用画树状图法求概率(教案、教学反思、导学案)
画树状图求概率-人教版九年级数学上册教案

画树状图求概率-人教版九年级数学上册教案
一、教学内容
本节课主要内容为画树状图求概率。
二、教学目标
1.熟练掌握画树状图的方法;
2.能够运用树状图求解与概率有关的问题。
三、教学重难点
教学重点
1.熟练掌握画树状图的方法;
2.能够画出适当的树状图解决与概率有关的问题。
教学难点
1.能够理解并画出较为复杂的树状图;
2.熟练掌握在树状图中计算概率的方法。
四、教学方法
本节课采用讲授、演示和练习相结合的教学方法。
五、教学过程
1. 导入
在开始本节课时,先向学生介绍什么是树状图,并要求学生简单说明其作用和意义。
2. 讲授
1.介绍画树状图的方法:
–确定问题;
–找到可列举出所有情况的基本事件;
–画出树状图;
–计算每个事件的概率并求得所需概率;
2.通过例题演示画树状图的方法。
3. 练习
1.给出一些与概率有关的问题,要求学生在纸上先列举出所有可能的基本事件,然后画出树状图并计算每个事件的概率,并最终求得答案;
2.可以让学生自己创造一些与概率有关的问题,并画出树状图求解。
4. 总结
对本节课学习的内容进行总结,并梳理出难点和易错点,提醒学生在日后的学习中需注意。
六、教学反思
本节课通过讲授、演示和练习相结合的方式,使学生能够熟练掌握画树状图的方法,并且能够运用树状图求解与概率有关的问题。
教学中,由于有些同学对概率的基本概念不理解,导致他们对画树状图的方法难以理解,需要在以后的教学中加强对概率概念的讲解。
同时,在练习环节中,少部分同学在练习过程中存在着错误的计算方法,需要老师进行指导纠正。
《用树状图或表格求概率》教案

一、教学目标1. 让学生理解概率的概念,掌握用树状图和表格求概率的方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 培养学生合作学习、探究学习的能力,提高学生的数学思维水平。
二、教学内容1. 概率的概念和性质2. 树状图求概率的方法3. 表格求概率的方法4. 实际问题中的应用三、教学重点与难点1. 重点:概率的概念和性质,树状图和表格求概率的方法。
2. 难点:用树状图和表格求复杂概率问题,以及实际问题中的应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生自主探究、合作学习。
2. 利用多媒体课件辅助教学,生动形象地展示概率问题的解决过程。
3. 注重让学生经历“提出问题、建立模型、求解问题”的全过程,培养学生的数学素养。
五、教学过程1. 导入:通过简单的历史背景介绍,引出概率的概念。
2. 基本概念:介绍概率的基本性质,让学生理解概率的意义。
3. 树状图求概率:讲解树状图的画法,让学生通过树状图求解概率问题。
4. 表格求概率:讲解表格的填写方法,让学生通过表格求解概率问题。
5. 应用拓展:让学生解决实际问题,运用概率知识解决生活中的问题。
六、教学评估1. 课堂问答:通过提问检查学生对概率概念的理解和对树状图、表格求概率方法的掌握。
2. 练习题:布置练习题,让学生运用新学的知识解决实际问题,检验学生对知识的吸收和应用能力。
3. 小组讨论:评估学生在合作学习中的参与度和对问题的探究能力。
七、教学反思1. 教师反思:在课后对教学过程进行回顾,分析教学效果,针对学生的掌握情况调整教学策略。
2. 学生反馈:收集学生对教学内容、教学方法的反馈,了解学生的学习需求和困难,为改进教学提供依据。
八、教学拓展1. 概率游戏:设计有趣的概率游戏,让学生在游戏中进一步理解和掌握概率知识。
2. 课后探究项目:布置课后探究项目,让学生深入研究概率问题,培养学生的研究能力和创新意识。
九、教学资源1. 教材:选用权威、实用的概率教材,为学生提供系统的学习资料。
人教版数学九年级上册《画树状图求概率》教案4

人教版数学九年级上册《画树状图求概率》教案4一. 教材分析《画树状图求概率》是人教版数学九年级上册的一章内容,主要讲述了利用树状图来求解概率问题。
本节课通过树状图的方法,让学生更好地理解概率的计算,培养学生的逻辑思维能力和图形表达能力。
