1-励磁系统中的各种定值及试验
EXC9100自并励静态励磁系统调试与运行

EXC9100自并励静态励磁系统调试与运行摘要:近年来,随着国家对工厂全面智能化升级,发电机自并励静态励磁系统在汽轮发电机中的应用也越来越普及,说明与过去的励磁方式相比有较大的优越性,下面浅谈自并励静态励磁系统的优缺点以及调试的中应注意的问题。
关键词:自并励静态励磁系统;调试;一、自并励静态励磁系统概况某石化动力中心变电站发电机励磁系统采用型号为EXC9100自并励静态励磁,自并励静止励磁系统是指发电机的励磁电源是通过励磁变压器和整流装置从发电机机端取得的励磁控制系统。
包含励磁调节器单元(调节柜)、功率单元(多个功率柜)、灭磁及过压保护单元(灭磁开关柜、灭磁柜、灭磁电阻柜等)、起励单元、励磁变压器等装置组成。
励磁调节器是励磁反馈控制的核心部分,包括了A/B/C三调节通道、人机界面部分、对外接口(智能IIU)及可选配的特殊功能通讯模块部分;功率单元是由大功率可控硅组成的三相全控整流桥。
启动前由 DC220V 电源作为发电机起励电源,起励正常后切换为自并励磁电源;励磁系统内部的励磁调节通道、人机界面、智能IIU、功率单元、灭磁及过压保护单元之间的数据交换通过现场CAN总线实现。
二、自并励静止励磁系统优点与缺点1、运行可靠性高。
自并励励磁系统为静态励磁,没有旋转部分,运行可靠性高。
2、可提高机组轴系的稳定性。
由于取消了主、副励磁机,缩短了汽轮机一发电机组的轴系长度提高了机组轴系的稳定性、改善了轴系的振动,从而提高了机组安全运行的水平。
3、励磁系统响应快。
自并励励磁系统是一种高起始的快速响应励磁系统。
因而技术指标高,性能参数好。
4、可提高电力系统的稳定水平。
在小干扰稳定方面,自并励静止励磁系统配置电力系统稳定器后,小干扰稳定水平较交流励磁机励磁系统有明显的提高:在大干扰稳定方面,电力系统的计算表明,自并励励磁系统的暂态稳定水平与交流励磁机励磁系统相近或略有提高。
5、可提高电厂的经济效益。
自并励静止励磁系统没有旋转部分,发电机运行可靠性高、调整容易、维护简单、检修工作量小,因而可提高发电效益。
励磁系统

• 1.5.4 起励投入条件: ▫ 在电压闭环或电流闭环方式下运行 ▫ 有建压令且调节器不是负载态 ▫ 没有逆变令和低频闭锁,且UF<20%UFN和IL<6%ILN ▫ 同时满足以上3个条件,投入起励装置。 • 起励退出条件: ▫ 机端电压>20% ▫ 起励时间>设定的时间(9S) ▫ 满足以上任一条件,退出起励装置。 • 在起励装置投入的8S内,机端电压大于20%额定定子电压或转子电流大于6%额定负载 励磁电流,自动退出初励装置;否则报起励失败,并退出初励装置。
▫ ▫ ▫ 发电机中性点TA5、TA6; 发电机出口TV1、TV2; 励磁变低压侧电流TA12
1.2 励磁外部电源
▫ ▫ ▫ ▫ ▫ ▫ ▫ ▫ ▫ ▫ ▫ ▫ Q1:调节器交流A --(机组UPS) Q2:调节器交流B--(机组UPS) Q3:调节器直流A -Q4:调节器直流 B-Q5:工控机电源\交换机电源--调节器交流B--(机组UPS) Q6: 开入电源--调节器直流B (外部开路信号驱动) Q11:交流辅助电源--(变送器电源)--(机组UPS) Q12:加热、照明电源(含整流柜风机控制)--(汽机2MCC) 风机电源A、风机电源B---(汽机PC-A、汽机PC-B段) Q21:灭磁开关电源1---一组DC110V Q22:灭磁开关电源2---二组DC110V 起励电源---汽机PC-B段
判据1
动作条件: ▫ PT2-PT1差值大于判断阀值(12.5%),时间大于动作时间(0.06s)。
• •
复归条态
判据2 动作条件:同时满足以下条件
ABB励磁调节器静态、动态试验方法

