)b 和a 共同决定抛物线对称轴的位置(口诀:左同右异)(3)c 的大小决定抛物线与y 轴交点的位置(抛物线与y 轴的交点坐标为()0c ,) 2.二次函数的图形信息(1)根据抛物线的开口方向判断a 的正负性. (2)根据抛物线的对称轴判断2ba-的大小. (3)根据抛物线与y 轴的交点,判断c 的大小.(4)根据抛物线与x 轴有无交点,判断24b ac -的正负性.(5)根据抛物线所经过的已知坐标的点,可得到关于a b c ,,的等式. (6)根据抛物线的顶点,判断244ac b a-的大小2.二次函数图象的画法若是无图,建议画出图象然后根据图象来分析进行解答,数形结合是解答压轴题的终极方法,因为二次函数的图象能极大的方便做题,简易绘图法:根据以下五条就可以画图二次函数的简易图象 ①a 的正负性,看图形的开口方向是往上还是往下 ②c 的正负性,看图象与y 轴的交点是在正半轴还是负半轴 ③△的正负性,看图象与x 轴有无交点 ④对称轴的位置,看a 和b 的符号是否一致 压轴题绘图法:因为压轴题的作图需要精准,以帮助解答,所以需要画出带刻度的坐标系 ①利用对称轴公式,计算出对称轴,然后画出图形的对称轴②将对称轴代入解析式,算出顶点的纵坐标(若不为整数,则舍弃这一步) ③找出与y 轴交点,并利用对称轴画出对称点,④令0y =,算出与x 轴两个交点(若不为整数,则舍弃这一步) ⑤利用对称轴画出一条尽量对称且平滑的曲线三、二次函数的图象及性质1. 二次函数2y ax bx c =++0a ≠()或2()y a x h k =-+(0a ≠)的性质(1)开口方向:00a a >⇔⎧⎨<⇔⎩向上向下(2)对称轴:2bx a=-(或x h =) (3)顶点坐标:24(,)24b ac b a a--(或(,)h k )(4)最值:0a >时有最小值244ac b a -(或k )(如图1); 0a <时有最大值244ac b a-(或k )(如图2);⑸单调性:二次函数2y ax bx c =++(0a ≠)的变化情况(增减性) ①如图1所示,当0a >时,对称轴左侧2bx a<-,y 随着x 的增大而减小,在对称轴的右侧2bx a>-, y 随x 的增大而增大;②如图2所示,当0a >时,对称轴左侧2bx a<-, y 随着x 的增大而增大,在对称轴的右侧2b x a>-, y 随x 的增大而减小;⑹与坐标轴的交点:①与y 轴的交点:(0,C );②与x 轴的交点:使方程20ax bx c ++=(或2()0a x h k -+=)成立的x 值.考点一:根据二次函数的定义确定参数的值☞考点说明:根据二次函数的定义反求参数,一般情况下会结合在综合题中处,也有可能以填空题的形式出现,考察点在二次项系数不为零【例1】 函数()()2223ay a x a x a -=++-+.当______a =,它为二次函数;当____a =,它为一次函数.【例2】 若抛物线2(1)mmy m x -=-开口向下,则______m =考点二:二次函数的对称轴☞考点说明:在求二次函数的对称轴时,根据解析式的不同,求法也不尽相同,并不仅仅只有2bx a=-的这一种求法,需灵活掌握,一般情况下,以选择、填空出现的可能性较大。

二次函数知识点总结及相关典型题目(含答案)

二次函数知识点总结及相关典型题目(含答案)

