二次函数知识点对应练习题

合集下载

二次函数知识点总结和相关练习

二次函数知识点总结和相关练习

二次函数知识点总结和相关练习知识点1: 配方:练习:1、将二次函数72412-+-=x x y 配成顶点式,并求对称轴和最值。

2、将二次函数251325012+--=x x y 配成顶点式,并求顶点坐标和最值。

知识点2:平移、对称、旋转变换:抓顶点和开口方向 练习:1、函数342--=x x y 关于X 轴对称的函数的解析式为 ;关于Y轴对称的函数的解析式为2、将二次函数的图像向下平移2个单位,再向右平移3个单位,得到抛物 ,则3、若抛物线 向左又向上各平移4个单位,再绕顶点旋转 180°,得到新的图像的解析式是________.知识点3:二次函数图像与系数c b a 、、之间的关系:①a 决定抛物线的形状和大小,a 的正负决定开口方向。

② b a 、共同决定对称轴:同左异右③ c 决定抛物线与y 轴交点位置④ac b 42-=∆的正负决定抛物线与x 轴的交点个数 ⑤伟达定理:a c a b x x x x =⋅-=+2121,练习:1、二次函数图象如图所示,则下列结论:① 0<++c b a ②1>+-c b a ③0>abc ④024<+-c b a ⑤1>-a c2、二次函数c bx ax y ++=2图象如图,则下例结论不正确的是( )A .0<a B. 0>abc C. 0>++c b a D 042>-ac b3、二次函数322-+=x ax y 图象与轴有一个交点在0、1之间,a 范围是( )A 、a >31B 、0<a <1C 、a >1D 、a >-31 且a 0≠ 4、二次函数c bx ax y ++=2图象如图,则下例结论正确的是( )A 、0<acB 、当1=x 时,0>yC 、方程02=++c bx ax (0≠a )有两个大于1的实根D 、存在一个大于1的实数x 0,使x x 0<时,y 随x 的增大而减少,当x x 0> 时,y 随x 增大而增大。

二次函数知识点及典型例题

二次函数知识点及典型例题

二次函数一、二次函数的几何变换二、二次函数的图象和性质(Ⅰ) y=a(x-h)2+k (a≠0)的图象和性质(Ⅱ) y=ax2+bx+c (a≠0)的图象和性质(Ⅲ) a 、b 、c 的符号对抛物线形状位置的影响三、待定系数法求二次函数的解析式1、一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式。

2、顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式。

3、交点式:已知图像与x 轴的交点横坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。

4、顶点在原点,可设解析式为y=ax 2。

5、对称轴是y 轴(或者顶点在y 轴上),可设解析式为y= ax 2+c 。

6、顶点在x 轴上,可设解析式为()2h x a y -=。

7、抛物线过原点,可设解析式为y=ax2+bx 。

四、抛物线的对称性1、抛物线与x 轴有两个交点(x 1,0)(x 2,0),则对称轴为x=2x x 21+。

2、抛物线上有不同的两个交点(m ,a )(n,a ),则对称轴为x=2nm +。

3、抛物线c bx ax y ++=2(a ≠0)与y 轴交点关于对称轴的对称点为(ab-, c)。

五、二次函数与一元二次方程的关系对于抛物线c bx ax y ++=2(a ≠0),令y=0,即为一元二次方程02=++c bx ax ,一元二次方程的解就是二次函数与x 轴交点的横坐标。

要分三种情况:1、 判别式△=b 2-4ac >0⇔抛物线与x 轴有两个不同的交点(ab 24acb -2+,0)(a b 24ac b --2,0)。

有韦达定理可知x 1+x 2=a b - ,x 1·x 2=ac 。

2、 判别式△=b 2-4ac=0⇔抛物线与x 轴有一个交点(ab 2-,0)。

3、 判别式△=b 2-4ac=0⇔抛物线与x 轴无交点。

六、二次函数与一元二次不等式的关系1、a >0:(1)02>c bx ax ++的解集为:x <x 1或x >x 2(x 1<x 2)。

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2ba,244ac b a -).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2图1专题练习一1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.图2ABCD图1菜园墙例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )x6.17 6.18 6.19 6.202y ax bx c =++0.03- 0.01- 0.02 0.04A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<图2考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.图1。

第二十二章 二次函数知识点归纳及典型问题训练

第二十二章  二次函数知识点归纳及典型问题训练

第二十二章二次函数【考点1】二次函数1、二次函数的概念一般地,形如2y ax bx c=++(a b c,,是常数,0a≠)的函数,叫做二次函数。

其中,,,分别是函数解析式的二次项系数、一次项系数、常数项.x是自变量,a b c2、二次函数的一般式任何一个二次函数的解析式都可以化成2y ax bx c=++(a b c,,是常数,0a≠)的形(2)描点:一般先描出对称轴一侧的几个点,再根据对称性找出另一侧的几个点;(3)连线:按照自变量由小到大的顺序,用平滑的曲线连接所描的点,并向两端无限延伸。