ABB励磁调节器静态、动态试验方法一、绝缘测试测绝缘前措施:1.+ES柜拔出PSI板 U81/U82的转子电压及同步电压线:W200 12,W200 11,W200 6,W200 5,W200 4;拔出 T11 T13来的交流侧电流线插头;U81/U82数据扁线两个(模拟量输出至调节器)。
2.+EA柜拉开F15保险(机端电压至T05 / T15)3.+EE柜断开F21 F22 F233 F24 4个瓷保险或者拆开调节器X49:601、602线(转子电压至发变组转子接地保护用);拉开F04保险(转子电压至转子接地继电器,及直流侧过压保护用);拔出A02板(跨接器的触发单元)从到外线:F02 2-HK,F02 2-G,F02 3-HK,F02 3-G,F02 1-G,F02 1-HK;X1插头;4.各整流柜 FO1保险(至交流侧阻容保护);5.ER柜电源模块G05、G15、Z05的输入插头线;用500V摇表进行主回路交、直侧各相绝缘测试,和控制回路电缆的绝缘测试,记录试验值。
注: 摇转子回路绝缘时, 断开+EE柜 F21 F22 F233 F24 瓷保险, 拉开F04保险即可.二、风机运行时间查看和设置1、风机运行时间查看10518 整流桥1风机1运行时间10519 整流桥1风机2运行时间10528 整流桥2风机1运行时间10529 整流桥2风机2运行时间10538 整流桥3风机1运行时间10539 整流桥3风机2运行时间风机运行小时数 25000小时,超出后应更换风机。
2、设置风机运行时间:522 选择风机523 设置风机已运行时间524 设置确认( 0 无动作 1 设置)522、523设置完后,524设置确认上述修改有效。
修改完毕查看10518、10519、10528 、10529、10538、10539 是否正确。
3、设置工作风机513 缺省使用风机1(即外边两个风机M1 M2为工作风机,开机时起动)513 缺省使用风机2(即里边两个风机M3 M4为工作风机,开机时起动)固化参数 11201 无---保存RAM参数区1和保存RAM参数区2---无修改完毕断Q15,再上电,查看513是否已修改正确。
GER3000微机励磁装置说明书

GER3000微机励磁调节装置技术说明书青岛华威电力自动化研究中心南京申瑞电气系统控制有限公司概述GER3000微机励磁调节器装置是以MCU、DSP为内核构成的系统芯片(SoC)为核心,配以超大规模现场可编程芯片而构成的新型励磁调节器。
它不仅具有早期的微机型励磁调节器的全部调节、控制、限制、保护和容错等功能,而且在运算速度、硬件集成度、抗电磁干扰以及可靠性等方面有了极大的进步。
该系统中,调节算法、励磁控制和限制保护等功能由嵌入式、模块化软件实现,交流信号、直流信号等经高速AD采样并经DSP计算实现采集,另外该系统能根据不同的应用对象,通过对采用的可编程芯片进行现场编程和配置,满足不同的系统配置的需要,具有极大的灵活性和适应性。
该系统可广泛应用于水轮发电机组自并励、火力发电机组三机或自并励系统的可控硅励磁控制,也可应用于带直流励磁机或交流励磁机的开关式励磁控制,是一种通用性极强的励磁调节装置。
本说明书将从GER3000微机励磁调节装置的功能、特点、软硬件配置、基本工作原理等几个方面介绍,以便用户对本产品有一较全面的了解。
与本说明书有关的技术文件:1.GER3000微机励磁调节装置电路原理图2.GER3000微机励磁调节器配线表3.EU30 控制器操作说明书第一章装置的特点及适用范围§1-1 主要特点采用了现场网络技术和智能化的设计思想,改变了传统励磁系统结构和数据信息交互方式,大大简化了励磁设备之间的连接,增大了数据和信号的传递,节省了联接电缆,使设备可靠性得到提高,维护更加容易。
