结构力学知识点总结

合集下载

结构力学最全知识点梳理及学习方法

结构力学最全知识点梳理及学习方法

结构力学最全知识点梳理及学习方法结构力学是工程领域的基础学科之一,主要研究物体在受力作用下的变形和破坏行为。

下面将对结构力学的知识点进行梳理,并提供一些学习方法。

1.静力学知识点:(1)力的分解与合成(2)平衡条件及对应的力矩平衡条件(3)杆件内力分析(4)支座反力的计算(5)重力中心和重力矩计算方法学习方法:静力学是结构力学的基础,要通过大量的练习加深对概念和公式的理解,并注重实际问题的应用。

2.应力学知识点:(1)应力的定义和类型(正应力、剪应力、主应力等)(2)应力的均衡方程(3)材料的本构关系(线性弹性、非线性弹性、塑性等)(4)薄壁压力容器的应力分析学习方法:应力学是结构力学的核心内容,要掌握应力的计算方法和不同材料的应力应变关系,需要多阅读教材和参考书籍,理解背后的物理原理,并进行大量的练习。

3.变形学知识点:(1)应变的定义和类型(线性应变、剪应变、工程应变等)(2)应变-位移关系(3)杆件弹性变形分析(4)杆件的刚度计算学习方法:变形学是结构力学的重要组成部分,要掌握应变的计算方法和杆件的变形规律,可以通过编程模拟杆件的变形过程或进行实验验证。

4.强度计算知识点:(1)材料的强度和安全系数(2)拉压杆件的强度计算(3)梁的强度计算(4)刚结构的强度计算5.破坏学知识点:(1)破坏形态(拉伸、压缩、剪切、扭转等)(2)材料的断裂特性和疲劳破坏(3)结构的失效分析(4)杆件和梁的屈曲分析学习方法:破坏学是结构力学的进一步深入,要了解不同破坏形态的特点和计算方法,并进行典型案例分析,以提高预测和识别破坏的能力。