二. 学情分析九年级的学生已经掌握了概率的基本概念和计算方法,但对树状图的应用还不够熟练。
因此,在教学过程中,需要引导学生运用已学过的知识,将树状图与概率计算相结合,提高学生解决问题的能力。
三. 教学目标1.知识与技能:让学生掌握树状图求概率的方法,能熟练运用树状图解决实际问题。
2.过程与方法:通过小组合作、讨论交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.重点:树状图求概率的方法。
2.难点:如何将实际问题转化为树状图,并准确计算概率。
五. 教学方法1.情境教学法:通过生活实例,引发学生对概率问题的思考。
2.小组合作法:引导学生分组讨论,培养学生的团队协作能力。
3.启发式教学法:教师提问,引导学生思考,激发学生的求知欲。
六. 教学准备1.准备相关的生活实例,用于导入新课。
2.准备树状图的模板,方便学生操作。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如抽奖活动,引导学生思考如何计算中奖的概率。
从而引出本节课的主题——利用树状图求概率。
2.呈现(10分钟)讲解树状图求概率的方法,引导学生通过树状图来解决问题。
以抽奖活动为例,展示如何将问题转化为树状图,并计算出中奖的概率。
3.操练(10分钟)学生分组讨论,尝试解决其他实际问题,如抛硬币、掷骰子等。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)出示练习题,让学生独立完成。
教师选取部分学生的作业进行点评,总结错误原因,巩固所学知识。
5.拓展(5分钟)引导学生思考:如何利用树状图解决更复杂的概率问题?引发学生对概率问题的深入思考。
《用树状图或表格求概率》教案

《用列表法或树状图法求概率》教学设计课标要求:能通过列表或画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。
教学目标1.会运用树状图和列表法列出简单事件发生的所有等可能的结果。
2.会运用树状图和列表法计算简单事件发生的概率.教学重点运用树状图和列表法计算事件发生的概率.教学难点树状图和列表法的运用方法.教学方法合作交流,共同探究.教学过程一.问题驱动(1)从一定高度随机掷一枚均匀的硬币,落地后其朝上的一面可能出现正面和反面这样两种等可能的结果.小明正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这3次都是正面朝上.那么你认为小明掷3次硬币还有其它结果吗?如果没有,请说明理由。
如果有,你能全部列举出来吗?二.真知来源于实践当试验次数很大时,一个事件发生频率稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.除此之外,还有别的方法吗?(1)在摸牌游戏中,有两张牌,两张中一张牌面数字是1.另一张牌面数字是2.从中任意摸出一张,如果摸得第一张牌的牌面的数字为1,那么放回之后摸第二张牌时,摸得牌面数字为几的可能性大?如果摸得第一张牌的牌面的数字为2呢?三.合作交流、构建知识:(20分钟)对于前面的摸牌游戏,一次试验中会出现哪些可能的结果?每种结果出现的可能性相同吗?(一)思考交流观点一:会出现三种可能:牌面数字和为2,牌面数字和为3,牌面数字和为4;每种结果出现的可能性相同.观点二:会出现四种可能:牌面数字为(1,1),牌面数字为(1,2),牌面数字为(2,1),牌面数字为(2,2).每种结果出现的可能性相同.(二)分别用树状图法和表格求概率(7分钟)开始第一张牌数字:12第二张牌数字:1212可能出现的结果 (1,1)(1,2)(2,1)(2,2)(解释(1,1)的表示方法-------有序----类似点坐标)第二张牌数字1 2第一张牌数字1 (1,1) (1,2)2 (2,1) (2,2)解:从上面的树状图或表格可以看出,一次试验可能出现的结果共有4种:(1,1)(1,2)(2,1)(2,2),而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4.