2、二次函数2=的图象和性质y ax二次函数2y ax=是轴对称图形,抛物线与对y ax=。

抛物线2y ax=的图象叫做抛物线2称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点。

1、二次函数2(0)=+≠的图象和性质y ax k a1、二次函数2()(0)y a x h a =-≠的图象和性质点拨:(1)二次函数2()(0)y a x h a =-≠与2(0)y ax a =≠的图象的形状完全相同,只是位置不同。

二次函数2()(0)y a x h a =-≠的图象可由二次函数2(0)y ax a =≠的图象向左或向右平移得到。

(1)当0>h 时,抛物线2()(0)y a x h a =-≠可由抛物线2(0)y ax a =≠向右平移h 个单位长度得到,此时对称轴在y 轴的右侧;(2)当0<h 时,抛物线2()(0)y a x h a =-≠可由抛物线2(0)y ax a =≠向左平移||h 个单位长度得到,此时对称轴在y 轴的左侧;。

简记为“左加右减”,即自变量x 加上一个正数h ,二次函数图象向左平移h 个单位长度;自变量x 减去一个正数h ,二次函数图象向左平移h 个单位长度。

(3)确定二次函数2()(0)y a x h a =-≠图象的对称轴的方法:令0=-h x ,可得图象对称轴为直线h x =。

初中数学《二次函数》知识点归纳及相关练习题

初中数学《二次函数》知识点归纳及相关练习题

九上数学二次函数知识点归纳及相关练习题(一)定义:一般地,如果y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.【名师推荐你做】1.判断下列函数是否为二次函数,如果是,指出其二次项系数、一次项系数和常数项:(1)d =12n 2-32n ;(2)2y x =-;(3)y =1-x 2.2.判断①y =5x -4,②t =23x 2-6x ,③y =2x 3-8x 2+3,④y =38x 2-1,⑤y =2312x x-+是否为二次函数,如果是,指出其二次项系数、一次项系数和常数项.3.已知2(1)31k ky k x x +=-++是关于x 的二次函数,求k 的值.【答案与解析】1.【解析】(1)d =12n 2-32n 是二次函数,二次项系数、一次项系数和常数项分别为12、32-、0;(2)2y x =-是一次函数,不是二次函数;(3)y =1-x 2是二次函数,二次项系数、一次项系数和常数项分别为-1、0、1.2.【解析】①y =5x -4,③y =2x 3-8x 2+3,⑤y =2312x x-+不符合二次函数解析式,②t =23x 2-6x ,④y =38x 2-1符合二次函数解析式,②t =23x 2-6x 的二次项系数、一次项系数和常数项分别为23、-6、0,④y =38x 2-1的二次项系数、一次项系数和常数项分别为38、0、-1.3.【答案】-2.【解析】∵函数2(1)31k ky k xx +=-++是关于x 的二次函数,∴2102k k k -≠⎧⎨+⎩=,解得k =-2.(二)二次函数y =ax 2的性质(1)抛物线y =ax 2的顶点是坐标原点,对称轴是y 轴.(2)函数y =ax 2的图像与a 的符号关系.①当a >0时⇔抛物线开口向上⇔顶点为其最低点;②当a <0时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为y =ax 2(a ≠0).【名师推荐你做】1.观察函数y =3x 2与y =-3x 2的图像,回答:抛物线的开口方向,对称轴,顶点坐标及函数的单调性.【解析】(1)抛物线y =3x 2的开口方向是向上,对称轴是y 轴,顶点坐标是(0,0),当x ≠0时,抛物线上的点都在x 轴上方;当x >0时,曲线自左向右逐渐上升,当x <0时,曲线自左向右逐渐下降;二次函数y =-3x 2的开口方向是向下,对称轴是y 轴,顶点坐标是(0,0),当x ≠0时,抛物线上的点都在x 轴下方;当x >0时,曲线自左向右逐渐下降,当x <0时,曲线自左向右逐渐上升.(三)二次函数c bx ax y ++=2、k ax y +=2、()2h x a y -=、()kh x a y +-=2A.二次函数c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.B.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中a b ac k abh 4422-=-=,.C.二次函数由特殊到一般,可分为以下几种形式:①y =ax 2;②y =ax 2+k ;③y =a (x -h )2;④y =a (x -h )2+k ;⑤y =ax 2+bx +c .【名师推荐你做】1.将抛物线y =-2x 2向右平移3个单位,再向上平移5个单位,得到的抛物线解析式是()A.y =-2(x -3)2-5B.y =-2(x +3)2-5C.y =-2(x +3)2+5D.y =-2(x-3)2+5【答案与解析】1.【答案】D【解析】由“左加右减”的原则将函数y =-2x 2的图象向右平移3个单位,所得二次函数的解析式为:y =-2(x -3)2;由“上加下减”的原则将函数y =-2(x-3)2的图象向上平移5个单位,所得二次函数的解析式为:D.y =-2(x -3)2+5.所以选D.(四)抛物线A.抛物线的三要素:开口方向、对称轴、顶点.(1)a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。

