释放负离子功能材料的研究进展

合集下载

负离子功能纤维及其纺织品的研究进展

负离子功能纤维及其纺织品的研究进展

文献标识码 : A
Re s e a r c h Pr o g r e s s i n An i o n Fu nc t i o na l Fi b e r a n d Te x t i l e
Z HANG Ka i j u n , LI Qi n g s h a n ,HONG We i , Z HANG Z e f e n g
1 负 离子 与人体健康 的关系
1 9 0 2 年空气 负离 子 的生物学 意义 被研究 人员 肯定 , 德国 物理 学家 菲利浦 ・ 莱 昂纳德 ( P h i l i p L i o n a d ) 博 士 提 出 自然环
和森林 中时, 会感到神清气爽、 心旷神怡 , 其 中一个很重要的
境中存在的空气负离子对人类健康是有益的, 并指 出空气负
离子 含量 最多 的地方 是在 山谷 瀑 布 … 3 ] 。负离 子 对空 气 、 物 品 表 面的微 生物 、 细菌、 病 毒均 有 一定 的灭 活作 用 _ 4 ] , 可 以降低 细胞 原生质 活性 酶 的活性并 破坏 细 菌 的细胞 膜 , 达 到 杀 菌抗
a n i o n t e x t i l e s h a v e a t t r a c t e d mo r e a n d mo r e a t t e n t i o n r e c e n t l y . Th e r e l a t i o n s h i p b e t we e n t h e a n i o n a n d h u ma n h e a l t h i s a n a l y z e d i n
t h e a r t i c l e ,a n d t h e a p p l i c a t i o n a n d r e s e a r c h s t a t u s a t h o me a n d a b r o a d o f a n i o n f u n c t i o n a l f i b e r a n d t e x t i l e a r e a n a l y z e d . Fi n a l l y t h e

2020年《兰州交通大学学报》总目次

2020年《兰州交通大学学报》总目次
吴娟丽,薛林贵,牛军波,BrownEmaneghemi,张 璐,武雯雯,王韶梅(125)
基于 citespace的乡村体育旅游研究进展分析 金 梅,罗博涵(132) 基于 RMP分析的河西走廊体育旅游产业高质量发展研究 马利超,佘宏靓(140) 中英两国高校大学生创新创业教育比较与启示 马军党,王 菲(147) 基于价值指向的高校绩效评价体系框架研究 杨在忠(152) 试论“十七年”体育故事片的叙事模式及其特征 闫 旭(156) 设计学视域下敦煌壁画色彩的创造性转化与创新应用 吕少华(162)
“不忘初心 牢记使命”作为加强党的建设永恒课题的三重逻辑 杨 平,孙娟平(138) 网络思想政治教育发展历史述评 刘华荣,敬 立(144) 能者就应该多劳吗? 王 莉(152) 生态翻译学视阈下兰州轨道交通公示语汉英译写规范例析 金 敏(162) 国家社科基金项目视角下西部地区马克思主义理论学科研究进展 马存勇,王永斌(167)
兰州交通大学学报
兰州黄河铁桥考量及价值转型探讨 刘 起(147) “功能对等”理论在警示警告用语日文译写中的应用 陈则新,刘利国(153)
第 2期
·土木工程与建筑· 隧道与地下工程荷载计算的研究现状 严松宏,李国良(1) 埋深对超浅埋软岩大断面隧道开挖变形影响研究 傅立磊(8) 低温下复合胶凝材料抗硫酸盐腐蚀性及微观机理研究 谢 超,王起才,代金鹏,李 盛,于本田(18) 重塑非饱和黄土水?热运移规律试验研究 李建东,王 旭,张延杰,蒋代军,李泽源,任军楠(24) ·交通运输工程· 中国铁路兰州局集团公司服务“一带一路”国家战略的基础性保障实践 李 力(32) ·电子、信息与计算机· 基于 YOLO的铁路侵限异物检测方法 于晓英,苏宏升,姜 泽,董 昱(37) 一种基于深度学习的电机轴承故障诊断方法 王春雷,路小娟(43) 基于图像处理的弓网燃弧检测方法 张振琛,顾桂梅,李占斌(5”1) 考虑偏差补偿 PSO?BP模型的 SCR入口 NOx软测量 李忠鹏,姜子运(58) 基于改进生成对抗网络的诗歌生成 孙可佳,李启南(64) 基于行为惩罚的合作演化研究 裴华艳,闫光辉,王焕民(71) ·机械与能源动力工程· 高速铁路箱梁桥?声屏障结构振动噪声初探 张晓芸,石广田,王开云,张小安(76) 涡产生器高度对换热器传热影响的仿真分析 党 伟,王良璧(85) 地铁车辆段检修设备标准化及 BIM应用初探 贾晓宏,奚育宏,石广田(94) ·测绘科学与技术· CPⅢ精密三角高程控制网精度影响因素分析 李建章,刘彦军(99) ·基础科学· 动态 Bertrand模型的分岔研究与混沌控制 刘荣荣,周 伟,王文瑞,柏恩鹏(105) 基于最大最小蚁群算法求解最小点覆盖问题 吴佩雯,陈京荣,姬璐烨(114) 基于相对距离的相依度函数及其性质 张亚文,李兴东,王善培(118) 两株嗜铁菌对土壤有效铁浓度及嗜铁素活性单位的影响