1) 调节控制及限制保护功能完备,调试维护手段丰富。
2)由于控制和信息的传递由网络系统通过通信网互联而实现,与传统的双通道励磁系统结构相比,其控制系统是一个开放的系统,接口和规约是标准和通一的,信息是透明的,能实现励磁系统与计算机监控系统的通信。
3)A、B两套系统之间采用通信网络联结,系统结构简单,可靠性高。
双通道控制系统间的通信更全面而真实,系统的冗余度和可靠性更高。
发电机失磁保护实验

实验五 发电机失磁保护一、实验目的1. 理解失磁保护的动作原理;2. 掌握失磁保护的逻辑组态。
二、实验原理发电机励磁系统故障使励磁降低或全部失磁,从而导致发电机与系统间失步,对机组本身及电力系统的安全造成重大危害。
因此大、中型机组要装设失磁保护。
对机端有单独断路器,较小容量的机组,失磁保护采用静稳阻抗发信号,异步阻抗出口跳机端断路器的保护方案,直接针对发电机运行情况减少异常运行时对外部系统的影响,保护带TV 断线闭锁。
(1) 失磁静稳阻抗a. 静稳边界阻抗主判据阻抗扇形圆动作判据匹配发电机静稳边界圆,采用0 接线方式(ab .U、ab .I ),动作特性见图2-2所示,发电机失磁后,机端测量阻抗轨迹由图中第I 象限随时间进入第Ⅳ象限,达静稳边界附近进入圆内。
静稳边界阻抗判据满足后,至少延时1s ~1.5s 发失磁信号、压出力或跳闸,延时1s ~1.5s 的原因是躲开系统振荡。
扇形与R 轴的夹角10 ~15 为了躲开发电机出口经过渡电阻的相间短路,以及躲开发电机正常进相运行。
需指出,发电机产品说明书中所刊载的xd值是铭牌值,用“xd(铭牌)”符号表示,它是非饱和值,它是发电机制造厂家以机端三相短路但短路电流小于额定电流的情况下试验取得的,误差大,计算定值时应注意。
b. 稳态异步边界阻抗判据发电机发生凡是能导致失步的失磁后,总是先到达静稳边界,然后转入异步运行,进而稳态异步运行。
该判据的动作圆为下抛圆,它匹配发电机的稳态异步边界圆。
保护方案的特点是:全失磁或部分失磁失步,Z1<动作,经t1=1s~1.5s延时发失磁信号,尚不跳闸,允许失磁发电机较长时间运行继续向系统输出一定有功,Z2<动作后经长延时t2=1s~300s跳闸。
框图中,虽然Z2<经t2延时单独跳闸,但不会发生因整定误差而在正常进相运行时误跳,因Z2<动作圆小,启动电流取0.3A。
t1出口发失磁信号,t2动作后作用于跳闸。
220MW机组励磁系统进相运行试验及PSS试验

220MW机组励磁系统进相运行试验及PSS试验刘 伟Ξ(华电能源牡丹江第二发电厂,黑龙江牡丹江 157015)摘 要:讲述220MW发电机组励磁系统进相运行试验及PSS试验的原因、过程、效果以及应用情况,并重点介绍S J—800微机励磁调节器在PSS试验中的调试方法。
关键词:进相;PSS;调试;应用 随着现代电力工业的飞速发展,系统容量不断扩大,电力系统对运行稳定的要求愈来愈高。
励磁系统中一些对系统暂态稳定、静态稳定有提高作用的附加控制信号和稳定环节逐步引起人们重视,发电机进相运行控制和电力系统稳定器(PSS)就是两个重要课题。
发电机进相运行是一种同步低励磁持续稳定运行方式,该方式运行时,发电机发出有功功率的同时,可不发或从系统吸收无功功率,是解决电网低谷运行期间,电压过高、无功过剩的一种简便、可靠、经济性较高的有效措施。
电力系统稳定器(PSS)能提供合适的阻尼转矩,增加系统阻尼,抑制系统低频功率振荡。
在发电机受到较大扰动后能使发电机的运行特性平稳地过度到事故后的功率特性曲线,提高稳定性。
PSS环节在大型发电机的励磁系统上已得到了广泛的应用,成为现代励磁调节器不可缺少的功能之一。