总结出知识要点:利用树状图或表格,可以比较方便地求出某些事件发生的概率.(三)例题解析例1:小明、小颖和小凡做“石头、剪刀、布”游戏.游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人的手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?例题处理(解题过程略):(1)学生先尝试完成,然后2个学生用两种方法板演,师生共同订正(2)让学生根据例1自己设计问题考其他同学,其他学生解答三、拓展提高学以致用1.从一定高度随机掷一枚均匀的硬币,落地后其朝上的一面可能出现正面和反面这样两种等可能的结果.小明正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这3次都是正面朝上.那么你认为小明掷3次硬币还有其它结果吗?如果没有,请说明理由。
《用树状图或表格求概率》教案

《用树状图或表格求概率》教案第一章:概率的基本概念1.1 概率的定义解释概率是衡量事件发生可能性的数值,范围在0到1之间。
举例说明概率的应用,如抛硬币、掷骰子等。
1.2 样本空间和事件介绍样本空间是所有可能结果的集合,事件是样本空间的一个子集。
利用树状图展示样本空间和事件的关系。
第二章:树状图法求概率2.1 树状图的绘制讲解如何利用树状图表示事件的概率。
示范绘制树状图,展示单次试验和多次试验的树状图。
2.2 利用树状图求概率教授如何通过树状图计算概率。
练习计算简单事件的概率。
第三章:表格法求概率3.1 表格的绘制讲解如何利用表格表示事件的概率。
示范绘制表格,展示单次试验和多次试验的表格。
3.2 利用表格求概率教授如何通过表格计算概率。
练习计算简单事件的概率。
第四章:独立事件的概率4.1 独立事件的定义解释独立事件是指一个事件的发生不影响另一个事件的发生。
利用树状图和表格展示独立事件的概率计算。
4.2 利用树状图和表格求独立事件的概率教授如何通过树状图和表格计算独立事件的概率。
练习计算独立事件的概率。
第五章:条件概率5.1 条件概率的定义解释条件概率是在某一事件已发生的情况下,另一事件发生的概率。
利用树状图和表格展示条件概率的计算。
5.2 利用树状图和表格求条件概率教授如何通过树状图和表格计算条件概率。
练习计算条件概率。
第六章:组合与排列6.1 组合的定义解释组合是指从n个不同元素中取出m(m≤n)个元素的有序列的个数。
利用树状图和表格展示组合的计算。
6.2 排列的定义解释排列是指从n个不同元素中取出m(m≤n)个元素的所有可能的排列的个数。
利用树状图和表格展示排列的计算。
第七章:概率的加法规则7.1 概率的加法规则讲解当两个事件互斥时,可以使用概率的加法规则计算它们的概率。
利用树状图和表格展示概率的加法规则的计算。
7.2 应用概率的加法规则教授如何应用概率的加法规则解决实际问题。
练习计算互斥事件的概率。
画树状图求概率教学设计

25.2画树状图求概率一、教学目标:1、知识与技能目标:学习画树形图法计算概率。
2、过程与方法目标,经历画树形图、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。
渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。
3、情感与态度目标,通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。
二、教学重点、难点教学重点:学习运用树状图法计算事件的概率。
教学难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
三、教学过程(一)创设情景,发现新知1、复习:什么时候用“列表法”方便?2、将一个均匀的硬币上抛二次,用列表法表示所有可能结果并且求出出现一正一反的概率?3、思考:将一个均匀的硬币上抛三次,所有可能结果有哪些?结果为三个正面的概率是多少?【设计意图】由我们熟悉的将一个均匀的硬币上抛二次问题,引出将一个均匀的硬币上抛三次,所有可能结果有哪些?激发学生的兴趣,引起学生高度的注意力,进入情境。