功能性聚酰胺纤维技术研究新进展

功能性聚酰胺纤维技术研究新进展

综述与专论合成纤维工业,2023,46(3):53CHINA㊀SYNTHETIC㊀FIBER㊀INDUSTRY㊀㊀收稿日期:2022-08-28;修改稿收到日期:2023-04-12㊂作者简介:李婷婷(1995 ),女,硕士生,主要研究方向为功能性化纤及纺织复合材料㊂E-mail:1522063766@㊂功能性聚酰胺纤维技术研究新进展李婷婷1,2(1.江苏新视界先进功能纤维创新中心有限公司,江苏苏州215228;2.国家先进功能纤维创新中心,江苏苏州215228)摘㊀要:详述了功能性聚酰胺纤维的各种改性技术及其研究进展,介绍了 十四五 期间聚酰胺纤维的相关政策,并对功能性聚酰胺纤维今后的发展提出建议㊂功能性聚酰胺纤维的制备技术主要包括物理改性㊁化学改性和生物基聚酰胺技术,其中物理改性主要有共混法㊁复合纺丝法㊁纤维截面异形化及静电纺丝技术,化学改性主要有共聚法㊁原位聚合法及表面化学改性,生物基聚酰胺技术主要是开发具有自主知识产权的生物基聚酰胺56纤维㊂ 十四五 期间关于聚酰胺纤维需要重点突破的关键技术有聚酰胺6熔体直纺技术㊁高品质差别化纤维技术㊁生物基聚酰胺纤维规模化生产技术等㊂功能性聚酰胺纤维未来的发展应向着绿色化和可循环再生方向发展,重点在研发多功能复合型聚酰胺纤维,突破生物基聚酰胺56大容量连续聚合及熔体直纺关键技术,加快实现静电纺丝功能性聚酰胺纤维产业化㊂关键词:聚酰胺纤维㊀功能性纤维㊀物理改性㊀化学改性㊀生物基聚酰胺㊀技术进展中图分类号:TQ342+.1㊀㊀文献标识码:A㊀㊀文章编号:1001-0041(2023)03-0053-06㊀㊀随着生活水平的提高,人们对纺织品已经不只是要求蔽体㊁保暖,纺织品的保健㊁舒适等功能性也是关注的重点㊂聚酰胺纤维具有拉伸强度高㊁弹性大㊁耐磨性好等优点,被广泛应用于服用㊁装饰用和工业用纺织品等领域,但传统的聚酰胺纤维存在耐热性㊁吸湿性和染色性较差等缺点㊂为改善聚酰胺纤维的缺点,众多研究者开展了对传统聚酰胺纤维的功能改性研究,各种功能性聚酰胺纤维也随着国内外化纤行业中新技术㊁新设备的不断涌现而被开发和应用㊂功能性聚酰胺纤维是指通过对普通聚酰胺改性或采用生物基聚酰胺得到的具有某些特殊功能的聚酰胺纤维㊂功能性聚酰胺纤维的制备技术主要包括物理改性㊁化学改性和生物基聚酰胺技术㊂其中,物理改性包括共混法㊁复合纺丝法㊁纤维截面异形化和静电纺丝法等;化学改性包括共聚法㊁原位聚合法及表面化学改性等[1]㊂此外,生物基聚酰胺也是目前功能性聚酰胺纤维的研发热点之一㊂作者综述了功能性聚酰胺纤维的不同改性技术及其研究进展,以及近两年国家的相关政策方针,并对今后聚酰胺纤维功能改性技术的发展提出建议㊂1㊀物理改性1.1㊀共混法共混法是聚合物改性的一种常用方法,通常是将无机小分子㊁有机低分子或有机高分子与聚酰胺切片共混㊁熔融纺丝制备功能性聚酰胺纤维㊂杜邦公司在共混改性领域的研究较多,在20世纪80年代就开展了对聚酰胺共混改性的研究㊂共混改性适合微观尺寸较大的添加剂或改性剂,其工艺简单,可用于常规纺丝设备生产,纤维的物理性能可以达到常规纤维的质量要求㊂HAN J [2]采用溶液聚合法,以4-乙烯基吡啶㊁甲基丙烯酸甲酯及2-(全氟辛基)合成长链季铵盐(NP),将NP 与聚己内酰胺(PA 6)混合,通过熔融纺丝及拉伸制得抗菌PA 6纤维,与纯PA 6纤维相比,在经过洗涤7d 后仍能灭活96%以上的接种大肠杆菌和金黄色葡萄球菌㊂CHEN T等[3]将聚己二酰己二胺(PA 66)分别和球磨法处理后的对羧基化的多壁碳纳米管及十二烷基苯磺酸钠改性的碳纳米管共混熔融纺丝制备复合纤维,复合纤维拉伸强力相比于纯PA 66纤维分别提高27%和24%㊂袁修钦[4]通过在熔融纺丝过程中添加黑色母㊁自发热粉体㊁抗菌粉体,与PA 6共混熔融纺丝制备黑色PA 6纤维㊁自发热PA 6纤维㊁抗菌PA6纤维,黑色PA6纤维具有较好的黑色光泽性,抗菌PA6纤维对大肠杆菌具有90%以上的杀菌率㊂赖慧玲[5]将PA6与一种新型架状硅酸盐(QE粉)熔融共混,经双螺杆挤出㊁造粒得到QE/PA6母粒,使用高速纺丝机通过纺丝㊁拉伸一步法工艺制备QE/PA6并列复合纤维,纤维在UVA波段(320~400nm)的透过率较纯PA6纤维降低20%~35%,说明复合纤维较纯PA6纤维的抗紫外性能有明显提升㊂蔡倩等[6-7]以季戊四醇磷酸酯(PEPA)㊁二乙基次膦酸铝(ADEP)和三聚氰胺磷酸盐(MPP)为阻燃剂,共混熔融制备阻燃PA6,结果表明将质量比为3 1的PEPA和MPP复配加入PA6中,具有一定的协同阻燃效果,当阻燃剂总质量分数为20%时,共混体系的极限氧指数(LOI)为28%,阻燃等级为UL-94V-2级㊂共混改性是制备功能性聚酰胺纤维的常见方法,工艺简单,可通过添加不同的改性剂制备具有不同功能的聚酰胺纤维,如阻燃㊁抗菌㊁抗紫外聚酰胺纤维等㊂1.2㊀复合纺丝法复合纺丝法是将两种或两种以上不同化学组成或不同浓度的纺丝流体同时通过一个具有特殊分配系统的喷丝头制得复合纤维[8]㊂复合纤维以皮芯结构和海岛结构为主㊂何淑霞等[9]以二甲苯作为开纤剂,制得PA6/聚乙烯(PE)海岛型复合超细纤维㊂甘宇等[10]制备了聚酰胺/聚酯皮芯型复合纤维,当两组分熔体温度差较小㊁黏度相近时,更易制备结构稳定和性能较好的复合纤维㊂李顺希等[11]以高密度聚乙烯(HDPE)为皮,以PA6为芯,通过皮芯复合纺丝制备HDPE/PA6复合纤维,当以HDPE与PA6切片的质量比为40 60进行复合纺丝时,制备的复合纤维断裂强度较高,达到3.57~3.82cN/dt-ex,且复合纤维面料具有较好的接触凉感性能,接触凉感系数达0.23J/(cm2㊃s)㊂崔晓玲等[12]以聚苯硫醚(PPS)为皮层㊁PA6为芯层,制备PPS/ PA6偏心皮芯型复合纤维,拉伸后得到具有三维卷曲性能的纤维,改善了纤维的蓬松性,并且在酸处理后,芯层PA6被腐蚀,形成C形截面纤维,有利于改善复合纤维过滤材料的过滤性能㊂复合纺丝技术是制造超细纤维的重要手段之一,可以实现改善纤维的吸湿性㊁永久卷曲性㊁蓬松性,尤其是可以开发力学性能优异的超细聚酰胺纤维㊂1.3㊀纤维截面异形化纤维截面异形化是指采用特殊形状的喷丝孔纺制非圆形截面的异形纤维,如三角形㊁星形和Y 