二次函数常考知识点对应练习

二次函数常考知识点对应练习

二次函数常考知识点对应练习一、二次函数的定义1.下列函数中,是二次函数的有()①y=1﹣x2②y=③y=x(1﹣x)④y=(1﹣2x)(1+2x)A.1个B.2个C.3个D.4个2.若y=(m2+m)是二次函数,则m的值是()A.m=1±2 B.m=2 C.m=﹣1或m=3 D.m=3二、二次函数与y轴的交点3.函数y=ax2+bx﹣1(a≠0)的图象经过y轴上一点,则这个点的坐标是.三、二次函数的对称轴4.抛物线的对称轴是直线.5.(﹣2,8),(6,8)两点在二次函数y=ax2+bx+c的图象上,则该抛物线的对称轴是.6.已知抛物线y=x2﹣4x+3,如果点P(0,5)与点Q关于该抛物线的对称轴对称,那么点Q的坐标是.7.若抛物线y=2ax2-4ax+c上的P(4,-3),Q两点关于它的对称轴对称,则Q 点的坐标为.四、二次函数的顶点(含平移)8.抛物线y=﹣(a+8)2+2的顶点坐标是()A.(﹣8,2)B.(8,2)C.(2,8)D.(﹣8,﹣2)9.抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.将抛物线y=2x2﹣6x+10向左平移4个单位,再向下平移3个单位,所得抛物线的函数表达式为.11.抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,则m= .五、二次函数与x轴的交点12.抛物线y=x2+8x﹣4与直线x=﹣4的交点坐标是.13.已知二次函数y=﹣x2+x﹣的图象与x轴公共点的个数为个.14.已知二次函数y=kx2﹣7x﹣7的图象与x轴有两个交点,则k的取值范围为()A.k>﹣B.k>﹣且k≠0 C.k≥﹣D.k≥﹣且k≠0六、二次函数的最值(含增减性)15.函数y=2x2﹣8x+1,当x= 时有最小值,最小值是.16.已知二次函数y=ax2+4x+a﹣1的最小值为2,则a的值为.17.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y218.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是.七、二次函数与图像19.函数y=kx﹣k与y=kx2的图象大致是()A.B.C.D.20.如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A(﹣1,0)、点B(3,0)和点C(0,﹣3),一次函数的图象与抛物线交于B、C两点.(1)二次函数的解析式为y=x2﹣2x﹣3 ;(2)当自变量x >1 时,两函数的函数值都随x增大而增大;(3)当自变量0<x<3 时,一次函数值大于二次函数值;(4)当自变量x <﹣1 时,两函数的函数值的积小于0.21.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3 ⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个22.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下 B.二次函数的最小值是﹣2 C.当x>﹣3时,y随x的增大而增大 D.抛物线的对称轴是x=﹣八、二次函数与压轴题(一)二次函数与线段、面积、最值23.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN 是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.(二)二次函数与特殊三角形24.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.(三)二次函数与相似三角形25.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.(1)①直接写出点B的坐标;②求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.(四)二次函数与平行四边形26.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM 为等腰直角三角形,请直接写出此时点P的坐标.。

二次函数知识点归纳及相关习题(含答案)

二次函数知识点归纳及相关习题(含答案)
2

a 的符号
开口方向 向上
顶点坐标
对称轴
性质
a0
0 ,0 0 ,0
y轴
x 0 时, y 随 x 的增大而增大; x 0 时, y 随 x 的增大而减小;x 0 时,y 有最小值 0 . x 0 时, y 随 x 的增大增大而减小; x 0 时, y 随 x 的增大而增大; x 0 时, y 有最 大值 0 .
2
二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达
关于 x 轴对称 y ax 2 bx c 关于 x 轴对称后,得到的解析式是 y ax 2 bx c ;
y a x h k 关于 x 轴对称后,得到的解析式是 y a x h k ;
2
二次函数由特殊到一般, 可分为以下几种形式: ① y ax ; ② y ax k ; ③ y ax h ;
2 2
2
b 4ac b 2 . ,k 2a 4a
2