二次函数知识点总结及相关典型题目第一部分基础知识1.定义:一般地,如果y ax2 bx c(a, b,c是常数,a 0),那么y叫做x的二次函数.2.二次函数y 2ax的性质(1)抛物线 2y ax的顶点是坐标原点,对称轴是y轴.(2)函数y ax2的图像与a的符号关系.①当a0时抛物线开口向上顶点为其最低点;②当a0时抛物线开口向下顶点为其最高点.(3 )顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为ax2( a0).3.二次函数y ax2 bx c的图像是对称轴平行于(包括重合) y轴的抛物线.4.二次函数y ax2 bx c用配方法可化成:y a x h2k的形式,其中4ac b24a5.二次函数由特殊到一般,可分为以下几种形式:①y ax2 2;② y ax k ;2 2③ yaxh :④ yaxh k ;2⑤ y ax bx c.6.抛物线的三要素:开口方向、对称轴、顶点①a的符号决定抛物线的开口方向:当a0时,开口向上;当0时,开口向下;a相等,抛物线的开口大小、形状相同②平行于y轴(或重合)的直线记作x h.特别地,y轴记作直线0.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同, 那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同8.求抛物线的顶点、对称轴的方法2(1)公式法:y ax bx c2b2a,「顶点是(4ab 4ac b2)2a' 4a '对称轴是直线x2a(2 )配方法:运用配方的方法,将抛物线的解析式化为y ax h 2 k的形式,得到顶点为(h, k),对称轴是直线x h.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失9.抛物线y ax2 bx c中,a,b,c的作用(1) a决定开口方向及开口大小,这与y ax2中的a完全一样.(2) b和a共同决定抛物线对称轴的位置.由于抛物线y ax2 bx c的对称轴是直线x —,故:①b 0时,对称轴为y轴;②-0 (即a、b同号)时,对称轴2a a在y轴左侧;③- 0 (即a、b异号)时,对称轴在y轴右侧.a(3) c的大小决定抛物线y ax2 bx c与y轴交点的位置.当x 0时,y c,•••抛物线y ax2 bx c与y轴有且只有一个交点(0, c):① c 0 ,抛物线经过原点;②c 0,与y轴交于正半轴;③ c 0 ,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则0.10.11.(1 )一般式:y ax2 bx c.已知图像上三点或三对x、y的值,通常选择一般式(2 )顶点式:y ax h 2 k.已知图像的顶点或对称轴,通常选择顶点式•(3 )交点式:已知图像与x轴的交点坐标x2,通常选用交点式:y ax x1 x x2. 12.直线与抛物线的交点(1)y轴与抛物线y ax2 bx c得交点为(0, c).(2)与y轴平行的直线x h与抛物线y ax2 bx c有且只有一个交点(h , ah 2 bh c).(3 )抛物线与x轴的交点二次函数y ax2 bx c的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程ax2 bx c 0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点0 抛物线与x轴相交;②有一个交点(顶点在x轴上)0 抛物线与x轴相切;③没有交点0 抛物线与x轴相离.(4)平行于x轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是ax2 bx c k的两个实数根.(5)—次函数y kx n k 0的图像I与二次函数y ax2 bx c a 0的图像G的"y kx n交点,由方程组彳2的解的数目来确定:①方程组有两组不同的解时』ax bx cI与G有两个交点;②方程组只有一组解时解时I与G没有交点.