国内煤气化炉技术介绍资料 共24页
煤气化技术介绍

煤气化技术介绍一、起源煤气化技术是指把经过适当处理的煤送入反应器如气化炉内,在一定煤气化技术工艺流程的温度和压力下,通过氧化剂(空气或氧气和蒸气)以一定的流动方式(移动床、硫化床或携带床)转化成气体,得到粗制水煤汽,通过后续脱硫脱碳等工艺可以得到精制一氧化碳气。
1857年,德国的Siemens兄弟最早开发出用块煤生产煤气的炉子称为德士古气化炉。
这项工艺引进中国后在二十世纪九十年代由山东省鲁南化肥厂经过广大工程技术人员的努力,发明了自主知识产权的对置式四喷嘴气化炉,目前已经在国内得到广泛推广应用,特别是兖矿集团煤化工项目在多处使用次技术,取得了显著的经济效益。
还有经过其他许多开发商的开发,到1883年应用于生产氨气。
煤气化技术是清洁利用煤炭资源的重要途径和手段。
二、原理煤干馏过程,主要经历如下变化:当煤料的温度高于100℃时,煤中的水分蒸发出;温度升高到200℃以上时,煤中结合水释出;高达350℃以上时,粘结性煤开始软化,并进一步形成粘稠的胶质体(泥煤、褐煤等不发生此现象);至400~500℃大部分煤气和焦油析出,称一次热分解产物;在450~550℃,热分解继续进行,残留物逐渐变稠并固化形成半焦;高于550℃,半焦继续分解,析出余下的挥发物(主要成分是氢气),半焦失重同时进行收缩,形成裂纹;温度高于800℃,半焦体积缩小变硬形成多孔焦炭。
当干馏在室式干馏炉内进行时,一次热分解产物与赤热焦炭及高温炉壁相接触,发生二次热分解,形成二次热分解产物(焦炉煤气和其他炼焦化学产品)。
煤干馏的产物是煤炭、煤焦油和煤气。
煤干馏产物的产率和组成取决于原料煤质、炉结构和加工条件(主要是温度和时间)。
随着干馏终温的不同,煤干馏产品也不同。
低温干馏固体产物为结构疏松的黑色半焦,煤气产率低,焦油产率高;高温干馏固体产物则为结构致密的银灰色焦炭,煤气产率高而焦油产率低。
中温干馏产物的收率,则介于低温干馏和高温干馏之间。
煤干馏过程中生成的煤气主要成分为氢气和甲烷,可作为燃料或化工原料。
煤气化技术简介2

3. 煤在利序进3.1 点见袋式3.2 COS 前者中硫3.2.1煤气净化技由于从造气利用前应对其进行简单介绍煤气的除尘煤气的除尘见下表。
应用式除尘器与湿脱硫煤气中通常S 、RSH 、R-S 者脱硫剂为溶硫含量可以达1 湿法脱硫按溶液的吸技术气炉内出来的其进行净化。
绍。
尘就是从煤气较多的是旋风湿法洗涤除尘常含有数量不-R’、噻吩等有溶液,可以将达到ppm 级别吸收和再生性煤气化煤气除了含有煤气的净化方气中除去固体颗风除尘器(尤尘器(可与脱硫不同的各种硫化有机化合物。
硫含量脱除至。
性质可分为湿化技术简有氢气、一氧方式主要有除颗粒物,工业尤其在高温部硫结合进行化物,硫化物。
原料气的脱至约200mg/N式氧化法、化简介2氧化碳之外还除尘、脱硫、业上实用的除部位)、电除尘)。
物主要以H 2脱硫主要有湿Nm 3;后者为化学吸收法、还含有大量的变换与脱碳除尘设备有4尘器(主要在S 的形式存在湿法脱硫和干为固体脱硫剂、物理吸收法的硫化物等杂碳等。
以下对大类,各自在最后的净化在,其次是CS 干法脱硫两大剂,精脱后的法、物理-化学杂质,对各工的特化)、S 2、大类,气体学吸收法(1)吸收脱硫液经其工与H 生泵气液的贫滤,法。
)湿式氧化法湿式氧化法收溶液获得再下面以栲胶栲胶法脱硫硫液,与需净经氧化槽被空工艺流程如下原料气体从2S 反应吸收,泵加压送到喷液一起进入再贫液流入贫液获得副产成脱硫液的溶法法是借助于吸再生。
该法主胶法为例作一硫是在碳酸钠净化粗原料气空气氧化使溶下:从脱硫塔底部,脱硫后气体喷射再生槽的再生槽,由底部液槽,循环使用成品硫。