220MW机组励磁系统主要技术参数如表1所示:表1 220MW机组励磁系统主要技术参数名称型号额定容量额定电流额定电压功率因素额定励磁电流额定励磁电压发电机QFS N-220-2258800kVA9488A15.75kV0.851884A462V主励机JL-1150-41150kVA1600A415V0.91149A48.9V付励机TFY-46-50046kVA165A161V0.875整流柜G LF-202000A1000V变压器SEP-240000240000kVA242Π15.75 一、进相运行试验发电机在有功功率为120MW、160MW、220MW三种工况下,每点进行了四小时进相运行试验。
制约进相运行深度的因素主要是自动励磁调节器进相运行控制稳定环节、发电机定子端部铁芯和金属构件的温度限制和厂用电电压的限制。
发电机失磁保护实验

实验五 发电机失磁保护一、实验目的1. 理解失磁保护的动作原理;2. 掌握失磁保护的逻辑组态。
二、实验原理发电机励磁系统故障使励磁降低或全部失磁,从而导致发电机与系统间失步,对机组本身及电力系统的安全造成重大危害。
因此大、中型机组要装设失磁保护。
对机端有单独断路器,较小容量的机组,失磁保护采用静稳阻抗发信号,异步阻抗出口跳机端断路器的保护方案,直接针对发电机运行情况减少异常运行时对外部系统的影响,保护带TV 断线闭锁。
(1) 失磁静稳阻抗其定值如下:定 值 名 称整定范围备 注失磁静稳阻抗保护静稳动作阻抗Z1A 1.0 Ω~20 Ω静稳动作阻抗Z1B 5.0 Ω~50 Ω延时0.1 s ~20 s 以下为保护投退软压板静稳阻抗软压板√:投入 X :退出a. 静稳边界阻抗主判据阻抗扇形圆动作判据匹配发电机静稳边界圆,采用0︒接线方式(、),动作特ab .U ab .I 性见图2-2所示,发电机失磁后,机端测量阻抗轨迹由图中第I 象限随时间进入第Ⅳ象限,达静稳边界附近进入圆内。
静稳边界阻抗判据满足后,至少延时1s ~1.5s 发失磁信号、压出力或跳闸,延时1s ~1.5s 的原因是躲开系统振荡。
扇形与R 轴的夹角10︒~15︒为了躲开发电机出口经过渡电阻的相间短路,以及躲开发电机正常进相运行。
需指出,发电机产品说明书中所刊载的xd值是铭牌值,用“xd(铭牌)”符号表示,它是非饱和值,它是发电机制造厂家以机端三相短路但短路电流小于额定电流的情况下试验取得的,误差大,计算定值时应注意。
b. 稳态异步边界阻抗判据发电机发生凡是能导致失步的失磁后,总是先到达静稳边界,然后转入异步运行,进而稳态异步运行。
该判据的动作圆为下抛圆,它匹配发电机的稳态异步边界圆。
保护方案的特点是:全失磁或部分失磁失步,Z1<动作,经t1=1s~1.5s延时发失磁信号,尚不跳闸,允许失磁发电机较长时间运行继续向系统输出一定有功,Z2<动作后经长延时t2=1s~300s跳闸。
励磁系统培训课件(经典)

• 灭磁回路:采用非线性电阻(氧化锌)灭磁;灭磁阀片采用ZnO灭 磁阀片,每片20KJ/60A。
• 过电压吸收回路:采用非线性电阻(氧化锌)吸收过电压;过压阀 片采用ZnO灭磁阀片,每片20KJ/60A。
1、灭磁作用和要求
• 配有快熔及快熔指示器 • 模块在运行中会产生大量的热量,为了保证模块的正常运行,在功
率柜顶部设有两台通风机,加强冷却。 • 监视与报警 • 任一个整流柜退出运行报警 • 可控硅保险熔断报警(微型开关监控) • 散热器或空气过热报警 • 冷却风扇故障报警 • 空气流量过低报警(带风量继电器监控)
2.2 灭磁电阻柜
措施 只要配合快速保护,完善转子阻尼系统,采用性能良好的励磁调节器和 可控硅整流装置,并适当提高励磁倍数.就足以补偿其缺点。
二、港电公司励磁系统的组成
励磁系统的组成
• 发电厂2×660MW励磁系统采用自并激可控硅静止励磁方式,励磁系 统主要由机端励磁变、可控硅整流装置、自动电压调节器、灭磁和
过电压保护装置、启励装置、必要的监测、保护、报警辅助装置等