形纤维等㊂纤维截面异形化是制备功能纤维的一种重要方法,异形截面纤维具有特殊的光泽㊁膨松性和耐污性,并具有抗起球性,能改善纤维的回弹性等㊂2014年日本东丽公司推出的速干尼龙纤维产品Salacona是通过六叶形截面尼龙纤维与圆形截面尼龙纤维的混纺丝所产生的毛细现象来实现快速吸汗[13]㊂陈立军等[14]通过母粒法共混熔融纺丝制备圆形㊁三角形和十字形截面的PA6/石墨烯复合纤维,纤维截面异形度显著增加,具有较好的负离子释放功能㊁远红外保健效果,以及优异的吸湿和干燥效果,其中十字形截面纤维异形度达58.29%,负离子释放浓度最高达1820个/cm3,远红外法向发射率达0.93,远红外辐射温升为1.70ħ,3h吸水率达4.4%,1h失水率达到2.6%㊂凌荣根等[15]采用纳米级负氧离子粉体改性PA6制备功能母粒,与PA6切片进行共混纺丝,制备出扁平形及三叶形的PA6纤维,纤维异形度达40%以上,因比表面积大更容易释放负氧离子,其释放负离子浓度达到4560个/cm3,三叶形PA6纤维还具有优良的毛细芯吸作用和干爽的手感,所制备的织物具有良好的悬垂性㊁吸汗㊁清凉感和快干特点,适合夏季等高热湿环境㊂赵晓敏[16]首先使用硅烷偶联剂KH550对纳米级玉石粉㊁氮化铝粉㊁碳化硅粉进行改性处理,通过熔融共混制备改性PA6切片,采用熔融纺丝法制备十字形截面PA6纤维;再对其进行织造,得到凉感PA6织物,织物的芯吸高度达102mm,符合国家标准中对织物吸湿性指标的规定㊂与常规纤维相比,纤维截面异形化显著增加了纤维截面异形度,改善了纤维的膨松性㊁吸湿性㊁光泽㊁弹性等,可用于开发速干型纺织品及其他功能性纺织品㊂1.4㊀静电纺丝法静电纺丝法[17]是一种新型的物理改性方法,将不同性质㊁相对分子质量的聚合物和活性成分通过静电纺丝加工成纳米级纤维,可改善纤维的孔隙结构㊁亲水性㊁催化性㊁抗菌性和生物相容性等,使其在吸附分离㊁污水处理㊁生物传感㊁防护㊁空气过滤㊁智能穿戴及组织工程等不同领域和场45㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷景具有广泛的应用前景㊂ZHANG H T等[18]采用静电纺丝技术制备PA6/壳聚糖复合纳米纤维膜,壳聚糖的添加提高了纳米纤维膜的亲水性㊂M.FAZELI[19]采用静电纺丝技术成功制备PA6/壳聚糖纳米复合膜,纤维中PA6和壳聚糖之间存在分子间相互作用,形成新的氢键,且纳米复合膜的电导率随着壳聚糖含量的增加而提高㊂J.S.JEONG等[20]采用静电纺丝技术制备多壁碳纳米管/PA66复合纳米纤维,随着多壁碳纳米管的添加纤维的电性能得到改善㊂牛小连[21]以PA6/PA66为基质,通过静电纺丝和仿生矿化等技术开发出仿生人工骨修复材料㊂熔体静电纺丝法与溶液静电纺丝法相比,具有无溶剂污染㊁产率较高的优势,但是制备的纤维相对较粗㊂杜远之等[22]采用自主设计的熔体静电纺丝设备成功制备PA6超细纤维,纤维平均直径为2.25~6.31μm㊂刘伟伟[23]利用自行设计制造的高效熔体静电纺丝装置成功制备PA6微纳米纤维,平均直径在7μm左右㊂静电纺丝技术是近年来的研究热点,很多科研机构㊁高等院校都在进行研究,主要方向是静电纺超细纤维在空气过滤㊁柔性电子材料及医用防护等领域的应用㊂聚酰胺纤维的静电纺丝技术目前仍处于实验室阶段,将其应用于产业化还有较大困难㊂2㊀化学改性2.1㊀共聚法共聚法是聚酰胺纤维化学改性的主要手段,通过共聚单体的选择改变聚合物的性能[24],在改变聚合物的组成和结构的同时改变其熔点㊁溶解性㊁结晶度和透明性等,从而制备具有多功能的共聚酰胺㊂将两种及两种以上聚酰胺单体进行共聚,可制得多种具有特殊性能的共聚酰胺纤维,如美国Auied公司已工业化生产的高吸水共聚酰胺纤维 drofile 系列化产品是以PA6与聚氧化乙烯二胺的嵌段共聚物通过熔体纺丝制得[25]㊂此外,将聚乙二醇(PEG)端基进行氨基化改性,与PA6制备的共聚酰胺纤维具有优良的吸湿性㊂欧育湘等[26]采用双(4-竣苯基)苯基氧化膦己二胺盐/己二酸己二胺盐无规共聚得到本质阻燃PA66,由于双(4-羧苯基)苯基氧化膦中含有大量的苯环结构,显著提升PA66燃烧后的残炭量,明显改善PA66的阻燃性能㊂2021年,天津科技大学与天津长芦海晶集团有限公司合作,通过选择合适的共聚单体和聚合物,制备出具有软化点低㊁柔软㊁透明性好和易溶解等特殊性能的聚酰胺㊂共聚改性是聚酰胺最为简单有效的改性方法之一,是从分子结构入手,利用共聚方法制备具有阻燃性能㊁吸水率低㊁抗静电㊁柔软㊁透明性好㊁易溶解等功能的聚酰胺纤维㊂2.2㊀原位聚合法原位聚合法是通过在聚酰胺聚合过程中添加改性剂对其进行改性㊂通过原位聚合可开发出品种繁多的功能性聚酰胺纤维新产品㊂WU Z Y等[27]选用三聚氰胺氰尿酸酯(MCA)作为阻燃剂,通过原位聚合制备阻燃PA6,原位聚合后体系中的MCA粒子具有直径小于50nm的纳米尺寸,且均匀地分散在PA6基体中,得到的阻燃PA6的阻燃性能可以达到UL-94V-0级㊂原位聚合阻燃PA6的特点是不同种类的粉体阻燃剂在PA6基体中均匀分散,并且阻燃剂在PA6中不易析出,具有阻燃持久稳定性㊂TANG L等[28]通过原位聚合法制备PA6/石墨烯复合材料,再通过熔融纺丝制备PA6/石墨烯复合纤维,加入石墨烯质量分数为0.05%时复合纤维的断裂强度最大达5.3cN/dtex,与纯PA6纤维相比,复合纤维表现出更好的抗蠕变性能㊂王一帆[29]设计并合成一种具有活性端基的刚性芳香族聚酰胺预聚体,然后将其分散于己内酰胺熔体之中,通过原位聚合制备芳香族聚酰胺-聚己内酰胺共聚物(APA),并通过熔融纺丝制备APA纤维,结果表明,通过向PA6的主链中引入芳香族聚酰胺,APA纤维的最大抗拉强度较未改性的PA6纤维高出140.97%,断裂伸长率明显下降㊂于昆[30]通过原位聚合法制备出PA6/11/氧化石墨烯复合切片,并经熔融纺丝工艺制备PA6/11/氧化石墨烯复合纤维;当添加的氧化石墨烯质量分数为0.5%时,复合纤维的拉伸强度可达610 MPa;当添加的氧化石墨烯质量分数为1.0%时,复合纤维的饱和吸水率下降61.6%,电导率达到3.4ˑ10-9S/m,纤维热性能㊁导电性能和吸湿性能都得到了有效改善㊂原位聚合改性技术是在生产源头添加不同的改性剂制备不同功能性的聚酰胺纤维,如阻燃聚酰胺纤维㊁凉感聚酰胺纤维和原液着色聚酰胺纤55第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀李婷婷.