溶液总碱度为吸收溶液中载氧主要有改良的A 一介绍。
钠(Na 2CO 3)气在填料塔内溶液再生并浮选部进入,与塔顶体由塔顶逸出喷射器,在喷部经筛板上翻用。
硫泡沫则为0.4N(低硫含氧体的催化作ADA 法,栲稀碱液中添内逆流接触脱选出单质硫,顶上喷淋下来出。
脱硫后的喷射器自吸空翻,进行栲胶则进入中间槽含量),0.8N(高作用,将吸收胶法、氨水催加偏矾酸钠脱去硫化氢(,溶液循环使来的栲胶溶液的富液由塔底空气并在喉管胶溶液的氧化槽,然后经由高硫含量);栲收的H 2S 氧化催化法、PD (NaVO 3)、H 2S )。
煤化工气化炉的发展简介---气流床气化炉1

煤化工气化炉的发展
四、气化炉分类
(1)按是否需要开采或按‘气化炉’的位置分:
地面气化
地下气化
(2)按流体力学:
固定床(移动床)气化
流化床气化 气流床气化
(3)按气化剂的种类
煤化工气化炉的发展
六、固定床气化、流化床气化、气流床气化工艺特点
(3)气流床气化工艺 气、固(煤粉/煤浆)两相并流接触; 床层压力降随气速提高而减小; 煤粒分散在气流中,粘结性无影响; 气化温度很高,气化反应非常快;
煤化工气化炉的发展
煤化工概念
以煤炭为原料经化学方法将煤 炭转化为气体、液体和固体产 品或半产品,而后再进一步加 工成一系列化工产品或石油燃 料的工业,称之为煤化工。
煤化工气化炉的发展
一、煤炭气化的主要反应
•C+O2=CO2 完全燃烧 •2C+O2=2CO 部分燃烧 •C+CO2=2CO Boudouard反应 •C+H2O=CO+H2 水蒸气气化 •C+2H2=CH4 加氢气化 •2H2+O2=2H2O 气相燃烧 •2CO+O2=2CO2 气相燃烧 •CO+H2O=CO2+H2 水煤气变换 •CO+3H2=CH4+H2O 甲烷化连续式化间歇式气化-水煤气气化
煤化工气化炉的发展
五、气化炉的发展简史
煤化工气化炉的发展
五、气化炉的发展简史
煤化工气化炉的发展
五、气化炉的发展简史
煤化工气化炉的发展
五、气化炉的发展简史
煤化工气化炉的发展
三种煤气化炉技术介绍一

三种煤气化炉技术介绍一、概述煤气化技术的开发与应用大约经历了200年的发展历史。
煤气化技术按固体和气体的接触方式可分为固定床、流化床、气流床和熔融床4种,其中熔融床技术还没有实际应用开发,各种煤气化炉的模式见图1。
1.固定床。
固定床气化炉是最早开发出的气化炉,如图1(a)所示,炉子下部为炉排,用以支撑上面的煤层。
通常,煤从气化炉的顶部加入,而气化剂(氧或空气和水蒸气)则从炉子的下部供入,因而气固间是逆向流动的。
特点是单位容积的煤处理量小,大型化困难。
目前,运转中的固定床气化炉主要有鲁奇气化炉和BGC-鲁奇炉两种。
2.流化床。
流化床气化炉如图1(b)所示,在分散板上供给粉煤,在分散板下送入气化剂(氧、水蒸气),使煤在悬浮状下进行气化。
流化床气化炉不能用灰分融点低的煤,副产焦油少,碳利用率低。
3.气流床。
气流床气化炉如图1(c)所示,粉煤与气化剂(O2、水蒸气)一起从喷嘴高速吹入炉内,快速气化。
特点是不副产焦油,生成气中甲烷含量少。
气流床气化是目前煤气化技术的主流,代表着今后煤气化技术的发展方向。
气流床按照进料方式又可分为湿法进料(水煤浆)气流床和干法进料(煤粉)气流床。
前者以德士古气化炉为代表,还有国内开发的多元料浆加压气化炉、多喷嘴(四烧嘴)水煤浆加压气化炉;后者以壳牌气化炉为代表,还有GSP炉以及国内开发的航天炉、两段炉、清华炉、四喷嘴干粉煤炉。
二、三种先进的煤气化工艺我国引进并被广泛采用的三种先进煤气化工艺——鲁奇气化炉、壳牌气化炉、德士古气化炉。
1.鲁奇气化炉(结构见图2)属于固定床气化炉的一种。