学习方法总结:(1)理论学习:多阅读教材和参考书籍,并注重理解概念和原理。

(2)练习和实践:进行大量的计算练习和模拟分析,提高解决实际结构问题的能力。

(3)案例分析:通过分析实际案例,学习不同结构的设计和分析方法。

(4)交流和讨论:与同学和老师进行交流和讨论,共同学习和解决问题。

结构力学知识点超全总结

结构力学知识点超全总结

结构力学知识点超全总结结构力学是一门研究物体受力和变形的力学学科,它是很多工程学科的基础,如土木工程、机械工程、航空航天工程等。

以下是结构力学的一些重要知识点的总结:1.载荷:结构承受的外力或外界加载的活动载荷,如重力、风荷载、地震载荷等。

2.支座反力:为了平衡结构受力,在支座处产生的力。

3.静力平衡:结构处于静止状态时,受力分析满足力的平衡条件。

这包括平面力系统的平衡、剪力力系统的平衡和力矩力系统的平衡。

4.杆件的拉力和压力:杆件受力状态分为拉力和压力。

拉力是杆件由两端拉伸的状态,压力是杆件由两端压缩的状态。

5.梁的受力和变形:梁是一种长条形结构,在实际工程中经常使用。

梁的受力分析包括剪力和弯矩的计算,梁的变形包括弯曲和剪切变形。

6.悬臂梁和简支梁:悬臂梁是一种只有一端支座的梁结构,另一端自由悬挂。

简支梁是两端都有支座的梁结构。

7.梁的挠度和渐进程度:梁的挠度是指结构在受力后发生的形变。

梁的渐进程度是指梁的挠度随着距离变化的情况。

8.板和平面受力分析:板是一种平面结构,它的受力和变形分析和梁类似。

平面受力分析是一种在平面框架结构上进行受力分析的方法。

9.斜拉索:斜拉索是一种由杆件和拉索组成的结构,它广泛应用于桥梁、摩天大楼等工程中。

斜拉索的受力分析包括张力和弯矩的计算。

10.刚度:刚度是指物体在受力作用下抵抗变形的能力。

刚度越大,物体的变形越小。

刚度可以通过杆件的弹性模量和几何尺寸进行计算。

11.弹性和塑性:结构的受力状态可以分为弹性和塑性两种情况。

弹性是指结构受力后能够恢复到原始形状的性质,塑性是指结构受力后会产生永久变形的性质。

12.稳定性和失稳:结构的稳定性是指结构在受力作用下保持原始形状的能力。

失稳是指结构在受力过程中无法保持原始形状,产生不稳定状态。

13.矩形截面和圆形截面的力学特性:矩形截面和圆形截面是两种常见的结构截面形状。

矩形截面具有较高的抗弯刚度,而圆形截面具有较高的抗剪强度。

结构力学主要知识点归纳

结构力学主要知识点归纳

结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。

通常包括以下几个方面:A、杆件的简化:常以其轴线代表B、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点。