(6 )抛物线与x轴两交点之间的距离:若抛物线A x1?0,B x2,0,由于x1> 2x2是方程axX1X2b— ,X1 X2acaAB r2: 2 X1X2弋X1X2x x1x2I与G只有一个交点;③方程组无y ax2 bx c与x轴两交点为bx c 0的两个根,故b 24c V'b24ac4x1X2 A——a H[a a第二部分典型习题1 .抛物线y = x 2+ 2x — 2的顶点坐标是(D )A. (2,— 2)B. (1,— 2)C. (1,— 3)D. (— 1 , — 3)2 .已知二次函数y ax 2 bx c 的图象如图所示,则下列结论正确的是(C )A. ab >0, c >0B. ab >0, c v 0C. ab v 0, c >03 .二次函数y = ax 2+ bx + c 的图象如图所示,则下列结论正确的是(D )A. a >0, b v 0, c >0 B . a v 0, b v 0, c >0C. a v 0,b > 0,c v 0D. a v 0, b >0, c > 04 .如图,已知 ABC 中,BC=8 BC 上的高h 4 , D 为BC 上 一点,EF//BC ,交AB 于点E ,交AC 于点F (EF 不过A 、B ),设E 到BC 的距离为x ,则 函数的图象大致为(D )6. 已知二次函数y = kx 2+ (2k —1)x —1与x 轴交点的横坐标为 洛、x 2 ( x v x 2),则对于下列结论:①当 x = — 2时,y = 1;②当x >x 2时,y >0;③方程kx 2+ (2k —1)x 1= 0有(1 + 4k 2两个不相等的实数根 x 1、x 2 :④x 1v 1 , x 2> —1 :⑤x 2—为=,其中所有正k确的结论是 ①③④(只需填写序号).7. 已知直线y 2x b b 0与x 轴交于点A,与y 轴交于点 B ; —抛物线的解析式为D. ab v 0, c v 0DEF 的面积y 关于x 的x 2 4x5 .抛物线y x 2 2x A B 两点,贝U AB 的长为_4______第2 , 3题图D第4题图3与x 轴分别交于29.某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化, 而且在这四天中每昼夜的体温变化情况 相同.他们将一头骆驼前两昼夜的体温变 化情况绘制成下图•请根据图象回答: ⑴第一天中,在什么时间范围内这头骆驼y x b 10 x c .(1 )若该抛物线过点 B ,且它的顶点 P 在直线y 2x b 上,试确定这条抛物线的解析 式;(2) 过点B 作直线BC 丄AB 交x 轴交于点C ,若抛物线的对称轴恰好过 C 点,试确定直线y 2x b 的解析式•解: (1) y x 210或 y x 2 4x 6将(0, b)代入,得c b •顶点坐标为(一102b 16b 100),由题意得b 102b 2 16b 100,解得D410,b 26.(2) y 2x 28.有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2,0, 1时,相应的输出值分别为 5,3, 4 •(1) 求此二次函数的解析式;(2 )在所给的坐标系中画出这个二次函数的图象 ,并根据图象写出当输出值 y 为正数时输入值x 的取值范围.解:(1)设所求二次函数的解析式为y ax 2 bx c , a( 2) b( 2) c 5 c3a 1即2ab 4 ,解得b 2 ab 1c 3则 a 02 b 0 ca b c 43 , 故所求的解析式为:y2x 2x 3.(2)函数图象如图所示由图象可得,当输出值y 为正数时,输入值x 的取值范围是 x1 或 x 3 •non 由 AB AC BC , 得卑8 99a a1解得a 1.4的体温是上升的?它的体温从最低上升到最高需要多少时间 ⑵第三天12时这头骆驼的体温是多少 ? ⑶兴趣小组又在研究中发现,图中10时到22时的曲线是抛物线,求该抛物线的解 析式.解:⑴第一天中,从 4时到16时这头骆驼的体温是上升的它的体温从最低上升到最高需要12小时⑵第三天12时这头骆驼的体温是 39 C1 2⑶ y x 2 2x 24 10 x 22 1610.已知抛物线y B 两点,与y 轴交于点C.是否存在实数a ,使得 △ ABC 为直角三角形.若存在,请求出 a 的值;若不存在,请说明理由.解:依题意,得点 C 的坐标为(0, 4).