鲁奇气化炉是1939年由德国鲁奇公司设计,经不断的研究改进已推出了第五代炉型,目前在各种气化炉中实绩最好。
德国SVZ Schwarze Pumpe公司已将这种炉型应用于各种废弃物气化的商业化装置。
我国在20世纪60年代就引进了捷克制造的早期鲁奇炉并在云南投产。
1987年建成投产的天脊煤化工集团公司从德国引进的4台直径3800mm 的Ⅳ型鲁奇炉,先后采用阳泉煤、晋城煤和西山官地煤等煤种进行试验,经过10多年的探索,基本掌握了鲁奇炉气化贫瘦煤生产合成氨的技术,现建成的第五台鲁奇炉已投产,形成了年产45万吨合成氨的能力。
【管理资料】煤气化技术介绍汇编69页PPT

46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境பைடு நூலகம்
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
【管理资料】煤气化技术介绍汇编 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
恩德炉气化技术介绍

恩德炉气化技术介绍1.恩德炉生产工艺简介技术系列化:单炉生产能力有:5000立方米/时、10000立方米/时20000立方米/时、40000立方米/时。
净化简单:煤气中不含焦油及油渣,净化系统简单、污染少;操作弹性大:气化炉生产负荷可在设计负荷40%~110%范围内调节。
开停炉方便:对于工业燃气的生产组织和调度创造了条件;运转率高:由于取消了炉篦,气化炉没有传动部分和易损件,故不需太多的维修即可获得较高连续运转率,一般可达90%以上;气化效率高:气化强度大:恩德粉煤气化炉的气化效率达76%。
投资小:设备已完全实现了国产化,恩德粉煤气化炉投资仅为引进气化炉的30%~50%。
生产成本低:气化一般原料煤的成本占煤气生产成本的40%~50%。
煤种要求低:可以使用高灰份的劣质粉煤,使煤源得到很大拓展,可适用于褐煤、长焰煤、不黏或弱黏结煤;2.控制难点保持一个较高的转化率是非常重要的,过量的富氧必然造成有效成份的消耗,过低的富氧会造成较低的煤转化率,水碳比、氧碳比控制在合理的范围内非常关键,但因煤的质量波动、负荷的波动都会对系统的平衡产生影响。
系统想要在高负荷下运行,就必须解决循环流化床所特有的高温结焦问题。
3.控制策略富氧流量及控制系统的故障检测、比对,报警与自动处理负荷、炉温多参数结合的水碳比、氧碳比控制专有循环流化床负荷与炉温协调防结焦优化控制软件包。
4.气化炉联锁控制氧量过高必须紧急停车,废锅压力高、液位低等煤斗、煤锁变压加料操作及防止误操作程控与联锁灰斗、灰锁变压加料操作及防止误操作程控与联锁恩德炉粉煤气化技术在长化的应用现状1、恩德粉煤气化技术工艺流程叙述:工艺流程主要由输煤系统;排渣系统、热量回收及气化系统、煤烘干系统、黑水处理系统等组成. 工艺流程:原料由两条皮带送入270M3的煤仓,内加N2气保护(P=0.015MP), 煤仓下部有三个螺旋输送机(325×2600mm),将原料煤从一侧进入气炉(Φ6000×31000 mm),富氧空气由外面配制(浓度70%左右),分别进入一,二次空气混合器,蒸气用本系统产生的过热蒸气(温度210℃),空气30%也分别进入一次富氧混合器和二次富氧混合器,一次风通过六个喷嘴喷射入炉, 喷嘴设在加煤机下方的气化炉锥体部位,距离入煤口1.5米左右.与气化炉体成切线方向,成一定仰角(约15~17度)和斜角(约21度),使入炉原料易流化,入炉煤中大部分较粗颗粒在炉内的下部形成密相段,原料成为沸腾状态,在此区域气、固两相发生剧烈的传质和传热及燃烧氧化反应,反应温度950~1000℃,入炉的细粉和大颗粒因受热而裂解产生的小颗粒由反应气体携带离开密相段,在气化炉的上部形成稀相区,并在此处与从炉外引进的二次风进一步发生反应(二次风从混合器出来分为24个喷嘴,从炉筒体水平方向引入气化炉内),加入二次风目的有两个作用:一是阻挡上升气体降低流速增加停留时间,以便进一步反应和分离气体中的夹带物;二是促进反应,使气体中夹带的细颗粒中的碳继续气化反应,密相段产生的甲烷和高炭化合物进一步燃烧和裂解。