顶点式: y a( x h) 2 k ( a , h , k 为常数, a 0 ) ; 两根式: y a( x x1 )( x x2 ) ( a 0 , x1 , x2 是抛物线与 x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交 2 点式,只有抛物线与 x 轴有交点,即 b 4ac 0 时,抛物线的解析式才可以用交点式表示.二次 函数解析式的这三种形式可以互化. 二次函数 y ax 的性质
抛物线与 x 轴的交点:二次函数 y ax bx c 的图像与 x 轴的两个交点的横坐标 x1 、 x 2 ,

二次函数考点、知识点、例题(全)

二次函数考点、知识点、例题(全)

二次函数命题点年份各地命题形式考查频次2015考查方向二次函数的图象和性质2014 (T12填)填空1个近3年考查2次,主要考查对图象的认识与性质的理解,预计2015年考查的可能性较大.2013 (T9选)选择1个确定二次函数的解析式2014 (T23解),(T24解)解答2个高频考点:近3年考查12次,主要考查求二次函数的解析式,一般出现在压轴题中,预计2015年考查的可能性很大.2013(T23解),(T24解),(T23解),(T25解),(T23解),普洱(T23解),德宏(T23解),红河(T23解),西双版纳(24解)解答9个2012 (T23解)解答1个考点1 二次函数的概念一般地,形如①(a,b,c是常数,a≠0)的函数叫做二次函数.其中x是自变量,a、b、c分别为函数表达式的二次项系数、一次项系数和常数项.考点2 二次函数的图象和性质函数二次函数y=ax2+bx+c(a,b,c为常数,a≠0)a a>0 a<0图象开口方向抛物线开口向②,并向上无限延伸抛物线开口向③,并向下无限延伸对称轴直线x=-2ba直线x=-2ba顶点坐标(-2ba,244acab-) (-2ba,244acab-)最值抛物线有最低点,当x=-2ba时,y有最小值,y最小值=244acab-抛物线有最高点,当x=-2ba时,y有最大值,y最大值=244acab-增减性在对称轴的左侧,即当x<-2ba时,y随x的增大而④;在对称轴的右侧,即当x>-2baa时,y随x的增大而⑤,简记左减右增在对称轴的左侧,即当x<-2ba时,y随x的增大而⑥;在对称轴的右侧,即当x>-2ba时,y随x的增大而⑦,简记左增右减【易错提示】二次函数的增减性一定要分在对称轴的左侧或右侧两种情况讨论.考点3 二次函数的图象与字母系数的关系ab<0(b与a异号) 对称轴在y轴⑬侧c c=0 经过⑭c>0 与y轴⑮半轴相交c<0 与y轴⑯半轴相交b2-4ac b2-4ac=0 与x轴有○17交点(顶点)b2-4ac>0 与x轴有○18不同交点b2-4ac<0 与x轴○19交点特殊关系当x=1时,y=○20当x=-1时,y=○21若a+b+c>0,即当x=1时,y○220若a+b+c<0,即当x=1时,y○230方法适用条件及求法一般式若已知条件是图象上的三个点或三对自变量与函数的对应值,则可设所求二次函数解析式为○24. 顶点式若已知二次函数图象的顶点坐标或对称轴方程与最大值(最小值),可设所求二次函数为○25. 交点式若已知二次函数图象与x轴的两个交点的坐标为(x1,0),(x2,0),可设所求的二次函数为○26. 【易错提示】(1)用顶点式代入顶点坐标时横坐标容易弄错符号;(2)所求的二次函数解析式最后要化成一般式.二次函数与一元二次方程二次函数y=ax2+bx+c的图象与○27轴的交点的○28坐标是一元二次方程ax2+bx+c=0的根.二次函数与不等式抛物线y=ax2+bx+c在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式ax2+bx+c○290的解集;在x轴下方的部分点的纵坐标均为负,所对应的x的值就是不等式ax2+bx+c○300的解集.考点6利用二次函数解决实际问题的步骤(1)通过阅读理解题意;(2)分析题目中的变量与常量,以及它们之间的关系;(3)依据数量关系或图形的有关性质列出函数表达式;(4)根据问题的实际意义或具体要求确定自变量的取值围;(5)利用二次函数的有关性质,在自变量的取值围.1.二次函数y=(x-h)2+k的图象平移时,主要看顶点坐标的变化,一般按照“横坐标加减左右移”、“纵坐标加减上下移”的方法进行.2.二次函数的图象由对称轴分开,在对称轴的同侧具有相同的性质,在顶点处有最大值或最小值,如果自变量的取值中不包含顶点,那么在取最大值或最小值时,要依据其增减性而定.3.求二次函数图象与x轴的交点的方法是令y=0解关于x的方程;求函数图象与y轴的交点的方法是令x=0得y 的值,最后把所得的数值写成坐标的形式.命题点1 二次函数的图象和性质例1 (2013·)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )A.a >0B.3是方程ax 2+bx +c =0的一个根C.a +b +c =0D.当x <1时,y 随x 的增大而减小方法归纳:解决此类问题应注意观察所给抛物线的特征,逐个排除不符合的选项.1.(2014·)如果将抛物线y =x 2向右平移1个单位,那么所得的抛物线的表达式是( ) A.y =x 2-1 B.y =x 2+1 C.y =(x -1)2 D.y =(x +1)22.(2012·)对于二次函数y=2(x+1)(x-3),下列说确的是( )A.图象的开口向下B.当x>1时,y 随x 的增大而减小C.当x<1时,y 随x 的增大而减小D.图象的对称轴是直线x=-1 3.(2014·)抛物线y=x 2-2x+3的顶点坐标为 . 4.(2014·)如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为 .5.(2014·滨州)已知二次函数y=x 2-4x+3.(1)用配方法求其函数的顶点C 的坐标,并描述该函数的函数值随自变量的增减而增减的情况;(2)求函数图象与x 轴的交点A ,B 的坐标(A 在B 的左侧),及△ABC 的面积.命题点2 二次函数的图象与系数的关系例2 抛物线y=ax 2+bx+c (a ≠0)的图象如图所示,则下列说确的是( ) A.b 2-4ac <0 B.abc <0 C.-2ba<-1 D.a-b+c <0方法归纳:解决此类问题应当了解a,b,c,Δ=b2-4ac,a+b+c,a-b+c 的符号判定的方法,同时还要观察对称轴x=2b a.1.