设点A B 的坐标分别为(x-i , 0) , ( x 2 , 0),24由ax(33a )x 4,解得4点A 、B 的坐标分别为(-3 , 0) (, 0).3aAB | — 3|, ACAO 2 OC 2 5 ,3a BC •. BO 2 OC 2. | 4 |2 42 . V 3a24216 4AB 2 |3|22 2 393a 9a 2 3a2216 AC 225, BC 2 -6T 16.9a 2 16 9a 2〈i 〉当 AB 2 AC 22BC 时,/ ACB= 904 3a162 5(9616).4与x 轴交于A 、225 , BC1162625 24时,点B 的坐标八5,0),AB -9-,AC于是 AB 2 AC 2 BC 2 .1二 当a 时,△ ABC 为直角三角形.4〈ii 〉当 AC 2 AB 2 BC 2 时,/ ABC= 90° . 亠 2 2 2 16 8 16由 AC 2 AB 2 BC 2,得 25 ( 29) ( 2 16).9a 2 a9a 24 解得a -.9 44 4当a —时,3,点B (-3 , 0)与点A 重合,不合题意. 93a 3 49〈iii 〉当 BC 2 AC 2 AB 2 时,/ BAG= 90° ., 2 2 216 16 8 由 BC AC AB ,得 2 16 25 ( 2 9).9a 2 9a 2a4解得 a —.不合题意.91综合〈i 〉、〈ii 〉、〈iii 〉,当a 时,△ ABC 为直角三角形.411. 已知抛物线 y = — x 2 + mx — m + 2.(1) 若抛物线与x 轴的两个交点 A B 分别在原点的两侧,并且 AB= ,5,试求m 的值;的面积等于27,试求m 的值. 则X 1 , X 2是方程x 2— mx+ m- 2= 0的两根.T X 1 + X 2 = m , x 1 X 2 =m- 2 v 0 即 m< 2 ;又 AB=|X 1 — x 2 1=―4x X ? ■- 5 ,/• n f — 4m + 3=0 .解得:m=1或m=3(舍去),••• m 的值为1 . (2) M(a , b),则 N( — a , — b).•/ M N是抛物线上的两点,a 2ma m 2 b,L ①a 2ma m 2b.L ②①+②得:一2a 2 — 2m + 4 = 0 . • a 2=— m + 2 . •••当m < 2时,才存在满足条件中的两点 M N.(2)设C 为抛物线与y 轴的交点, 若抛物线上存在关于原点对称的两点 M N,并且△ MNC400~9~解:(1) A( X 1, 0) ,B (X 2, 0).••• a 、2 m这时MN到y轴的距离均为J2 m ,又点C坐标为(0, 2 —m ,而M N C = 27 ,1 _______________• 2X X( 2—m X .. ―=27 .2•解得m=- 7 .12. 已知:抛物线y= ax2+ 4ax+1与x轴的一个交点为A (—1, 0).(1)求抛物线与x轴的另一个交点B的坐标;(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD勺面积为9,求此抛物线的解析式;(3)E是第二象限内到x轴、y轴的距离的比为 5 : 2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,冋:在抛物线的对称轴上是否存在点P,使厶APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.解法一:(1)依题意,抛物线的对称轴为x =—2.•/ 抛物线与x轴的一个交点为A(—1, 0),• 由抛物线的对称性,可得抛物线与x轴的另一个交点B的坐标为(一3, 0).(2)v 抛物线y= ax2+ 4ax+1与x轴的一个交点为A (—1, 0 ),a( —1)2+ 4a( —1)+1 = 0 . • t = 3a.「. y= ax? + 4ax+ 3a .C (—4, 3a). • AB = 2, CD= 4.1 1梯形ABCD勺面积为9,「. (AB CD) OD =9 . •(2+4)3a =9 .-a ± 1.D ( 0, 3a). 梯形ABCD中, AB// CD 且点C在抛物线y= ax2+ 4ax + 3a上,y。