(二)自主分析,再探新知引导学生分析讨论上面思考所提出的问题,找到解决方法——画树状图。
例2:甲口袋中装有2个相同的球,它们分别写有字母A和B;乙口袋中3个相同的球,它们分别写有字母C、D和E;丙口袋中2个相同的球,它们分别写有字母H和I。
从三个口袋中各随机地取出1个球。
(1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?(2)取出的三个球上全是辅音字母的概率是多少?例2要从三个袋子里摸球,即涉及到3个因素。
此时同学们会发现用列表法就不太方便,可以尝试树形图法。
本题可分三步进行。
分步画图和分类排列相关的结论是解题的关键。
从图形上可以看出所有可能出现的结果共有12个,即:A C H ACIADHADIAEHAEIBCHBDHBDIBEHBEIBCI甲乙丙(幻灯片上用颜色区分)这些结果出现的可能性相等。
初中概率树状图教案

初中概率树状图教案教学目标:1. 理解概率的基本概念,掌握树状图的画法。
2. 能够运用树状图求解简单事件的概率。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 概率的基本概念。
2. 树状图的画法。
教学难点:1. 树状图的画法。
教学准备:1. PPT课件。
2. 教学案例。
教学过程:一、导入(5分钟)1. 引入概率的概念,让学生回顾概率的定义。
2. 提问:我们如何求解一个事件发生的概率呢?二、新课讲解(15分钟)1. 讲解概率的基本概念,让学生理解概率的意义。
2. 讲解树状图的画法,让学生掌握如何画出树状图。
3. 举例讲解如何运用树状图求解简单事件的概率。
三、案例分析(15分钟)1. 给出一个案例,让学生运用树状图求解事件的概率。
2. 学生分组讨论,每组画出树状图并求解概率。
3. 各组汇报结果,讨论分析不同树状图的画法对概率计算的影响。
四、练习与拓展(15分钟)1. 让学生独立完成一些练习题,运用树状图求解概率。
2. 引导学生思考如何解决更复杂的问题,如何优化树状图的画法。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结概率的基本概念和树状图的画法。
2. 提问:我们在解决实际问题时,如何选择合适的树状图画法?教学延伸:1. 让学生进一步学习组合数学,了解排列组合的知识,为求解更复杂事件的概率打下基础。
2. 引导学生关注生活中的概率问题,培养学生的实际应用能力。
教学反思:本节课通过讲解概率的基本概念和树状图的画法,让学生掌握如何运用树状图求解简单事件的概率。
在案例分析和练习环节,学生能够独立完成题目,运用树状图解决问题。
但在解决更复杂问题时,学生可能需要进一步学习组合数学的知识,优化树状图的画法。
因此,在后续的教学中,需要加强对学生逻辑思维能力的培养,引导学生关注生活中的概率问题,提高学生的实际应用能力。
数学九年级上册《用画树状图法求概率》教案

(1)第一次摸到红球,第二次摸到绿球.
(2)两次都摸到相同颜色的小球;
(3)两次摸到的球中有一个绿球和一个红球
三 、合作探究(9分钟,个别学生提问)
例5.同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点数相同(2)两个骰子点数的和是9
(3)一枚硬币正面朝上,一枚硬币反面朝上.
二、导入新课(5分钟 )
在上一课时,我们采用列举的方法计算出了一些简单事件的概率。列举的方法得到在一次实验中所有可能的结果数n,以及所求事件包含的结果数m,即而计算出所求事件的概率。本课时学习的与前三个例题有所不同,这个事件在实验时包含了两步,这就要求把两步可能的结果都列举出来,再利用古典定义来计算概率。
游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.
(1)利用列表的方法表示游戏者所有可能出现的结果.
(2)游戏者获胜的概率是多少?