(2014·黔东南)如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列4个结论: ①abc <0;②b <a+c ;③4a+2b+c >0;④b 2-4ac >0. 其中正确结论的有( )A.①②③B.①②④C.①③④D.②③④2.(2014·)二次函数y=ax 2+bx+c (a ≠0)的图象如图,则下列结论中正确的是()A.c >-1B.b >0C.2a+b ≠0D.9a+c >3b3.(2014·)已知二次函数y=ax 2+bx+c 的图象如图,则下列叙述正确的是( )A.abc<0B.-3a+c<0C.b2-4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c命题点3 确定二次函数的解析式例3 (2013·)如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A,C分别在x轴、y轴的正半轴上,二次函数y=23x2+bx+c的图象经过B,C两点.(1)求该二次函数的解析式;(2)结合函数的图象探索:当y>0时x的取值围.【思路点拨】(1)通过正方形的边长得出点B,C的坐标,然后代入函数解析式列方程求解;(2)求出函数图象与x轴的交点坐标,结合图象求解.【解答】方法归纳:求二次函数的解析式,通常采用待定系数法,根据题目给出的条件选择不同的函数表达式,这样便于计算.1.(2013·)已知二次函数图象的顶点坐标为(1,-1),且经过原点(0,0),求该函数的解析式.2.(2014·)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么围时,一次函数的值大于二次函数的值.1.(2013·)抛物线y=2(x-3)2+1的顶点坐标是( )A.(3,1)B.(3,-1)C.(-3,1)D.(-3,-1)2.(2014·宿迁)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的解析式为( )A.y=(x+2)2+3B.y=(x-2)2+3C.y=(x+2)2-3D.y=(x-2)2-33.(2013·)设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+m上的三点,则y1,y2,y3的大小关系为( )A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y1>y34.(2014·东营)若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,那么m的值为( )A.0B.0或2C.2或-2D.0,2或-25.(2014·)抛物线y=2x2,y=-2x2,y=12x2共有的性质是( )A.开口向下B.对称轴是y轴C.都有最低点D.y随x的增大而减小6.(2014·)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x的取值围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>37.(2014·)对于二次函数y=(x-1)2+2的图象,下列说确的是( )A.开口向下B.对称轴是x=-1C.顶点坐标是(1,2)D.与x轴有两个交点8.(2014·)如图,二次函数y=x2+bx+c的图象过点B(0,-2).它与反比例函数y=8x的图象交于点A(m,4),则这个二次函数的解析式为( )A.y=x2-x-2B.y=x2-x+2C.y=x2+x-2D.y=x2+x+29.(2013·)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0,②2a+b=0,③b2-4ac<0,④4a+2b+c>0.其中正确的是( )A.①③B.只有②C.②④D.③④10.(2014·)抛物线y=3(x-2)2+5的顶点坐标是.11.(2013·)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式.12.已知函数y=-3(x-2)2+4,当x= 时,函数取得最大值为.13.(2013·)点A(2,y1),B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1<y2(填“>”“<”或“=”).14.(2014·)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为.15.(2013·)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C.过点C作CD∥x轴交抛物线的对称轴于点D,连接BD.已知点A的坐标为(-1,0).(1)求抛物线的解析式;(2)求梯形COBD的面积.16.(2014·龙东)如图,二次函数y=ax2+bx+3的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C,点C,D 是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出D点的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值围.1.(2014·荆州)将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )A.y=(x-4)2-6B.y=(x-4)2-2C.y=(x-2)2-2D.y=(x-1)2-32.(2014·黔东南)已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2 014的值为( )A.2 012B.2 013C.2 014D.2 0153.(2014·)函数y=ax与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是( )4.(2014·)已知函数y=-(x-m)(x-n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=mxn的图象可能是( )5.(2014·凉山)下列图形中阴影部分的面积相等的是( )A.②③B.③④C.①②D.①④2x -1 0 1 2 3 y 5 1 -1 -1 1 则该二次函数图象的对称轴为( )A.y轴B.直线x=52C.直线x=2D.直线x=327.