• 在不同运行工况下,根据要求对发电机实行过励限制和欠励限制,以确保 同步发电机组的安全稳定运行。
四、对励磁系统的性能要求
600MW及以上机组的励磁系统,都是高起始响应励磁系统。 对其基本要求如下:
➢ 具备足够的调节容量,以适应各种运行工况要求。 ➢ 要提高电力系统的暂态稳定性,励磁系统必须同时具有较高的强励倍数和
§2发电厂励磁系统介绍
一、大型发电机组励磁系统分类
根据交流电源的来源不同分为两大类
第一类,交流电源来自与主机同轴的交流发电机,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
励磁系统中的各种定值介绍一、励磁系统中各种定值的分类励磁系统中的各种整定值主要是在励磁调节器(AVR)中。
本次重点介绍励磁调节器中的定值。
1、发电机的励磁形式一般有直流励磁机系统、三机常规励磁系统、无刷旋转励磁系统、自并励励磁系统等。
(1)自励直流励磁机励磁系统:(2)三机常规励磁系统:(3)无刷旋转励磁系统(4)自并励励磁系统2、华北电网各个电厂所用的励磁调节器有吉思GEC系列、南瑞电控SAVR2000系列、NES5100系列、SJ800系列、武汉洪山的HJT系列、ABB公司的UN5000系列、GE公司的EX2100系列、英国R-R的TMR-AVR、日本三菱等。
各个厂家的励磁调节器中的定值数量各不相同。
少的几十个(如吉思、南瑞),多的上千个(如ABB、GE)。
3、针对各种励磁调节器中的定值按照使用功能可以分为(1)控制定值(控制参数)控制定值包括自动方式控制参数、手动方式控制参数、PSS控制参数、低励限制控制参数、过励限制控制参数、过激磁限制控制参数等(2)限制动作定值包括过励限制动作定值、过激磁限制动作定值、低励限制动作定值等(3)其他定值包括励磁调节器模拟量测量的零飘修正、幅值修正、励磁方式定义、起励时间设定、调压速度设定、调差率等。
励磁调节器内部的控制参数励磁调节器作为发电机的一种自动控制装置。
在正常运行或限制动作时,用来控制发电机的运行工况不超过正常运行范围的参数。
这些参数在运行中,是时刻发挥作用的。
控制参数整定的合理,直接影响整个励磁系统的动态特性的好坏及各种限制功能的正常发挥作用。
一、自动方式下的控制参数(电压闭环)1、自动方式是以机端电压作为控制对象的控制方式,是励磁调节器正常的工作方式。
也是调度严格要求必须投入的运行方式。
华北电网调度部门下发的《华北电网发电机励磁系统调度管理规定》中规定:(1)各发电厂机组自动励磁调节装置正常应保持投入状态,其投入、退出和参数更改条件应在运行规程中作出规定,并应得到调度部门和技术监督部门的批准。
调度部门要求投入的PSS装置应可靠投入运行。
发电机自动励磁调节装置、PSS装置如遇异常退出,应及时向当值调度员备案,事后向技术监督部门汇报。
(2)电厂将励磁系统定值报有关调度部门和技术监督部门审核、批准后执行。
运行中如定值或设定参数发生变化,须经有关调度部门和技术监督部门核准方可执行。
参数实测后如定值或设定参数发生变化,应说明对已实测参数是否有影响,必要时重新进行参数实测工作。
(3)发电机励磁系统应采用定发电机电压控制方式运行。
如果采用其他控制方式需要经过调度部门和技术监督部门的批准。
2、按照经典自动控制原理,一般采用PID控制方式。
其中的P代表比例调节控制,I代表积分调节控制,D代表微分调节控制。
一般励磁调节器中的PID控制形式有以下三种方式:(1)并联PID控制方式传递函数Kp :比例增益;Ki :积分增益;Kd :微分增益。
传递函数的数学表达式为:KdS S Ki Kp ++ (2)串联PID 控制方式传递函数传递函数的数学表达式为:)11()2111(TiSS T S T Kp +•++•说明:并联PID 控制方式和串联PID 控制方式,按照自动控制原理的传递函数,只是表述方式的不同,实际的传递函数形式是一致的。