C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。

B、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。

②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。

二、平面体系的机动分析1、体系种类A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。

B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。

常具体划分为常变体系和瞬变体系。

2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。

3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。

②一个单铰为两个联系。

4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。

A 、W>0,表明缺少足够联系,结构为几何可变;B 、W=0,没有多余联系;C 、W<0,有多余联系,是否为几何不变仍不确定。

5、几何不变体系的基本组成规则:A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。

B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。

C 、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系。

结构力学主要知识点归纳

结构力学主要知识点归纳

结构力学主要知识点归纳Organized at 3pm on January 25, 2023Only by working hard can we be better结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构;通常包括以下几个方面:A、杆件的简化:常以其轴线代表B、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点;C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构;B、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定;②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定;二、平面体系的机动分析1、体系种类A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系;B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置;常具体划分为常变体系和瞬变体系;2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目;3、联系:限制运动的装置成为联系或约束体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系;②一个单铰为两个联系;4、计算自由度:)W+-=,m为刚片数,h为单铰束,r为链杆数;h2(3rmA、W>0,表明缺少足够联系,结构为几何可变;B、W=0,没有多余联系;C、W<0,有多余联系,是否为几何不变仍不确定;5、几何不变体系的基本组成规则:A、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系;B、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系;C、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系;6、虚铰:连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰;虚铰在无穷远处的体系分析可见结构力学P20,自行了解;7、静定结构的几何构造为特征为几何不变且无多余联系;三、静定梁与静定钢架1、内力图绘制:A 、内力图通常是用平行于杆轴线方向的坐标表示截面的位置,用垂直于杆轴线的坐标表示内力的数值而绘出的;B 、弯矩图习惯绘在杆件受拉的一侧,而图上可不注明正负号;梁的剪力图和轴力图将正值的竖标绘在基线的上方,同时注明正负号;刚架的剪力图和轴力图将正值的竖标绘在杆件的任意一侧,但必须注明正负号;C 、轴力以拉为正,剪力以绕隔离体顺时针方向转动为正;弯矩以使梁的下侧纤维受拉为正;D 、一般先求出支反力再求内力;2、计算躲跨静定梁的顺序应该是先附属部分,后基本部分;3、静定结构的特征:A 、静力解答唯一性B 、在静定结构中,除荷载外,其他任何原因如温度改变、支座位移、材料收缩、制造误差等均不引起内力;C 、平衡力系的影响:当由平衡力系组成的荷载作用于静定结构的某一本身为几何不变的部分上时,则只有则只有此部分受力,其余部分的反力和内力为零;D 