(2014·)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:其中正确的结论有( )①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x的值的增大而增大.A.1个B.2个C.3个D.4个8.(2014·)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C,D两点.点P是x 轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.9.(2014·)某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么围时,该种商品每天的销售利润不低于16元?参考答案考点解读①y=ax 2+bx+c ②上 ③下 ④减小 ⑤增大 ⑥增大 ⑦减小 ⑧上 ⑨下 ⑩小⑪y ⑫左 ⑬右 ⑭原点 ⑮正 ⑯负 ○17唯一 ○18两个不同 ○19没有 ○20a+b+c ○21a-b+c ○22> ○23< ○24y=ax 2+bx+c ○25y=a(x-h)2+k ○26y=a(x-x 1)(x-x 2) ○27x ○28横 ○29> ○30< 各个击破 例1 B解析:根据抛物线的开口向下,可判断a <0,故A 错误;由抛物线与x 轴的交点(-1,0)和对称轴x=1可知抛物线与x 轴的另一个交点是(3,0),故B 正确;由当x=1时,y=a+b+c ≠0,故C错误;从图象即可看出,当x <1时,y 随x 的增大而增大,故D错误.故选B. 题组训练1.C2.C3.(1,2)4.直线x=25.(1)y=x 2-4x+3=x 2-4x+4-1=(x-2)2-1,∴其函数的顶点C 的坐标为(2,-1),∴当x ≤2时,y 随x 的增大而减小;当x >2时,y 随x 的增大而增大. (2)令y=0,则x 2-4x+3=0,解得x 1=1,x 2=3, ∴A (1,0),B (3,0),AB=|1-3|=2. 过点C 作CD ⊥x 轴于D ,则△ABC 的面积=12AB ·CD=12×2×1=1.例2 C 解析:由图象与x 轴有2个交点可判断A错误;根据图象的开口方向、对称轴、与y 轴的交点可判断a <0,2ba-<-1,c >0,即abc >0,故B 错误,C 正确;由当x=-1时,y=a-b+c >0可判断D 错误.故答案选C. 题组训练 1.B 2.D 3.B例3 (1)由题意可得:B (2,2),C (0,2),将B,C 坐标代入y=23-x 2+bx+c ,得c=2,b=43,∴二次函数的解析式是y=23-x 2+43x+2.(2)解23-x 2+43x+2=0,得x 1=3,x 2=-1.由图象可知:y>0时x 的取值围是-1<x <3.题组训练1.设二次函数的解析式为y=a (x-1)2-1(a ≠0), ∵函数图象经过原点(0,0), ∴a (0-1)2-1=0,解得a=1, ∴该函数解析式为y=(x-1)2-1.2.(1)∵二次函数y=ax 2+bx+c 的图象过B (0,-1), ∴二次函数解析式为y=ax 2+bx -1.∵二次函数y=ax 2+bx -1的图象过A (2,0)和C (4,5)两点,∴42101641 5.a b a b +-=⎧⎨+-=⎩,解得1,21.2a b ⎧=⎪⎪⎨⎪=⎪⎩-∴y=12x 2-12x -1. (2)当y=0时,12x 2-12x -1=0,解得x=2或x=-1,∴D (-1,0).(3)如图,当-1<x <4时,一次函数的值大于二次函数的值.整合集训 基础过关1.A2.B3.A4.D5.B6.D7.C8.A9.C10.(2,5) 11.y =x 2+1 12.2 4 13.< 14.y=a(1+x)2 15.(1)把A (-1,0)代入y=a(x -1)2+4,得 0=4a+4,∴a=-1. ∴y=-(x -1)2+4.(2)当x=0时,y=3,∴OC=3.∵抛物线y=-(x -1)2+4的对称轴是直线x=1,∴CD=1. ∵A (-1,0),∴B (3,0),∴OB=3. ∴S 梯形COBD =13)32+⨯(=6. 16.(1)D (-2,3).(2)把点A,B 代入y=ax 2+bx+3中,得9330,30.a b a b -+=⎧⎨++=⎩解得1,2.a b =-⎧⎨=-⎩∴二次函数的解析式为y=-x 2-2x+3. (3)x <-2或x >1. 能力提升1.B2.D3.D4.C5.A6.D7.B 提示:∵抛物线的对称轴为直线x=2ba-=2,∴b=-4a ,即4a+b=0,故①正确; ∵当x=-3时,y <0,∴9a-3b+c <0,即9a+c <3b ,故②错误; ∵抛物线与x 轴的一个交点为(-1,0),∴a-b+c=0,而b=-4a ,∴a+4a+c=0,即c=-5a ,∴8a+7b+2c=8a-28a-10a=-30a , ∵抛物线开口向下,∴a <0,∴8a+7b+2c >0,故③正确; 观察图象,④明显错误,即正确的结论是①③2个. 8.(1)∵抛物线顶点坐标为(1,4), ∴设y=a(x-1)2+4,由于抛物线过点B(0,3), ∴3=a(0-1)2+4,解得a=-1. ∴解析式为y=-(x-1)2+4, 即y=-x 2+2x+3.(2)作点B 关于x 轴的对称点E (0,-3),连接AE 交x 轴于点P .设AE 解析式y=kx+b ,则4,3.k b b +=⎧⎨=-⎩解得7,3.k b =⎧⎨=-⎩ ∴y AE =7x-3.当y=0时,x=37,∴点P坐标为(37,0).9.(1)y=ax2+bx-75图象过点(5,0),(7,16),∴255750, 4977516.a ba b+-=⎧⎨+-=⎩解得1,20.ab=-⎧⎨=⎩y=-x2+20x-75的顶点坐标是(10,25).当x=10时,y最大=25.答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元. (2)∵函数y=-x2+20x-75图象的对称轴为直线x=10,可知点(7,16)关于对称轴的对称点是(13,16),又∵函数y=-x2+20x-75图象开口向下,∴当7≤x≤13时,y≥16.答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、二次函数的定义
1、下列函数中,是二次函数的是 .
①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ;
⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =1x ; ⑧y=-5x 。