将并联PID 的传递函数可以变换为:SKdS KpS Ki 2++ (1)。
将串联PID 传递函数中,令T2=0,可以变换为:SS T Kp S Kp T Ti Kp Ti Kp 21)1(•++•+(2)。
以上(1)、(2)两个数学公式中,令:Ki (1)=Kp/Ti (2),Kp (1)=Kp/Ti*T1+Kp (2),Kd (1)=Kp*T1(2)。
则二者具有相同的函数特性。
(3)两级超前滞后环节控制方式传递函数传递函数的数学表达式为:ST S T S T S T Kp 41312111++•++• 在实际整定中,一般将T1<<T2,此环节主要体现的是积分效应(I );T3〉〉T4,此环节主要体现的是微分效应 (D )。
具体到实际励磁调节器中不同的设计,励磁调节器中的实际传递函数和表述方式不同,整定的参数含义和数值也有所不同。
请注意。
二、励磁系统中的自动方式下,主要影响特性的是PID 参数。
PID 参数的整定不同,对自动方式下,励磁系统的动态特性影响很大。
1、励磁系统行业标准中规定:阶跃量为发电机额定电压的5%,发电机端电压超调量应不超过阶跃量的30%,振荡次数不超过3次,调整时间不超过10S ,电压上升时间不大于0.6S (自并励系统)或0.8S (三机常规))。
2、自动控制方式下,PID 参数变化对励磁系统动态特性的影响(1)以并联PID 控制方式为例,了解PID 参数对动态特性的影响。
并联PID 控制方式的基本传递函数形式如下:(1.1)改变Kp参数对励磁系统动态特性的影响:改变纯比例增益Kp,主要影响发电机电压的上升速率和超调量,纯比例增益Kp增大,上升速度加快,超调量增大。
(1.2)改变Ki参数对励磁系统动态特性的影响:仅改变纯积分增益Ki,对发电机电压的响应特性影响不大。
(1.3)改变Kd参数对励磁系统动态特性的影响:仅改变纯微分增益Kd,影响发电机电压上升速度和超调量,Kd增大,上升速度加快,超调量减小;而Kd减小,上升速度变慢,同时超调量增大。
(2)以两级超前滞后控制方式为例,了解PID参数对动态特性的影响:两级超前滞后环节控制方式的基本传递函数形式如下:(2.1)改变AVR的增益Ks(相当于Kp)测试结果表明,仅改变直流增益Kp,主要影响发电机电压的上升速率和超调量,增益Kp增大,上升速度加快,超调量增大。
(2.2)改变AVR的微分时间常数T1测试结果表明,仅改变微分时间常数T1,主要影响发电机电压的上升速率,微分时间常数T1增大,上升速度加快,且电压超调量减小。
注:在调节器中,T1、T2参数,构成一级积分效应环节。
当T1增大时,相当于增加了微分效应,减少了积分效应。
因此,T1增大,上升速度加快,超调量减少。
(2.3)改变AVR的时间常数T2测试结果表明,仅改变时间常数T2,主要影响发电机电压的上升速率和超调量,时间常数T2减小,上升速度加快,超调量变大。
注:在调节器中,T1、T2参数,构成一级积分效应环节。
当T2减少时,相当于增加了微分效应,减少了积分效应。
因此,T1减少,上升速度加快,超调量变大。
(2.4)改变AVR的微分时间常数T3测试结果表明,仅改变微分时间常数T3,主要影响发电机电压的上升速率和超调量,微分时间常数T3增大,上升速度加快,超调量减小。
注:在调节器中,T3、T4参数,构成一级微分效应环节。
当T3增大时,相当于增加了微分效应。
因此,T3增大,上升速度加快,超调量减少。
(2.5)同时增大AVR的时间常数T1、T2,保持T1/T2不变。
测试结果表明,同时增大AVR的时间常数T1、T2,对发电机电压的超调量和上升时间影响不大。