八、作业布置
板书设计:
25.2.2 用画树状图法求概率
例题 练习
教学反思(教学内容、过程、策略):
教学方法与手段
自主学习------合作探究------汇报展示-------解疑释难-----当堂训练
教学准备
第一课时
课时数
课时
课堂教学实施设计(教师活动、学生活动)
复备内容或集体备课讨论记录(标、增、改、删、调)
一、旧知回顾(5分钟 )
掷两枚硬币,求下列事件的概率:
(1)两枚硬币全部正面朝上;
(2)两枚硬币全部反面朝上;
总结经验:
当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表的办法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时用画树状图法求概率【知识与技能】理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.【情感态度】通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.【教学重点】会用列表法和树状图法求随机事件的概率.区分什么时候用列表法,什么时候用树状图法求概率.【教学难点】列表法是如何列表,树状图的画法.列表法和树状图的选取方法.一、情境导入,初步认识播放视频《田忌赛马》,提出问题,引入新课.齐王和他的大臣田忌均有上、中、下马各一匹,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.已知田忌的马比齐王的马略逊色,即:田忌的上马不敌齐王的上马,但胜过齐王的中马;田忌的中马不敌齐王的中马,但胜过齐王的下马;田忌的下马不敌齐王的下马.田忌屡败后,接受了孙膑的建议,结果两胜一负,赢了比赛.(1)你知道孙膑给的是怎样的建议吗?(2)假如在不知道齐王出马顺序的情况下,田忌能赢的概率是多少呢?【教学说明】情境激趣,在最短时间内激起学生的求知欲和探索的欲望.二、思考探究,获取新知1.用列表法求概率课本第136页例2.分析:由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有36种.我们用怎样的方法才能比较快地既不重复又不遗漏地求出所有可能的结果呢?以第一个骰子的点数为横坐标,第二个骰子的点数为纵坐标,组成平面直角坐标系第一象限的一部分,列出表格并填写.【教学说明】教师引导学生列表,使学生动手体会如何列表,指导学生体会列表法对列举所有可能的结果所起的作用,总结并解答.指导学生如何规范的应用列表法解决概率问题.由例2可总结得:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:①列表;②通过表格确定公式中m、n的值;③利用P(A)=m/n计算事件的概率.思考把“同时掷两个骰子”改为“把一个骰子掷两次”,还可以使用列表法来做吗?答:“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能结果,因此,作此改动对所得结果没有影响.2.树状图法求概率.课本第138页例3.分析:分步画图和分类排列相关的结论是解题的关键.弄清题意后,先让学生思考,从3个口袋中每次各随机地取出1个球,共取出3个球,就是说每一次试验涉及到3个步骤,这样的取法共有多少种呢?你打算用什么方法求得?介绍树状图的方法:第一步:可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行.第二步:可能产生的结果有C、D和E,三者出现可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C、D、E.第三步:可能产生的结果有两个,H和I.两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I.(如果有更多的步骤可依上继续.)第四步:把各种可能的结果对应竖写在下面,就得到了所有可能的结果的总数,从中再找出符合要求的个数,就可以计算概率了.“树状图”如下:由树状图可以看出,所有可能的结果共有12种,即:ACH、ACI、ADH、ADI、AEH、AEI、BCH、BCI、BDH、BDI、BEH、BEI,这些结果出现的可能性相等.P(一个元音)=5/12;P(两个元音)=4/12=1/3,P(三个元音)=1/12;P(三个辅音)=2/12=1/6.【教学说明】教师引导:元素多,怎样才能解出所有结果的可能性?引出树状图,详细讲解树状图各步的操作方法,学生尝试按步骤画树状图.学生结合列表法,理解分析,体会树状图的用法,体验树状图的优势.【归纳结论】画树状图求概率的基本步骤:①明确试验的几个步骤及顺序.