2、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。

二、二次函数的对称轴、顶点、最值
1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。

2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = .
3.抛物线y =x 2+3x 的顶点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )
5.抛物线y=x 2+2x -3的对称轴是 。

6.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。

7.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0.
8.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。

三、函数y=ax 2+bx+c 的图象和性质
1.抛物线y=x 2+4x+9的对称轴是 。

2.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:
(1)y=12 x 2-2x+1 ; (2)y=-3x 2+8x -2; (3)y=-14
x 2+x -4 3.已知函数y=2x 2,y=2(x -4)2,和y=2(x+1)2+3。

(1)分别说出各个函数图象的开口方、对称轴和顶点坐标。

(2)分析分别通过怎样的平移。

可以由抛物线y=2x 2得到抛物线y=2(x -4)2和y=2(x+1)2+3?
4.试写出抛物线y=3x 2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。

(1)右移2个单位;(2)左移23
个单位;(3)先左移1个单位,再右移4个单位。

四、二次函数的增减性
1.二次函数y=3x 2-6x+5,当x>1时,y 随x 的增大而 ;当x<1时,y 随x 的增大而 ; 当x=1时,函数有最 值是 。

2.已知函数y=4x 2-mx+5,当x> -2时,y 随x 的增大而增大;当x< -2时,y 随x 的增大而减少;
则当x =1时,y 的值为 。

3.已知二次函数y=x 2-(m+1)x+1,当x ≥1时,y 随x 的增大而增大,则m 的取值范围是 .
4.已知二次函数y=-12 x 2+3x+52
的图象上有三点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)且3<x 1<x 2<x 3,则y 1,y 2,y 3的大小关系为 .
五、二次函数的平移
1.抛物线y= -32
x 2向左平移3个单位,再向下平移4个单位,所得到的抛物线的关系式为 。

2.抛物线y= 2x 2, ,可以得到y=2(x+4}2-3。

3.将抛物线y=x 2+1向左平移2个单位,再向下平移3个单位,所得到的抛物线的关系式为 。

4.将抛物线y=ax 2+bx+c 向上平移1个单位,再向右平移1个单位,得到y=2x 2-4x -1则a = ,b = ,
c = .
5.将抛物线y =ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物
线的关系式为 _.
六、函数的交点
1.抛物线y=x 2+7x+3与直线y=2x+9的交点坐标为 。