、荷载等效变换的影响:合力相同的各种荷载称为静力等效的荷载;当作用在静定结构的某一本身几何不变部分上的荷载在该部分范围内作等效变换时,则只有该部分的内力发生变化,而其余部分的内力保持不变;四、静定桁架1、桁架结构的特点:只受轴力2、桁架内力分析方法:A 、节点法:所取隔离体只包含一个节点;①L 形节点:当节点上无荷载时,两杆内力皆为0;②T 形节点:当节点无荷载时,第三杆又称单杆必为零,共线两杆内力相等且符号相同; ③X 形节点:当节点无荷载时,共线两杆内力相等且符号相同;④K 形荷载:当节点无荷载时,共线两杆内力相等且符号相同;B 、截面法:所取隔离体不只包括一个节点;①力矩法②投影法五、结构位移计算1、虚功原理:变形体系处于平衡的必要和充分条件是,对于任何虚位移,外力所作虚功总和等于各微段上的内力在其变形上所作的虚功总和,或者简单的说,外力虚功等于变形虚功;2、变形虚功方程:∑⎰∑⎰∑⎰++=ds F Md du F W s N v γϕ外力虚功:∑+∆=c F F W R K K3、单位荷载外力虚功∑+∆•=c F W R K _1单位荷载内力虚功∑⎰∑⎰∑⎰++=ds F d M du F W s N v γϕ______∑⎰∑⎰+=EI ds M M EA ds F F P NP N ____常不考虑剪切影响4、图乘法:一个弯矩图的面积w A 乘以其形心处所对应的另一个直线弯矩图上的竖标c y ,再除以EI;A 、使用条件:①杆件为直线;②EI=常数;③__M 和p M 两个弯矩图中至少有一个是直线图形;B 、注意点:①竖标取自直线图形②w A 和c y 在杆件的同侧乘积取正号,异侧则取负号;5、温度变化,静定结构位移计算tds du t α=,t 为杆件轴心温度变化值tds d t ∆=αϕ,t ∆为杆件两侧温度变化之差; 六、超静定结构计算——力法1、力法:解除超静定结构的多余联系而得到静定的基本结构,以多余未知力作为基本未知量,根据基本体系应与原结构变形相同而建立的位移条件,首先求出其多余未知力,然后由平衡条件即可计算其余反力、内力;2、超静定问题求解思路:A 、超静定问题需综合考虑以下三个方面:①平衡条件;②几何条件;③物理条件;B 、确定超静定次数;C 、确定基本结构及基本体系;3、力法的典型方程以三阶方程组为例方程意义:基本结构在全部多余未知力和荷载共同作用下,在去掉各多余联系处沿各多余未知力方向的位移,应与原结构相应的位移相等;4、力法解题步骤:①确定基本体系;②写出位移条件,力法方程;③作单位弯矩图,荷载弯矩图;④求出系数和自由项;⑤解力法方程;⑥叠加法作弯矩图;5、力法注意事项:A 、对于刚架通常可略去轴力和剪力的影响而只考虑弯矩一项;B 、在荷载作用下,超静定结构的内力只与各杆的刚度相对值有关,而与其刚度绝对值无关;C 、基本结构必须是几何不变的,而不能是几何可变或瞬变的,否则将无法求解;D 、对称性的利用:①对称结构在对称荷载作用下,轴力图和弯矩图是对称的,剪力图是反对称的;②对称结构在反对称荷载作用下,轴力图和弯矩图是反对称的,剪力图是对称的;七、位移法1、位移法以节点位移作为基本未知量,通常不考虑杆件轴向变形;每一根杆件可以看成一根单跨超静定梁;2、为计算方便,杆端弯矩是以对杆端顺时针方向为正对节点说支座则以反时针方向位移,转角以顺时针方向为正,位移以使杆件顺时针转动为正;八、影响线及其应用1、影响线:当一个指向不变的单位集中荷载通常是竖直向下的沿结构位移时,表示某一指定量值变化规律的图形,称为该量值的影响线;绘制影响线时,通常规定正值的竖标绘在基线的上方;2、绘制影响线有两种基本方法:静力法和机动法;静力法就是将荷载F=1放在任意位置,并选定一坐标系,以横坐标x 表示荷载作用点的位置,然后根据平衡条件求出所求量值与荷载位置x 之间的函数关系式,这种关系式称为影响线方程,再根据方程作出影响线图形;机动法作影响线的依据是理论力学的虚位移原理,即刚体体系在力系作用下处于平衡的必要和充分条件是:在任何微小的虚位移中,力系所作的虚功总和为零;欲作某一量值影响线,只需将与该量值相应的联系去掉,并使所得体系沿量值正方向发生单位位移,则由此得到的荷载作用点的竖向位移图即代表该量值的影响线;3、最不利荷载位置使量值S 成为极大的条件是:荷载自该位置无论向左或向右移动微小距离,S 均减小; 荷载左移,0tan >∑i Ri F α荷载右移,0tan <∑i Ri F α使量值S 成为极小的条件是:荷载自该位置无论向左或向右移动微小距离,S 均增大; 荷载左移,0tan <∑i Ri F α荷载右移,0tan >∑i Ri F α注:只有当某个集中荷载恰好作用在影响线的某一个顶点处时才可能出现极值;为减少试算次数,宜事先大致估计最不利荷载位置;为此,应将行列荷载中数值较大且较为密集的部分置于影响线的最大竖标附近,同时注意位于同符号影响线范围内的荷载应尽可能的多;4、简支梁的绝对最大弯矩A 、在移动荷载作用下,可以求出简支梁任一指定截面的最大弯矩;所有截面的最大弯矩中的最大的,称为绝对最大弯矩;B 、求解步骤:①确定使梁中点截面发生最大弯矩的临界荷载Fk 此时可顺便求出此截面的最大弯矩; ②移动荷载组使Fk 和FR 对称于梁的中点,此时应注意检查对梁上荷载是否与求合力时相符,如不符,则应重新计算合力,再行安排直至相符;③最后计算Fk 作用点截面的弯矩,通常即为绝对最大弯矩;。