②画树状图列举试验的所有等可能的结果.③计数得出m,n的值.④计算随机事件的概率.思考什么时候用“列表法”方便?什么时候用“树状图”法方便?一般地,当一次试验要涉及两个因素(或两步骤),且可能出现的结果数目较多时,可用“列表法”,当一次试验要涉及三个或更多的因素(或步骤)时,可采用“树状图法”.三、运用新知,深化理解在一只不透明的盒子里装有用“贝贝”(B)、“晶晶”(J)、“欢欢”(H)、“迎迎”(Y)和“妮妮”(N)五个福娃的图片制成的五张外形完全相同的卡片.小华设计了四种卡片获奖的方案(每个方案都是前后共抽两次,每次从盒子里抽取一张卡片).(1)第一次抽取后放回盒子并混合均匀,先抽到“B”后抽到“J”;(2)第一次抽取后放回盒子并混合均匀,抽到“B”和“J”(不分先后);(3)第一次抽取后不再放回盒子,先抽到“B”后抽到“J”;(4)第一次抽取后不再放回盒子,抽到“B”和“J”(不分先后);问:(1)上述四种方案,抽中卡片的概率依次是_____,_____,_____,_____;(2)如果让你选择其中的一种方案,你会选择哪种方案?为什么?【教学说明】这是只涉及两个步骤的试验,一般情况下用列表法求解,但第(3)、(4)种方案中涉及到“不放回”的问题,我们选择树状图法更好.学生交流合作,教师指导分析列表或画树状图.【答案】(1)1/25,2/25,1/20,1/10;(2)选择方案(4),因为方案(4)获奖的可能性比其它几种方案获奖的可能性大.四、师生互动,课堂小结1.为了正确地求出所求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果?2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?【教学说明】教师提出问题,让学生进行回顾思考,并相互交流.1.布置作业:从教材“习题25.2”中选取.2.完成练习册中本课时练习的“课后作业”部分.由于前面已学过一般的列举法,学生在小学或其他学科中接触过“列表法”,因此本节课除了继续探究更为复杂的列举法外,还引入了树状图这种新的列举方法,以学生的生活实际为背景提出问题,在自主探究解决问题的过程中,自然地学习使用这种新的列举方法.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.25.2 用列举法求概率第2课时用画树状图法求概率一、导学1.导入课题:猜一猜:假定鸟卵孵化后,雏鸟为雌与为雄的概率相同.如果3枚卵全部成功孵化,则3只雏鸟中恰有3只雌鸟的概率是多少?问题:你能用列表法列举所有可能出现的结果吗?本节课我们学习用画树状图法列举所有可能出现的结果. (板书课题)2.学习目标:会用画树状图法求出事件发生的概率.3.学习重、难点:重点:用画树状图法列举所有可能出现的结果.难点:画树状图.4.自学指导:(1)自学内容:教材第138页至第139页的例3.(2)自学时间:10分钟.(3)自学方法:认真阅读思考后,弄清树状图的画法及作用.(4)自学参考提纲:①本次试验涉及到 3 个因素,用列表法不能(能或不能)列举所有可能出现的结果.②摸甲口袋的球会出现 2 种结果,摸乙口袋的球会出现3 种结果,摸丙口袋的球会出现2 种结果.画树状图为:③由树形图得,所有可能出现的结果有12 种,它们出现的可能性相等.满足只有一个元音字母的结果有5 种,则P(一个元音)=5 12.满足只有两个元音字母的结果有4 种,则P(两个元音)=1 3 .满足三个全部为元音字母的结果有 1 种,则P(三个元音)=1 12.满足全是辅音字母的结果有 2 种,则P(三个辅音)=1 6 .④你还能用别的方法列举出全部结果吗?试试看.(A,C,H ),(A,C,I),(A,D,H),(A,D,I),(A,E,H),(A,E,I),(B,C,H),(B,C,I),(B,D,H),(B,D,I),(B,E,H ),(B,E,I).二、自学学生可参考自学指导进行自学.三、助学1.师助生:(1)明了学情:了解学生是否会画树状图.(2)差异指导:教师对个别突出的个性或共性问题进行适时点拨引导.2.生助生:引导学生通过合作交流解决疑点.四、强化1.画树状图法适用的条件,树状图的画法及作用.2.练习:(1)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率:①三辆车全部继续直行;②两辆车向右转,一辆车向左转;③至少有两辆车向左转. 解:设三辆汽车分别为甲、乙、丙,它们经过十字路口时所有可能发生的结果用树状图表示如下:由图可知,所有可能的结果有27种,这些结果出现的可能性相等.