功能性聚酰胺纤维技术研究新进展维等,其中原液着色聚酰胺纤维已经很好地实现了产业化㊂2019年中国平煤神马集团帘子布发展公司制备出工业用PA66色丝,2021年神马实业股份有限公司成为全球最大PA66原液着色纤维生产基地,该技术是在PA66纤维生产源头直接添加染色剂,并在封闭㊁高温㊁高压环境下一次聚合而成[31]㊂2020年化纤联盟开发出原液着色聚酰胺纤维高效制备成套技术,成功制得高色牢度㊁深色细旦的多色彩㊁多功能高品质聚酰胺纤维㊂2021年海阳科技股份有限公司研发出细旦㊁超细旦长丝用高性能黑色原位聚合PA6切片及超高强PA6长丝,该技术是在聚合过程中采用纳米级着色剂与PA6熔体充分混合,经纺丝得到有色PA6纤维,纤维色牢度高,织造后无需再染色,无染色污水排放,省水节能,绿色环保[32]㊂恒申集团以颜料㊁尼龙粉末和助剂为原料制备PA6色母粒,再通过高温熔融纺丝制备原液着色PA6长丝;还通过添加玉石粉制备可快速逸散热量的凉感PA6纤维,纤维接触凉感系数可达0.25 J/(cm2㊃s)㊂2.3㊀表面化学改性表面化学改性是通过改变聚酰胺纤维大分子的表面化学结构,以达到改善纤维的表面性能的目的㊂D.PAPPAS等[33]将PA6纤维在大气压辉光放电(APGD)下用氮气㊁氦气和乙炔进行等离子处理,等离子处理后纤维的水接触角显著降低,表面亲水性得到改善㊂徐娜等[34]用常压等离子对PA6纤维进行改性处理,然后采用(3-巯基丙基)三甲氧基硅烷(MPS)对PA6纤维表面进行巯基化改性,并用乙烯基胶原蛋白对巯基化PA6纤维进行表面修饰,得到的纤维吸水率提高155%,具有良好的吸湿性能㊂表面化学改性是在纤维成形后进行,该方法应用最多的是在聚酰胺分子链中引入大量亲水性基团,通过接枝共聚或通过添加某些有机物从而提高聚酰胺纤维亲水性和染色性㊂3㊀生物基聚酰胺纤维生物基聚酰胺纤维技术是指利用可再生的生物质为原料,通过生物㊁化学及物理等手段制备用于合成聚酰胺的原料包括生物基二元酸和生物基二元胺等,再通过聚合反应合成生物基聚酰胺,通过纺丝制备生物基聚酰胺纤维㊂该方法具有绿色㊁环境友好和原料可再生等特点㊂2016年,北京中丽制机工程技术有限公司通过系统研究生物基聚酰胺56(PA56)的纺丝工艺技术,开发出国产生物基PA56长丝一步法纺牵联合机及生物基PA56工业丝纺牵联合机,为生物基PA56纤维产业化提供了设备保障[35]㊂东华大学和盛虹集团等10家单位联合承担 十三五 国家重点研发计划项目 生物基聚酯㊁聚酰胺高效聚合纺丝技术,开发了生物基聚酰胺高效聚合纺丝技术㊂MAO L等[36]以2,5-二羧酸二甲基呋喃和1,3-环己二胺为原料,通过熔体聚合合成生物基聚酰胺㊂CAO K K等[37]采用生物基2,5-呋喃二甲酰氯和3,4-二氨基二苯醚在N,N-二甲基乙酰胺中进行低温溶液缩聚制备一种含有呋喃环的芳族聚酰胺树脂,并采用干喷湿法纺丝法制备出溶解性㊁可纺性㊁耐热性和阻燃性能优良的含呋喃环的芳香族聚酰胺纤维,纤维的LOI为40%,阻燃等级为UL-94V-0级,其中单体2,5-呋喃酰氯为生物质,资源丰富㊂目前,我国自主研发且具有完整知识产权的生物基聚酰胺纤维品种是生物基PA56纤维㊂生物基PA56纤维的强度和密度可以媲美PA66纤维,染色性㊁吸湿快干性和阻燃性更优于PA66纤维㊂上海凯赛生物技术股份有限公司推出了生物基PA56纤维产品 泰纶®,其生物质质量分数高达47%~100%,原料主要以自主研发的生物基戊二胺和不同的二元酸聚合而成㊂生物基PA56纤维具有良好的力学性能㊁吸湿性㊁柔软性㊁耐磨性㊁染色性㊁耐热性㊁耐化学性与阻燃性,适合应用于服装㊁家纺㊁产业用纺织品等领域,但生物基PA56纤维的大规模推广还面临生物原料供给与成本控制,生产中能耗降低及副产物综合利用等问题,今后需要继续在生物基单体发酵与纯化㊁聚合㊁纺丝及应用等领域加大研发投入,不断降低生产成本,才能促进生物基PA56纤维在纺织领域的大规模应用[38]㊂4㊀相关政策随着地球环境问题和资源能源问题的日益突出,绿色可持续发展成为各界关注的焦点㊂为巩固提升纺织工业竞争力,满足消费升级需求,服务战略性新兴产业发展,国家出台了相应的政策支持㊂65㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷2021年6月,中国纺织工业联合会发布的‘纺织行业 十四五 科技发展指导意见“中关于聚酰胺需要重点突破的关键共性技术有:研究PA6熔体直纺技术,突破生物基聚酰胺纤维规模化生产关键技术,开发高品质差别化产品,加强应用技术开发,2025年聚酰胺纤维材料高效柔性制备技术达到国际先进水平㊂2022年4月,工信部㊁国家发改委联合印发的‘关于化纤工业高质量发展的指导意见“指出:加快生物基化学纤维和可降解纤维材料的发展,提升生物基化学纤维单体及原料纯度,加快稳定㊁高效㊁低能耗成套技术与装备集成,实现规模化㊁低成本生产,并强调了提升生物基聚酰胺纤维的规模化生产关键技术,加快生物基聚酰胺纤维的发展㊂此外,根据政策的指导方向,为实现绿色可持续发展,国内化学纤维行业龙头企业均对全流程生产低碳化㊁产品绿色化㊁可再生循环等方面制定了发展目标㊂5 结语随着应用研究的不断深入,功能性聚酰胺纤维在服用㊁民用及军用领域的应用将不断扩大,同时对其综合性能的要求也越来越高㊂ 十四五 期间是我国纺织工业迈向世界科技强国前列的重要时期,绿色发展成为全球产业发展的刚性要求㊂功能性聚酰胺纤维未来的发展应向着绿色化和可循环再生方向发展㊂(1)研发耐高低温㊁耐辐照及具备阻燃抗菌等多功能复合型聚酰胺纤维,满足在各种特种条件下的应用㊂(2)生物基聚酰胺纤维将成为未来的研究重点㊂推动生物基聚酰胺纤维在军用领域和民用领域的规模化应用,推动再生循环发展,实现 低碳 甚至 零碳 排放㊂重点突破生物基PA56大容量连续聚合及熔体直纺关键技术,实现生物基PA56纤维的规模化生产㊂(3)加快实现静电纺丝功能性聚酰胺纤维产业化㊂静电纺功能性聚酰胺纤维在光电子传感器㊁过滤材料和生物医学材料等方面的应用十分广泛,这些方向将成为未来改性研究的重点㊂参㊀考㊀文㊀献[1]㊀孙振华.聚酰胺改性技术及改性产品研究进展[J].纺织科学与工程学报,2018,35(4):163-166,121. [2]㊀HAN J,YIN S,ZHANG X,et al.Design and synthesis ofbactericidal block copolymer for preparing durably antibacterial PA6fiber[J].Micro&Nano Letters,2019,15(1):47-51.