二次函数地基础知识和经典练习题

二次函数地基础知识和经典练习题

二次函数3.二次函数c bx ax y ++=2的图象如图,试判断a 、b 、c 和∆的符号。

解:4.二次函数c bx ax y ++=2的图象如图,下列结论(1)c <0;(2)b >0;(3)4a+2b+c >0;(4)(a+c )2<0,其中正确的是:( )A .1个B .2个C .3个D .4个 理由:5. 二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个理由:6. 已知直线b ax y +=的图象经过第一、二、三象限,那么12++=bx ax y 的图象为( ) A . B . C .D . 7.已知函数4212--=x x y ,当函数值y 随x 的增大而减小时,x 的取值围是( ) A .x <1 B .x >1 C .x >-2 D .-2<x <48.二次函数y =a (x +k )2+k ,当k 取不同的实数值时,图象顶点所在的直线是( )A .y =xB .x 轴C .y =-xD .y 轴9.已知二次函数y =ax 2+bx +c 的图象如右图所示,则( )A .a >0,c >0,b 2-4ac <0 B .a >0,c <0,b 2-4ac >0C .a <0,c >0,b 2-4ac <0D .a <0,c <0,b 2-4ac >010.已知二次函数y =ax 2+bx +c 的图象如下图所示,则( )A .b >0,c >0,=0B .b <0,c >0,=011.二次函数y =mx 2+2mx -(3-m )的图象如下图所示,那么m 的取值围是( )A .m >0B .m >3C .m <0D .0<m <312.在同一坐标系,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )13.函数xaby b ax y =+=221,(ab <0)的图象在下列四个示意图中,可能正确的是( )14.图中有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k >nC .k =nD .h >0,k >015.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;21>a ③;④b <1.其中正确的结论是( )9.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).根据图象提供的信息解答下面问题:(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)(2)求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月售出此种商品30000件,请你计算该公司在一个月最少获利多少元?。

二次函数各知识点、考点、典型例题及练习精编版

二次函数各知识点、考点、典型例题及练习精编版

……………………………………………………………最新资料推荐…………………………………………………二次函数各知识点、考点、典型例题及对应练习(超全)【典型例题】题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式 例2.(拓展,2008年武汉市中考题,12) 下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。

○3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。

○4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。

○5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC=6,则抛物线解析式为y=x 2-5x+4。

○6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。

○7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。

○8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。

○9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。

○10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。

○11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。

点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。

初三数学二次函数知识点总结及经典习题含答案

初三数学二次函数知识点总结及经典习题含答案

初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2。

二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小.2。

2y ax c =+的性质: 上加下减.3。

()2y a x h =-的性质:左加右减。

4。

()2y a x h k =-+的性质:1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数知识点梳理及经典练习【知识点梳理】一、基本概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b ca≠)的函数,叫做,,是常数,0二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4.()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位, c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)2. 平移规律: “h 值正右移,负左移;k 值正上移,负下移”.即“左加右减,上加下减”.四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,、()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而增大; 当2bx a>-时,y 随x 的增大而减小; 当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法 1.二次函数解析式表示方法:(1)一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);(3)两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 2.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般有如下几种情况:(1) 已知抛物线上三点的坐标,一般选用一般式;(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x 轴的两个交点的横坐标,一般选用两根式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a : 0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 总结:a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口大小. 2. 一次项系数b : 在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结:在a 确定的前提下,b 决定了抛物线对称轴的位置.▲ab 符号判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,即“左同右异”.3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结:c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称:2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称:2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称:2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称:(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称: ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 永远不变.求抛物线的对称抛物线的表达式时,习惯上先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图像与x 轴的交点个数:(1) 当240b ac ∆=->时,图像与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.(2)当0∆=时,图像与x 轴只有一个交点; (3)当0∆<时,图像与x 轴没有交点.①当0a >时,图像落在x 轴的上方,无论x 为任何实数,都有0y >; ②当0a <时,图像落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图像与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图像与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图像的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图像关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:【基础题型概览】一、二次函数的基本概念 1、y=mx m2+3m+2是二次函数,则m 的值为( )A 、0,-3B 、0,3C 、0D 、-32、关于二次函数y=ax 2+b ,命题正确的是( ) A 、若a>0,则y 随x 增大而增大 B 、x>0时y 随x 增大而增大。

C 、若x>0时,y 随x 增大而增大D 、若a>0则y 有最大值。

3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

二、简单作图 1、抛物线y x x =-+123522,五点法作图。

2、y=ax 2+bx+c ,a<0,b>0,c<0 ,△<0,画出大致图象。

相关文档
最新文档