气化炉
的使用寿命。
优点:
1、煤种适应性较热壁炉广,能处理高灰熔 点的煤; 2、克服了热壁炉每年更换耐火砖的缺陷, 运行周期长,维修费用低; 3、可以不设置备用炉。
缺点:
水冷壁吸收炉内热量会产生蒸汽,跟相 同的单喷嘴德士古炉相比,氧耗、煤耗要高, 气体成分差。
激冷室:淬冷型与全热回收型
两种炉型比较:
两种炉型下部合成气冷却方式不同, 但炉子上部气化段的气化工艺是相同的。 目前生产合成气的企业气化炉都采用
渣机破碎后,排入锁斗,排出的大部分灰渣沉降在锁斗底部。从 锁斗顶部抽出较清的水经锁斗循环泵循环进入气化炉激冷室水浴
,强化排渣过程。锁斗中的灰渣定时排入渣池,由捞渣机捞出后
装车外运。
3、气化炉主要结构
主要由:燃烧室、激冷室、烧嘴等组成。 燃烧室:耐火砖与水冷壁两种
激冷室:淬冷型与全热回收型两种
耐火砖型
煤 氧 浆 氧 中心管
结构:
近期国内引进的水煤浆气化技术烧嘴和国内自行开发的烧嘴 以三通道为主。 中心管和外环隙走氧气,内环隙走煤浆。在烧嘴中煤浆被高 速氧气流充分雾化,以利于气化反应。 由于烧嘴插入气化炉燃烧室中,承受1400℃左右的高温, 为了防止烧嘴损坏,在烧嘴外侧设置了冷却盘管,在烧嘴头部设 置了水夹套,并有一套单独的系统向烧嘴供应冷却水,该系统设 置了复杂的安全联锁。 烧嘴头部采用耐磨蚀材质,并喷涂有耐磨陶瓷。负荷和气液比 不同,中心氧最佳值不一样,这样可使烧嘴在最佳状态之下工作。 由于运行压力较高,水煤浆的冲刷严重,再加上对国外技术 消化吸收不够,烧嘴经常损坏。一般损坏的仅是喷头部位,但有 时由于炉内反应异常等各种原因,造成烧嘴部分过烧而损坏。
能停一组喷嘴,另一组喷嘴依然可以正常运行,可避免整个装置
煤气化技术介绍
2011年03月05日
煤炭将是我国的主要能源、高效洁净利用是发展的关键
煤炭在矿物能源中的比例
天然气 石油 8%
煤 92%
2000年 至 2050年 原 煤 需 求 及 预 测
70 [亿 吨 ]
60 50 40 30 20 10
0 1995年 2000年 2010年 2020年 2050年
特点:高温合成气体采用由多个水/汽组合式喷头喷水雾 化进行粗煤气冷却和固灰,取代壳牌用返回合成气进行激 冷的工艺;取消了壳牌合成气冷却器、循环压缩机和高温 高压飞灰过滤器;内件采用膜式壁结构并采用副产蒸汽的 方式进行炉壁保护,操作时,膜式壁内形成一层渣,用所 谓“以渣抗渣”的方式保护衬里不受侵蚀,炉体有可能长 周期稳定运行,不设置备用炉。
煤
气化
直接液化
合成氨 甲醇
甲醛 MTP/ MTO
联合发电
醋酸
间接液化/SNG 炼焦
焦炭
焦油
焦炉气
其他利用(燃烧发电、燃料电池、腐殖酸、活性炭等)
煤气化技术:21世纪高效洁净能源的途径
不同煤气化技术特点 气流床气化炉以细粉煤为原料(<0.1mm),气固并流,煤粉可以干态(Shell)
或湿流态化(床水气煤化浆以,碎T煤ex为ac原o)料进(<料6m,m气)流,床在气化由剂于的细高粉速和流短动停下留,时床间中,物料
我国利用鲁奇技术建设的气化装置有:云 南解化、天脊集团、河南义马、哈气化、 广汇、大唐、庆华等。
赛鼎公司在消化吸收引进技术的基础上设 计完成了4.0MPa气化炉、DN5000气化炉。
加压固定床气化炉-液态排渣 BGL
不同煤气化技术
Texaco 气化炉