3、通过以上波形,我们可以了解PID参数整定是否合适,在现场可以通过空载5%阶跃试验的方法来验证。
如果发现空载5%阶跃试验的结果,与行业标准相比不符。
可以参照以上的调整原则进行参数调整,使之满足标准的要求。
其他传递函数的形式,可以依照传递函数的变换为并联PID的形式,根据实际传递函数的形式进行参数调整。
一般情况下,试验整定完成后,此部分的参数不允许随意更改。
因为,此部分参数是保证励磁系统动态特性的基础,同时也是励磁调节器中其他限制控制功能实现的基础。
三、手动控制方式(励磁电流闭环方式或励磁电压闭环方式)手动控制方式,是自动方式方式发生故障后的一种后备运行方式。
手动控制方式的控制对象是If(转子电六)或Uf(转子电压)。
在手动方式下,不要求励磁系统的动态特性。
行业标准中,也未对其提出具体的要求。
我们一般认为,只要达到运行中稳定。
发生小扰动后,变化过程平稳,并最终仍能够保持稳定即可。
1、手动控制方式的传递函数形式一般采用:(1)PID控制(比例、积分、微分)、(2)P控制(比例)、(3)PI控制(比例、积分)传递函数形式比较简单,不在描述了。
2、手动控制方式,各个制造厂为方便起见,原理设计上一般很简单。
某些制造厂还将此部分参数设置为不允许现场调整。
我们通过现场实际试验和检查分析后,发现:在一般情况下,手动方式下的控制参数PID整定值,一般为自动方式下的1/3到1/5。
保证工作稳定即可,不追求控制的快速性和精确性。
手动控制方式传递函数与自动控制方式传递函数相似。
但是要注意控制对象是If (转子电流)或Uf(转子电压),不是自动方式下的机端电压。
四、PSS控制方式1、 PSS的作用:PSS(电力系统稳定器)是附加在自动方式下的控制方式。
其作用是抑制电网系统的0.1—2HZ的有功功率振荡。
此功能,通过测量发电机有功功率的变化,利用一组控制参数,来改善励磁系统的角度滞后情况,抑制电网系统的有功功率振荡。
通过PSS功能,可以提高发电机有功输出的稳定性和对系统振荡的抑制能力。
正常运行中,此部分功能是正常投入工作的。
如果发生系统振荡,PSS将自动起作用,以抑制系统振荡。
华北电网调度部门下发的《华北电网电力系统稳定器(PSS)装置运行暂行规定》中要求:(一)投入PSS装置的机组,其机组的PSS装置正常必须置入投运状态,且必须将自动励磁调节器投入自动位置。
(二)投入PSS装置的机组,如自动励磁调节器退出自动位置,视为PSS退出运行。
(三)投入PSS装置的发电机组因各种原因退出PSS装置(PSS低于定值后装置自动退出情况除外)时,应提前向调度部门提出申请。
原则上该机组的PSS退出时,相应机组也应停运,特殊情况另行处理。
(四)发电机组PSS装置(包括励磁系统)的整定参数应适应华北、华中、东北区域电网不同联网方式运行要求,对0.1HZ~2.0HZ系统振荡频率范围的低频振荡模式应能提供正阻尼。
(五)根据电网安全稳定要求应投入PSS装置的发电机组,发电厂有责任和义务在机组安装PSS装置并将其置入投运状态;对于新投产的机组,其PSS装置必须与该机组同步投运。
2、 PSS传递函数形式:(1) PSS1A模型PSS1A模型参数说明:TW=隔直环节时间常数;Kpss=PSS输出增益;T1、T2、T3、T4、T5、T6=超前滞后补偿系数。
(2) PSS2A模型TW1、TW2、TW3=隔直环节时间常数;T7=电功率计算时间常数;Ks1=PSS 输出增益; Ks2=计算电功率的补偿系数;Ks3=信号匹配系数;T1、T2、T3、T4=超前滞后补偿系数;T8、T9=扭振信号滤波时间常数;N 、M=扭振信号滤波器阶数;3、 PSS 投入效果的检查:有功功率振荡的阻尼比计算方法:通过现场加入+2~+4%阶跃信号,实际测量的发电机有功功率的波形,计算阻尼比。