[3]㊀CHEN T,LIU H H,WANG X C,et al.Properties and fabri-cation of PA66/surface-modified multi-walled nanotubes com-posite fibers by ball milling and melt-spinning[J].Polymers, 2018,10(5):547.[4]㊀袁修钦.功能尼龙6纤维的制备及性能表征[D].武汉:武汉纺织大学,2018.[5]㊀赖慧玲.量子能微粒改性聚酰胺6纤维的制备及应用[D].杭州:浙江理工大学,2019.[6]㊀蔡倩.阻燃PA6的制备及结构性能研究[D].北京:北京服装学院,2017.[7]㊀蔡倩,王锐,董振峰,等.PA6/PEPA复合物的制备及结构性能研究[J].化工新型材料,2018,46(1):144-149. [8]㊀宁宁,甘佳佳,冯培,等.并列型PA6/PET复合扁平纤维挤出成形工艺的数值模拟[J].合成纤维工业,2016,39(6):60-64.[9]㊀何淑霞,胡国樑,李霞.PA6/PE海岛型复合超细纤维的开纤工艺研究[J].现代纺织技术,2016,24(2):4-7. [10]甘宇,姬洪,徐锦龙,等.聚酰胺/聚酯皮芯复合纤维的研究开发[J].合成纤维,2020,49(2):7-12,18. [11]李顺希,许志强,詹莹韬,等.高密度聚乙烯/聚酰胺6复合纤维的制备及性能[J].合成纤维工业,2020,43(1): 42-45,49.[12]崔晓玲,王依民,胡申伟,等.PPS/PA6偏心皮芯型复合纤维的研究[J].合成纤维,2008,37(2):14-17. [13]钱伯章.东丽推出速干尼龙纤维材料[J].合成纤维,2014,43(10):54.[14]陈立军,钟百敏,胡泽旭,等.截面形状对聚酰胺6/石墨烯复合纤维性能的影响[J].合成纤维,2019,48(7):5-8.[15]凌荣根,李彩娥,郭成越,等.负氧离子PA6异形纤维的制备[J].丝绸,2010(5):35-37.[16]赵晓敏.凉感聚酰胺6纤维的制备及性能评价[D].上海:东华大学,2016.[17]李福顺,李显波,潘福奎.电极丝静电纺制备聚酰胺纳米纤维膜[J].塑料工业,2017,45(5):78-82. [18]ZHANG H T,LI S B,BRANFORD WHITE C J,et al.Studieson electrospun nylon-6/chitosan complex nanofiber interactions [J].Electrochimica Acta,2009,54(24):5739-5745. [19]FAZELI M,FAZELI F,NUGE T,et al.Study on the prepara-tion and properties of polyamide/chitosan nanocomposite fabri-cated by electrospinning method[J].Journal of Polymers and the Environment,2022,30:644-652.[20]JEONG J S,JEON S Y,LEE T Y,et al.Fabrication ofMWNTs/nylon conductive composite nanofibers by electrospin-ning[J].Diamond and Related Materials,2006,15(11/12): 1839-1843.[21]牛小连.仿生矿化静电纺聚酰胺纳米纤维骨组织工程支架研究[D].太原:太原理工大学,2021.75第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀李婷婷.功能性聚酰胺纤维技术研究新进展[22]杜远之,徐阳,魏取福,等.熔体静电纺PA6超细纤维的制备与工艺研究[J].工程塑料应用,2013,41(10):38-41.[23]刘伟伟.熔体静电纺丝法制备高分子纤维材料的实验研究[D].青岛:青岛科技大学,2013.[24]WHA K,KIM S H,KIM E A.Improved surface characteristicsand the conductivity of polyaniline-nylon6fabrics by plasma treatment[J].Journal of Applied Polymer Science,2001,81(3):684-694.[25]朱建民.聚酰胺纤维[M].北京:化学工业出版社,2014.[26]欧育湘,陈宇,王筱梅.阻燃高分子材料[M].北京:国防工业出版社,2001.[27]WU Z Y,XU W,XIA J K,et al.Flame retardant polyamide6by in situ polymerization ofε-caprolactam in the presence of melamine derivatives[J].Chinese Chemical Letters,2008,19(2):241-244.[28]TANG L,LI Y R,CHEN Y,et al.Preparation and character-ization of graphene reinforced PA6fiber[J].Journal of Ap-plied Polymer Science,2018,135(10):45834.[29]王一帆.芳香族聚酰胺预聚体共聚改性聚已内酰胺的研究[D].苏州:苏州大学,2013.[30]于昆.聚酰胺6/11/碳纳米复合纤维的制备与性能研究[D].广州:华南理工大学,2020.[31]郑宁来.神马尼龙66工业用色丝顺利下线[J].合成纤维工业,2020,43(2):36.[32]李若欣,陈国强,常广涛,等.