《结构力学》知识点归纳梳理

《结构力学》知识点归纳梳理

《结构力学》知识点归纳梳理《结构力学》是土木工程、建筑工程等专业的重要基础课程之一,它主要研究物体受力作用下的力学性质及其运动规律。

结构力学的知识对于设计和分析各种工程结构具有重要意义。

以下是对《结构力学》中的一些重要知识点进行归纳梳理。

1.静力学基本原理:(1)牛顿第一定律与质点的平衡条件;(2)牛顿第二定律与质点运动方程;(3)牛顿第三定律与作用力对;(4)力的合成与分解。

2.力和力矩的概念和计算:(1)力的点表示和力的向量运算;(2)力矩的点表示和力矩的向量运算;(3)力的矢量和点表示的转换。

3.等效静力系统:(1)强心轴的概念和计算;(2)悬臂梁的等效静力;(3)等效力和等效力矩。

4.支持反力分析:(1)节点平衡法计算支持反力;(2)静力平衡方程计算支持反力。

5.算术运算法:(1)类似向量的加法和减法;(2)类似向量的数量积和向量积。

6.静力平衡条件:(1)法向力平衡条件;(2)切向力平衡条件;(3)力矩平衡条件。

7.杆件受力分析:(1)内力的概念和分类;(2)弹性力的性质和计算方法;(3)强度力的性质和计算方法。

8.杆件内力的作图法:(1)内力的几何关系;(2)内力图的作图方法。

9.杆件内力的计算方法:(1)等效系统的概念和计算方法;(2)推力与拉力的分析与计算。

10.刚性梁的受力分析:(1)刚性梁的受力模式;(2)刚性梁的截面受力分析;(3)刚性梁的等效荷载。

11.弯矩与剪力的计算方法:(1)弯矩和剪力的表达式;(2)弯矩和剪力的计算方法。

12.杆件的弯曲:(1)弯曲梁的受力分析;(2)弯曲梁的弯曲方程。

13.弹性曲线:(1)弹性曲线的概念和性质;(2)弹性曲线的计算方法。

14.梁的挠度:(1)梁的挠度方程;(2)梁的挠度计算方法。

15.梁的受力:(1)梁受力分析的应用;(2)梁的横向剪切力。

以上是对《结构力学》中的一些重要知识点的归纳和梳理。

通过学习和掌握这些知识点,可以帮助我们更好地理解结构力学的基本原理,从而能够进行工程结构的设计和分析。

结构力学考研知识点归纳

结构力学考研知识点归纳

结构力学考研知识点归纳结构力学是土木工程专业研究生入学考试的重要科目之一,它主要研究建筑结构在外力作用下的内力、变形和稳定性问题。

以下是结构力学考研的一些关键知识点归纳:基本概念和原理- 力的基本概念:力的三要素(大小、方向、作用点)。

- 静力学基本定理:平衡条件、力矩平衡等。

- 材料力学性质:弹性模量、泊松比、屈服强度等。

静定结构分析- 静定梁的内力分析:弯矩、剪力、轴力的计算。

- 静定桁架的内力分析:节点法、截面法。

- 三铰拱和悬索结构的内力分析。

超静定结构分析- 力法、位移法和弯矩分配法的原理和应用。

- 连续梁和框架结构的分析。

- 影响线的概念及其应用。

稳定性分析- 临界载荷的确定方法。

- 欧拉公式及其应用。

- 稳定性与结构形式、材料特性的关系。

能量方法- 虚功原理和最小势能原理。

- 莫尔定理和卡斯特拉诺定理。

- 能量方法在结构分析中的应用。

矩阵位移法- 局部坐标系和全局坐标系的建立。

- 刚度矩阵的组装和边界条件的处理。

- 结构的自由振动分析。

非线性问题- 材料非线性:塑性变形、破坏。

- 几何非线性:大变形问题。

- 接触非线性问题的处理方法。

结构动力分析- 单自由度和多自由度系统的振动分析。

- 地震作用下的结构响应分析。

- 随机振动和疲劳分析。

结构优化设计- 结构优化的基本概念和方法。

- 拓扑优化、形状优化和尺寸优化。

- 优化设计在实际工程中的应用。

结束语结构力学作为一门应用广泛的学科,其知识点繁多且相互关联。

考研复习时,不仅要掌握上述知识点,还要注重理论与实践的结合,通过大量的练习来加深理解。

希望以上的归纳能够帮助考生们更系统地复习结构力学,为考研做好充分的准备。

结构力学知识点

结构力学知识点

结构力学知识点结构力学是研究结构在外力作用下的受力和变形规律的学科,它涉及到力学、材料科学、数学等多个领域的知识。

以下是结构力学的主要知识点总结:1. 基本概念- 外力:作用在结构上的力,包括重力、风力、地震力等。

- 内力:结构内部由于外力作用而产生的力,如拉力、压力、剪力等。

- 变形:结构在外力作用下形状或尺寸的变化。

- 刚度:结构抵抗变形的能力。

- 强度:结构在外力作用下不发生破坏的能力。

2. 基本假设- 材料均质连续:假设结构材料是均匀且连续分布的。

- 线弹性:材料的应力与应变关系遵循胡克定律,即在弹性范围内应力与应变成正比。

- 小变形:结构的变形量远小于原始尺寸,可以忽略变形对结构受力的影响。

3. 基本方法- 静力平衡:通过静力平衡方程求解结构的内力。

- 虚功原理:利用虚功原理求解结构的位移和应力。

- 能量方法:通过能量守恒原理分析结构的受力和变形。

- 有限元分析:利用数值方法将结构离散化,通过计算机求解结构的受力和变形。

4. 基本构件- 杆件:承受轴向力的构件,如梁、柱。

- 梁:承受弯矩和剪力的构件,通常承受垂直于轴线的载荷。

- 板:承受面内力的构件,如楼板、墙板。

- 壳:承受曲面内力的构件,如屋顶、管道。

5. 基本理论- 材料力学:研究材料在外力作用下的应力、应变和破坏规律。

- 弹性力学:研究材料在弹性范围内的应力、应变和变形规律。

- 塑性力学:研究材料在塑性变形范围内的应力、应变和变形规律。

- 断裂力学:研究材料在外力作用下的裂纹扩展和断裂规律。

6. 分析方法- 刚度法:通过建立结构的刚度矩阵求解结构的位移和内力。

- 柔度法:通过建立结构的柔度矩阵求解结构的位移和内力。

- 弯矩分配法:一种简化的梁结构分析方法,通过分配弯矩来求解结构的内力。

- 影响线法:通过绘制结构的弯矩、剪力等影响线来分析结构的受力。

7. 结构稳定性- 屈曲:结构在外力作用下失去稳定性,发生弯曲变形。

- 振动:结构在外力作用下发生的周期性运动。

结构力学主要知识点归纳

结构力学主要知识点归纳

结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。

通常包括以下几个方面:A、杆件得简化:常以其轴线代表B、支座与节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点。