2.直线y=7x+1与抛物线y=x 2+3x+5的图象有 个交点。

七、函数的的对称
1.抛物线y=2x 2-4x 关于y 轴对称的抛物线的关系式为 。

2.抛物线y=ax 2+bx+c 关于x 轴对称的抛物线为y=2x 2-4x+3,则a= b= c=
八、函数的图象特征与a 、b 、c 的关系
1.已知抛物线y=ax 2+bx+c 的图象如右图所示,则a 、b 、c 的符号为( )
A.a>0,b>0,c>0
B.a>0,b>0,c=0
C.a>0,b<0,c=0
D.a>0,b<0,c<0
2.已知抛物线y=ax 2+bx+c 的图象如左图所示,则下列结论正确的是( )
A .a+b+c> 0
B .b> -2a
C .a-b+c> 0
D .c< 0
3.抛物线y=ax 2+bx+c 中,b =4a ,它的图象如右图,有以下结论:
①c>0; ②a+b+c> 0 ③a-b+c> 0 ④b 2-4ac<0 ⑤abc< 0;其中正确
的为( )
A .①②
B .①④
C .①②③
D .①③⑤
4.当b<0时,一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系内的图象可能是( )
5.在同一坐标系中,函数y= ax 2+c 与y= c x (a<c)图象可能是( )
A B C D
6.反比例函数y = k x 的图象在一、三象限,则二次函数y =kx 2-k 2
x-c 的图象大致为图中的( )
A B C D
7.反比例函数y = k x 中,当x> 0时,y 随x 的增大而增大,则二次函数y =kx 2+2kx 的图象大致为图中的(

A B C D
8.已知二次函数y =ax 2+bx +c 经过一、三、四象限(不经过原点和第二象限)则直线y =ax +bc 不经过(

A .第一象限
B .第二象限
C .第三象限
D .第四象限
九、二次函数与x 轴、y 轴的交点(二次函数与一元二次方程的关系)
1. 如果二次函数y =x 2+4x +c 图象与x 轴没有交点,其中c 为整数,则c = (写一个即可)
2. 二次函数y =x 2-2x-3图象与x 轴交点之间的距离为
3. 抛物线y =-3x 2
+2x -1的图象与x 轴交点的个数是( )
A.没有交点
B.只有一个交点
C.有两个交点
D.有三个交点
4. 如图所示,二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点, 交y 轴于点C ,
则△ABC 的面积为( )
A.6
B.4
C.3
D.1
5. 已知抛物线y =5x 2+(m -1)x +m 与x 轴的两个交点在y 轴同侧,它们的距离平方等于
为 4925
,则m 的值为( ) A.-2 B.12 C.24 D.48
6. 若二次函数y =(m+5)x 2+2(m+1)x+m 的图象全部在x 轴的上方,则m 的取值范围是
7. 已知抛物线y =x 2-2x-8,
(1)求证:该抛物线与x 轴一定有两个交点;
(2)若该抛物线与x 轴的两个交点为A 、B ,且它的顶点为P ,求△ABP 的面积。

十、函数解析式的求法
1.已知二次函数的图象经过A (0,3)、B (1,3)、C (-1,1)三点,求该二次函数的解析式。

2.已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式。

3.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。

4.二次函数的图象经过A (-1,0),B (3,0),函数有最小值-8,求该二次函数的解析式。

5.已知x =1时,函数有最大值5,且图形经过点(0,-3),则该二次函数的解析式 。

6.若抛物线y=ax 2+bx+c 的顶点坐标为(1,3),且与y=2x 2的开口大小相同,方向相反,则该二次函数的解析
式 。

7.若抛物线与x 轴交于(2,0)、(3,0),与y 轴交于(0,-4),则该二次函数的解析式 。

8.已知二次函数y=ax 2+bx+c 的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。

十一、二次函数应用
1.有一种螃蟹,从海上捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元。

(1)设X 天后每千克活蟹的市场价为P 元,写出P 关于X 的函数关系式。

(2)如果放养X 天后将活蟹一次性出售,并记1000千克蟹的销售额为Q 元,写出Q 关于X 的函数关系式。

(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额—收购成本—费用),最大利润是多少?
2.某商场有一批进价为25元的旅游鞋。

为确定一个最佳的销售价格,在试销期采用多种价格进行销售,经试验发现:按每双30元的价格销售时,每天能卖出60双;按每双32元的价格销售时,每天能卖出52双,假定每天售出鞋的数量Y (双)是销售单价X 的一次函数。

(1)求Y 与X 之间的函数关系式;
(2)在鞋不积压,且不考虑其它因素的情况下,求出每天的销售利润W (元)与销售单价X 之间的函数关系式;
(3)销售价格定为多少元时,每天获得的销售利润最多?是多少?。

相关文档
最新文档