② 满足三辆车全部继续直行(记为事件A )的结果有1种,所以()P A =127. ②两辆车向右转,一辆车向左转(记为事件B )的结果有3种,所以()PB ==31279. ③至少有两辆车向左转(记为事件C )的结果有7种,所以()P C =727. (2)假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚卵全部成功孵化,那么3只雏鸟中恰有3只雌鸟的概率是多少?解:设3枚卵分别为甲、乙、丙,它们卵化后的可能结果如下:由图可知,所有可能的结果有8种.这些结果出现的可能性相等.其中满足3只雏鸟中恰有3只雌鸟(记为事件A )的结果有1种,所以P (A )=18.(3)一只蚂蚁要在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是多少?解:用树状图表示蚂蚁的路径如下:其中“1”表示没有食物,“2”表示有食物.由图可知,所有可能出现的结果有6种,这些结果出现的可能性相等.蚂蚁能获得食物(记为事件A )的结果有2种.所以()P A ==2163. 五、评价 1.学生的自我评价(围绕三维目标):怎样画树状图?何时用画树状图法比较方便?2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的态度、情感、方法、成果及不足进行归纳总结.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课引入一种新的列举方法——画树状图法,让学生感受到这种方法的简捷性和实用性.通过求较复杂概率的数学活动,针对不同的数学问题,采用不同的数学方法,体验各种方法之间存在的内在联系,体会数学在现实生活中的应用价值,培养学生缜密的逻辑思维习惯和发散性思维.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是(C )A. 23B. 12C. 13D. 142.(10分)有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的概率为(A )A. 16B. 14C. 13D. 123.(10分)从1、2、-3三个数中,随机抽取两个数相乘,积是负数的概率是23.4.(10分)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,只好把杯盖与茶杯随机地搭配在一起,求颜色搭配正确和颜色搭配错误的概率各是多少?解:杯盖与茶杯的搭配结果如下:由图可知,共有4种搭配结果,其中颜色搭配正确(记为事件A )的结果有2种,所以()P A ==2142.其中颜色搭配错误(记为事件B )的结果有2种,所以()P B ==2142. 5.(30分) 妞妞和爸爸玩“石头、剪刀、布”游戏.每次用一只手可以出“石头”“剪刀”“布”三种手势之一,规则是“石头”赢“剪刀”、“剪刀”赢“布”、“布”赢“石头”,若两人出相同手势,则算打平.(1)你帮妞妞算算爸爸出“石头”手势的概率是多少?解:爸爸可能出“石头”“剪刀”和“布”共3种手势,所以爸爸出“石头”手势的概率为13. (2)妞妞决定这次出“布”手势,妞妞赢的概率有多大?妞妞出“布”,爸爸可能出三种手势中的任意一种,而只有爸爸出“石头”,妞妞才能赢,所以妞妞赢的概率为13. (3)妞妞和爸爸出相同手势的概率是多少?列举出妞妞和爸爸出的手势结果如下:由图可知共有9种可能的结果,且每种结果出现的可能性相等.其中两人出相同手势(记为事件A )的结果有3种,所以()PA ==3193. 二、综合应用(20分) 6.(20分)第一个盒中有2个白球、1个黄球,第二个盒中有1个白球、1个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求下列事件的概率:(1)取出的2个球都是黄球;(2)取出的2个球中1个白球,1个黄球.解:分别从两个盒中随机取出1个球的可能结果如下图所示:共有6种可能的结果,且每种结果出现的可能性相等.(1)所有的结果中,满足取出的2个球都是黄球(记为事件A )的结果有1种,所以()P A =16. (2)取出的2个球中1个白球,1个黄球(记为事件B )的结果有3种,所以()P B ==3162. 三、拓展延伸(10分)7.(10分) 两张图片形状完全相同,把两张图片全部从中间剪断,再把四张形状相同的小图片混合在一起.从四张图片中随机地摸取一张,接着再随机地摸取一张,则两张小图片恰好合成一张完整图片的概率是多少?解:设第一张图片为A ,剪断的两张分别为A1,A2;第二张图片为B ,剪断的两张分别为B1,B2.列举出所有结果如下:共有12种可能的结果,且每种结果出现的可能性相等.其中恰好合成一张完整图片(记为事件A )的结果有4种,所以()P A ==41123.。