Shell 气化炉
煤炭气化工艺学第四章气化炉
煤炭气化过程的两类主要反应:燃烧反
应和还原反应
还原反应,包括碳和二氧
煤的燃烧是指在空气、富氧空气或氧 气中,当煤的温度达到者火点时剧烈 氧化,放出大量热量的过程,完全燃
化碳的反应,以及水蒸气 和碳之间的反应是制气的
主要反应,主要生成一氧 化碳和氢气。
烧时生成二氧化碳,而不完全燃烧时 则生成一氧化碳。
的热分解,放出大量的水蒸气和二氧化碳,同时,有少量
的硫生成二氧20化20硫/5/2等1 气体。
星期四
煤炭气化工艺学第四章气化炉
煤 的 干 馏
PPT文档演模板
三、气化的几个重要过程
煤的热解结果生成三类分子:小分子(气 体)、中等分子(焦油)、大分子(半焦)。
就单纯热解作用的气态而言.煤气热 值随煤中挥发分的增加而增加;
器或搅拌装置)的作用,同时可以吸收气化区的热量而生产蒸汽,后该的部分分布蒸和汽加可
以作为气化时需用的蒸汽而进入气化炉内。 气化反
加煤系 统
煤时的密封问 题。
应部分
①作用:保证了炉内料层
高度的稳定,同时也保证
气化炉的组成
了气化过程连续稳定地进 行.
②问题:对移动床而言,
由于炉箅(气化剂的分布
装置)和排灰系统结合在
随煤的变质程度的加深氢气含量增加 而烃类和二氧化碳含量减少。
煤中的氧含量增加时,煤气中二氧化 碳和水含量增加。
煤气的平均分子量则随热解的温度升 高而下降.即随温度的升高大分子变小 ,煤气数量增加。
星期四
2020/5/21
煤炭气化工艺学第四章气化炉
三、气化的几个重要过程
煤 的 反 应
PPT文档演模板
能力目标
会判断实际用煤 作为气化原料的 优劣、会流利的 讲述常用气化炉
煤气化技术综述
煤气化技术综述一、引言二、煤气化技术概述:四、其它煤气化技术2.1 固定层制气工艺(移动床) 4.1 第三代煤气化技术2.2 流化床气化工艺 4.2 组合气化炉煤气化法2.3 气流床气化工艺五、国内外煤气化的技术现状和发展趋势2.4 其他煤气化技术 5.1 国外技术现状和发展趋势三、国内主流煤气化技术详解 5.2 国内的技术现状和发展趋势3.1 Lurgi(鲁奇)煤气化技术 5.3 国内工业化煤气化装置技术最新成果3.2 Texaco(德士古)煤气化技术3.3 Shell煤气化技术工艺3.4 GSP煤气化技术3.5 Dow煤气化工艺3.6 Texaco、Shell、GSP三种气化技术对比一、引言我国石油资源相对短缺,仅占化石能源探明储量的51.3%,开采量仅为世界开采量的21.4%,石油供需矛盾日益突出。
由于世界资源日趋减少,中东地区战乱不止,石油价格动荡不稳因此大量依赖石油进口将严重威胁我国国民经济的运行安全。
同时,我国煤炭资源丰富,探明可采储量2040亿t(2002年)。
煤炭在一次能源消费结构中占有主导地位,20世纪80年代以来一直在70%上下。
专家研究认为,在未来相当长时期内,一次能源消费结构中煤炭仍将居主导地位,到2050年将维持在50%以上。
目前国内发展煤气化合成化工产品的势头很旺特别是在产地,一批新的煤化工项目开始起步,老企业正以现代新技术改造传统落后的生产装置,以油为原料的大、中型合成氨厂开始进行煤代油的技术改造。
通过改造可以达到降低生产成本,改善环境状况之目的。
本文针对这一情况综合介绍国内煤气化技术现状,并对目前主流煤气化技术作一横向对比。
煤炭气化,即在一定温度、压力条件下利用气化剂(O2、H2O或CO2)与煤炭反应生成洁净合成气(CO、H2的混合物),是对煤炭进行化学加工的一个重要方法,是实现煤炭洁净利用的关键。
煤炭气化技术,尤其是高压、大容量气流床气化技术,显示了良好的经济和社会效益,代表着发展趋势,是现在最清洁的煤利用技术,是洁净煤技术的龙头和关键。