C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。

B、按内力就是否静定划分:①静定结构:在任意荷载作用下,结构得全部反力与内力都可以由静力平衡条件确定。

②超静定结构:只靠平衡条件还不能确定全部反力与内力,还必须考虑变形条件才能确定。

二、平面体系得机动分析1、体系种类A、几何不变体系:几何形状与位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系得几何不变体系与有多余联系得几何不变体系。

B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有得几何形状与位置。

常具体划分为常变体系与瞬变体系。

2、自由度:体系运动时所具有得独立运动方程式数目或者说就是确定体系位置所需得独立坐标数目。

3、联系:限制运动得装置成为联系(或约束)体系得自由度可因加入得联系而减少,能减少一个自由度得装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。

②一个单铰为两个联系。

4、计算自由度:,m为刚片数,h为单铰束,r为链杆数。

A、W>0,表明缺少足够联系,结构为几何可变;B、W=0,没有多余联系;C、W<0,有多余联系,就是否为几何不变仍不确定。

5、几何不变体系得基本组成规则:A、三刚片规则:三个刚片用不在同一直线上得三个单铰两两铰联,组成得体系就是几何不变得,而且没有多余联系。

B、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。

C、两刚片原则:两个刚片用一个铰与一根不通过此铰得链杆相联,为几何不变体系,而且没有多余联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构力学知识点总结
在工程学领域中,结构力学是一门关于结构物的力学性能和行为的学科。

它深入研究了结构物受力和变形的原理、方法和规律,为工程设计和建筑物的安全性提供了重要支持。

本文将对结构力学中的几个重要知识点进行总结,包括静力学、弹性力学和塑性力学等方面。

静力学
静力学是结构力学的基石,它研究的是在受力平衡条件下,结构物所产生的各种力的分布和相互作用关系。

为了分析结构物的静力学问题,我们首先要了解结构物的受力模式。

常见的静力学受力模式包括杆件受力、梁受力、柱受力和板受力等。

静力学的主要目标是确定结构物各个部分的受力大小和受力方向,以保证结构物的稳定性和安全性。

弹性力学
弹性力学是研究结构物在受力作用下的弹性变形和恢复能力的力学学科。

在这个领域中,我们需要掌握弹性体的材料特性和弹性本构关系。

材料特性包括弹性模量、泊松比和强度等;弹性本构关系则描述了应力和应变之间的关系。

弹性力学的主要任务是通过应用弹性本构关系,计算结构物在外力作用下的变形,以评估结构物的可靠性和安全性。

塑性力学
与弹性力学不同,塑性力学研究的是结构物在受力作用下的塑性变
形和失效行为。

塑性变形是指结构物在超过弹性限度后,无法完全恢
复原状的变形过程。

在塑性力学中,我们需要了解材料的流变学特性
和塑性本构关系。

流变学特性描述了材料的应变速率响应,而塑性本
构关系则描述了材料的应力和应变之间的关系。

通过研究塑性力学,
我们可以评估结构物在受力作用下的塑性变形程度,并确定结构物是
否需要采取一些防护措施或进行修复。

结构分析方法
在结构力学中,我们还需要掌握一些结构分析方法,以对结构物进
行力学计算和性能评估。

常见的结构分析方法包括静力分析、动力分
析和稳定性分析等。

静力分析主要用于计算结构物的受力和变形情况;动力分析用于研究结构物在动态荷载作用下的响应行为;稳定性分析
则用来判断结构物在外力作用下的稳定性。

通过合理选择和应用结构
分析方法,我们可以为工程设计和结构修复提供科学依据。

总结起来,结构力学是一门极为重要的工程学科,它为工程设计和
结构物的安全性提供了科学依据。

在结构力学中,我们需要掌握静力学、弹性力学和塑性力学等方面的知识,并运用结构分析方法进行力
学计算和评估。

通过不断学习和实践,我们能够提高结构物的稳定性
和安全性,为社会的发展和进步做出贡献。

相关文档
最新文档