一种尼龙6原位着色切片及其制备方法:112724399B[P].2021-06-22. [33]PAPPAS D,BUJANDA A,DEMAREE J D,et al.Surfacemodification of polyamide fibers and films using atmospheric plasmas[J].Surface and Coatings Technology,2006,201(7):4384-4388.[34]徐娜,王学川,黄剑锋,等.常压等离子体对聚酰胺纤维表面刻蚀及巯基化研究[J].西部皮革,2018,40(21):43-47.[35]刘博.国产尼龙56长丝一步法纺牵联合机的探究[J].价值工程,2016,35(27):107-111.[36]MAO L,PAN L J,MA B,et al.Synthesis and characteriza-tion of bio-based amorphous polyamide from dimethyl furan-2, 5-dicarboxylate[J].Journal of Polymers and the Environment, 2022,30(3):1072-1079.[37]CAO K K,LIU Y F,YUAN F,et al.Preparation and proper-ties of an aromatic polyamide fibre derived from a bio-based fu-ran acid chloride[J].High Performance Polymers,2021,33(9):1083-1092.[38]孙朝续,刘修才.生物基聚酰胺56纤维在纺织领域的应用研究进展[J].纺织学报,2021,42(4):26-32.New progress in technology research of functional polyamide fiberLI Tingting(1.Jiangsu New Vision Advanced Functional Fiber Innovation Center Co.,Ltd.,Suzhou215228;2.National Advanced Functional Fiber Innovation Center,Suzhou215228) Abstract:The different modification technologies of functional polyamide fibers and their research progress were reviewed.The relevant policies for polyamide fibers during the14th Five Year Plan period were introduced.And some suggestions for the future development of functional polyamide fibers were put forward.The preparation technology of functional polyamide fibers mainly in-cludes physical modification,chemical modification and bio-based polyamide technology,among which the physical modification mainly includes blending method,composite spinning technology,fiber profiled cross-section modification and electrospinning technology,the chemical modification mainly includes copolymerization method,in-situ polymerization method and surface chem-ical modification,and the bio-based polyamide technology is to mainly develop bio-based polyamide56fiber with independent in-tellectual property rights.During the14th Five Year Plan period,the key technologies of polyamide fibers that need to make breakthroughs include polyamide6melt direct spinning technology,high-quality differentiated fiber technology,and large-scale bio-based polyamide fiber production technology.The future development of functional polyamide fibers should be oriented to-wards greening and recyclable regeneration,with a focus on the research and development of multifunctional composite polyamide fibers,the breakthroughs in the key technologies of high-capacity continuous polymerization and melt direct spinning of bio-based polyamide56,and the acceleration of electrospun functional polyamide fibers industrialization.Key words:polyamide fiber;functional fiber;physical modification;chemical modification;bio-based polyamide;technology progress85㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷。

文献综述(关于环保涂料)

文献综述(关于环保涂料)

文献综述院(系):材料科学与工程学院专业:高分子材料与工程班级:高材1102学生姓名:凌美明学号:20110120542013 年 11月 20日环保涂料的运用与发展1 前言为了更好的开展文献综述工作,在查找和阅读与《环保涂料的运用与发展》相关的文献和资料,完成撰写了本文献综述。

随着科技的日趋成熟涂料的制备方法也越来越成种类也衍生得越来越多。

但是真正能实现环保的功能性涂料在市场中并不是十分普及,本文章将对国内外的环保涂料种类,制备,组成,新型材料,发展现状及趋势,工艺性能等进行介绍。

2 环保涂料的种类及制备方法简2.1环保涂料的种类2.1 .1 普通环保涂料指涂料产品的性能指标,安全指标在符合各自产品标准的前提下,符合国家环境标志提出的技术要求的涂料[1].2.1.2低VOC环保涂料尽管不需要成膜助剂就能成膜的乳液对于生产低VOC和零VOC涂料是至关重要的,但仅此是不够的,还要求这类乳液具有很低的残余单体含量,因为残留单体不仅提高VOC含量,而且还产生难闻气味。

同时要有不含溶剂、环境友好型的助剂和色浆与之相配。

还要求乳液色浆中不含烷基酚聚氧乙烯(APE),APE降解性差,对人体内分泌有干扰作用。

此外,防腐剂和PH调节剂的释放问题也需考虑。

低VOC涂料:TVOC在30g/L以下;零VOC涂料:TVOC在1g/L以下;VOC挥发物都是液态的,简单区分零VOC涂料是粉末状,粉体包装[2]。

2.1.3健康功能型环保涂料健康功能性环保涂料是指涂料除无污染外,具有如抗菌、除臭、净化空气、呼吸调湿等对环境改善、对人体健康有益的涂料,如活性炭墙材。

2.1.4木器专用环保涂料木蜡油是一种新型的环保木器涂料,它是植物油蜡涂料国内的俗称,是一种类似油漆而又区别于油漆的天然木器涂料,它和目前那种基于石化类合成树脂所生产的油漆完全不同,原料主要以精练亚麻油、棕榈蜡等天然植物油与植物蜡并配合其它一些天然成分融合而成,连调色所用的颜料也达到了食品级。

电气石负离子释放材料的制备及性能研究

电气石负离子释放材料的制备及性能研究

电气石负离子释放材料的制备及性能研究电气石负离子释放材料的制备及性能研究引言:电气石是一种天然矿物质,其具有独特的电气特性。

近年来,人们越来越关注电气石的应用,特别是其在负离子释放材料中的潜力。

本文将重点介绍电气石负离子释放材料的制备方法及其性能研究。

一、电气石负离子释放材料的制备方法1. 电气石的提取与净化电气石一般存在于石英矿石中,其提取过程需要进行矿石的破碎、粉碎和筛分等步骤。

随后,利用浸泡、浮选和干燥等工艺方法可以分离出电气石。

而为了得到纯净的电气石,还需要进行净化处理,如酸洗或碱洗等。

2. 电气石的改性处理由于天然电气石的结构不够均匀且含有杂质,因此需要进行改性处理,以提高其负离子释放性能。

常见的改性方法包括离子交换、热处理和化学处理等。

离子交换能够将电气石中的杂质离子置换为特定的离子,从而提高其纯度。

热处理则可以通过改变电气石的晶格结构,增强其负离子释放效果。

化学处理则可以将电气石与其他物质反应,以改变其化学成分和结构。

3. 电气石负离子释放材料的制备首先,将改性后的电气石粉末与聚合物或陶瓷粉末进行混合。

其次,通过压制、成型和烧结等工艺将混合物制备成块状或颗粒状的电气石负离子释放材料。

最后,进行表面处理,如抛光或涂覆等,以提高电气石材料的外观和性能。

二、电气石负离子释放材料的性能研究1. 负离子的释放性能负离子的释放性能是电气石负离子释放材料最重要的性能之一。

通过负离子检测仪可以测量材料中负离子释放的数量和速度。

研究表明,制备方法、电气石质量和改性处理等因素都会对负离子释放性能产生影响。

2. 表面电荷密度电气石负离子释放材料的表面电荷密度是影响其负离子释放性能的重要参数之一。

通过表面电位仪可以测量材料表面的电位差,从而计算出其表面电荷密度。

研究发现,改性处理可以显著增加电气石材料的表面电荷密度,从而提高负离子的释放效果。

3. 其他性能研究除了负离子释放性能和表面电荷密度,还可以对电气石负离子释放材料进行其他性能的研究。

功能性粘胶纤维研究进展

功能性粘胶纤维研究进展

功能性粘胶纤维研究进展摘要:粘胶纤维具有产量高、生产周期短、成本低等特点,深受消费者青睐。

随着纺丝工艺的进步,粘胶纤维也逐渐向功能性方向发展。

文章探讨了相变粘胶纤维、除臭抗菌粘胶纤维、驱蚊粘胶纤维、负离子粘胶纤维等4种功能性粘胶纤维的加工机理与应用现状,以为功能性粘胶纤维的开发提供一些参考。

关键词:相变粘胶纤维;除臭抗菌粘胶纤维;驱蚊粘胶纤维;负离子粘胶纤维1相变粘胶纤维相变粘胶纤维又被称为“空调粘胶纤维”“调温纤维”,具有一定的温度调节功能,其开发机理是在粘胶纤维纺丝液中加入一定量的相变材料后通过湿法纺丝纺制纤维,可保持相变材料的特性,从而使得粘胶纤维的温度具有可调控性。

目前可作为粘胶纤维相变材料的主要有3类,包括以金属、熔融盐类、结晶水合盐类为代表的无机物类,以醋酸、石蜡等为代表的有机物类,以及以无机物与有机物制备的复合相变材料。

相变粘胶纤维在调温方向上可分为单向温度调节和双向温度调节2种,前者指单使温度升高或降低的纤维,后者则是利用2种或以上物质在相变过程中吸收或释放热量(受热时相变材料吸热变成液状,受冷时相变材料又会及时释放热量变成固态),从而使纤维具备调温蓄热功能,德国Kelheim(柯恩)纤维有限公司与美国Outlast技术公司联合研制的Outlast®相变粘胶纤维就属于此类纤维。

现阶段,相变粘胶纤维的加工主要有2种方式:一是将制备的相变微胶囊涂层在织物表面;二是将相变微胶囊植入纤维内部。

许颍琦等以相变材料植入纤维内部的粘胶纤维为研究对象,观察测试了纤维的微观形貌、吸湿性能、力学性能与耐酸碱性能,验证了相变粘胶纤维的中空结构及其空腔中所含微胶囊,也验证了纤维吸湿导汗、力学性能、保暖及耐酸性能较差,调控温度与耐碱性能较好的特性。

近年来,我国相变粘胶纤维的研制取得了一些进步,如河北吉藁化纤有限责任公司与北京巨龙博方科学技术研究院联合研制了“丝维尔”智能调温粘胶纤维。

2除臭抗菌粘胶纤维人体产生臭味的原因主要有2方面:一是人体自身新陈代谢产生的代谢物,二是微生物或细菌繁殖分解织物表面污物而产生的臭气(氨气)。

石墨烯 正负离子

石墨烯 正负离子

石墨烯正负离子介绍石墨烯是一种由碳原子形成的单层蜂窝状结构的二维材料。

由于其独特的性质,石墨烯正负离子在材料科学、能源领域以及生物医学应用等方面展示出广泛的潜力。

本文将深入探讨石墨烯正负离子的相关性质、应用以及未来的发展方向。

石墨烯正离子1. 正离子概述正离子是指带正电荷的离子,通常由金属原子失去一个或多个电子形成。

正离子在化学反应和材料性质中发挥着重要的作用。

在石墨烯中,正离子可以通过吸附、插层等方式与石墨烯相互作用,改变石墨烯的电子结构和性质。

2. 石墨烯正离子的性质•高吸附性:石墨烯具有巨大的表面积和高度的结构紧凑性,使其成为一种出色的吸附剂。

正离子可以与石墨烯表面发生吸附作用,从而改变石墨烯的电子结构,增强其化学反应活性。

•电子转移性:石墨烯的π电子构成了其独特的电子结构,可以与正离子进行电子转移反应。

这种电子转移反应可以改变正离子的电荷状态,进而影响其化学活性和物理性质。

3. 石墨烯正离子的应用•催化剂:石墨烯正离子可以作为催化剂的载体,提高催化剂的活性和稳定性。

石墨烯正离子的高吸附性和电子转移性使其成为优秀的氧化剂或还原剂,可以用于催化反应中。

•电池材料:石墨烯正离子可以作为电池材料,提高电池的性能。

石墨烯的高电导率和电子转移性使得正离子在电池中的移动速度更快,电池的充放电速度更快,容量更大。

•生物医学应用:石墨烯正离子具有良好的生物相容性和生物活性,可以用于药物传递、生物传感器和生物成像等领域。

石墨烯正离子可以与生物分子相互作用,并在体内释放活性物质,从而实现药物的靶向输送。

4. 石墨烯正离子的挑战和展望石墨烯正离子的应用还面临许多挑战,例如制备工艺的成本和可扩展性,正离子与石墨烯之间的相互作用机制的理解,以及其在生物医学应用中的生物安全性等方面。

未来的研究需要进一步探索石墨烯正离子的制备方法、性质调控以及在各个领域的应用。

石墨烯正离子的更广泛应用将为材料科学和能源领域带来巨大的发展和进步。

产生负离子功能材料的研究进展及应用

产生负离子功能材料的研究进展及应用

产生负离子功能材料的研究进展及应用1.负离子功能材料是一种能够释放负离子的材料,对健康有益。

Negative ion functional materials are materials that can release negative ions, which are beneficial to health.2.近年来,对负离子功能材料的研究越来越受到关注,许多新的材料被开发出来。

In recent years, research on negative ion functional materials has received increasing attention, and many new materials have been developed.3.负离子功能材料可以应用于空气净化、健康产品、医疗器械等领域。

Negative ion functional materials can be applied in air purification, health products, medical devices and other fields.4.它们能够吸附空气中的污染物,并将它们转化为无害的物质。

They can adsorb pollutants in the air and convert them into harmless substances.5.负离子功能材料还可以提高空气中负离子的浓度,改善空气质量。

Negative ion functional materials can also increase the concentration of negative ions in the air, improving air quality.6.在健康产品中加入负离子功能材料可以促进血液循环、缓解疲劳。

Adding negative ion functional materials to health products can promote blood circulation and relieve fatigue.7.许多负离子功能材料还具有抗菌、除臭的特性,适用于家居用品和服装等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档