金刚石切削技术及其应用
CVD金刚石膜刀具制造技术及其应用

CVD金刚石膜刀具制造技术及其应用化学气相沉积(CVD)金刚石作为一种新型超硬刀具材料,为金刚石刀具的应用开辟了新的途径。
CVD金刚石刀具主要有两种类型:CVD金刚石薄膜涂层刀具和CVD金刚石厚膜焊接刀具。
目前来说,CVD金刚石厚膜刀具的应用比较广泛。
一、CVD金刚石薄膜涂层刀具CVD金刚石薄膜涂层刀具是指通过CVD方法在一定温度下使金刚石沉积于某些基体(通常为K类硬质合金)刀片上的刀具,其金刚石膜厚度约为10~30μm。
CVD金刚石薄膜涂层刀具因金刚石厚度较薄,难于刃磨,前、后刀面及刃口质量较差,只适用于粗加工、半精加工和复杂形状刀具。
粗加工的切削较大,当金刚石与基体间的附着力不足以抗拒切削力的破坏时,金刚石膜就会脱落。
这种刀具加工出的工件表面粗糙度一般大于Ra0.2μm。
尽管目前国内CVD薄膜涂层刀具的应用尚处于萌芽状态,但随着CVD金刚石生长技术的提高,CVD金刚石基团颗粒的大小已经由40~50μm缩小到十几甚至几个纳米,从而出现了纳米金刚石。
如美国阿贡国家实验室(Argonne Nat. Lab)的Dr. Gruen D.M已经生长出质量良好、表面为镜面(表面最高峰与最低峰间距为15nm)、任意厚度的纳米金刚石膜,而且其涂层的附着力足够。
相信其对涂层刀具的应用有所促进。
二、CVD金刚石厚膜焊接刀具CVD金刚石厚膜焊接刀具是先把切割好的CVD金刚石厚膜一次焊接至基体(通常为K类硬质合金)上,形成复合片,然后抛光复合片,二次焊接至刀体上,刃磨成需要的形状和刃口。
制造工艺流程:高品质的CVD金刚石膜的制备→激光切割→一次焊接成复合片→复合片抛光→二次焊接至刀体上→刃磨→检验。
下面介绍几个关键工序,如切割,焊接,抛光和刃磨等。
1.激光切割CVD金刚石膜硬度高、不导电(现已有导电型CVD金刚石,但其电阻率很大)、耐磨性极强,常规的机械加工和线切割等方法不适合于CVD 金刚石厚膜的切割。
金刚石砂轮的切削参数

金刚石砂轮的切削参数金刚石砂轮是一种常用的切削工具,广泛应用于金属加工、石材加工、玻璃加工等领域。
它具有硬度高、耐磨性好、切削效率高等特点,在各行业中都有着重要的作用。
然而,要正确使用金刚石砂轮,合理选择切削参数是非常重要的。
切削参数是指在使用金刚石砂轮进行切削时,所设置的一些关键参数,包括切削速度、进给量、切削深度等。
这些参数的选择直接影响到切削效果和工件的加工质量。
下面将对金刚石砂轮的切削参数进行详细介绍。
首先是切削速度。
切削速度是指金刚石砂轮在切削时的线速度,通常用米/分钟来表示。
切削速度的选择应根据工件材料的硬度、加工方式以及金刚石砂轮的规格等因素来确定。
一般来说,对于硬度较高的材料,如高速钢、硬质合金等,应选择较低的切削速度;而对于硬度较低的材料,如铸铁、铝合金等,可以选择较高的切削速度。
此外,还应考虑到金刚石砂轮的规格和结构,以及加工过程中是否需要进行冷却等因素。
其次是进给量。
进给量是指金刚石砂轮在单位时间内对工件的切削量,通常用毫米/转来表示。
进给量的选择应根据工件材料的硬度、切削速度以及加工方式等因素来确定。
一般来说,对于硬度较高的材料,应选择较小的进给量;而对于硬度较低的材料,可以选择较大的进给量。
此外,还应考虑到金刚石砂轮的规格和结构,以及加工过程中是否需要进行冷却等因素。
再次是切削深度。
切削深度是指金刚石砂轮在每次切削中所去除的工件材料厚度,通常用毫米来表示。
切削深度的选择应根据工件材料的硬度、切削速度以及金刚石砂轮的规格等因素来确定。
一般来说,对于硬度较高的材料,应选择较小的切削深度;而对于硬度较低的材料,可以选择较大的切削深度。
此外,还应考虑到金刚石砂轮的规格和结构,以及加工过程中是否需要进行冷却等因素。
此外,还有一些其他影响金刚石砂轮切削效果的因素,如冷却液的选择和使用、金刚石砂轮与工件之间的接触压力等。
冷却液可以有效降低金刚石砂轮和工件的温度,减少摩擦和磨损,提高切削效率和加工质量。
论述金刚石刀具超精密切削的机理丶条件和应用范围

金刚石刀具超精密切削的机理丶条件和应用范围
金刚石刀具是超精密切削中常用的刀具材料,其切削机理、条件和应用范围如下:
1.切削机理:
⏹金刚石刀具的切削刃非常锋利,在切削过程中能够实现“切入式切削”,
使切削力大大减小。
⏹金刚石的硬度极高,切削时不易被工件材料磨损,能够保持良好的切削刃
形状。
⏹金刚石的传热性能极佳,能够快速地将切削热量传递出去,从而降低切削
温度,减少热损伤。
1.切削条件:
⏹刀具刃口半径:为了实现超精密切削,需要将刀具的刃口半径减小到亚微
米级,以提高切削的精度和表面粗糙度。
⏹切削用量:为了减小切削力和热量,需要选择较小的切削深度和进给速度,
以提高切削效率。
⏹工件材料:金刚石刀具适用于加工各种硬材料,如淬火钢、硬质合金等。
但是,对于一些韧性较大的材料,需要进行预处理或选择其他刀具材料。
1.应用范围:
⏹金刚石刀具广泛应用于超精密切削领域,如光学零件、轴承、硬盘磁头、IC
芯片等高精度、高表面质量的零件加工。
⏹在加工过程中,金刚石刀具还可以用于制作各种微细结构,如微孔、微槽
等。
综上所述,金刚石刀具的超精密切削需要满足一定的条件,并具有广泛的应用范围。
微圆弧金刚石刀具刃磨关键技术及应用

微圆弧金刚石刀具刃磨关键技术及应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!摘要:随着制造技术的不断发展,微圆弧金刚石刀具在工业领域中的应用日益广泛。
金刚石刀具在数控机床中的应用

金刚石刀具在数控机床中的应用随着科技的不断进步和发展,数控机床在工业领域中扮演着重要的角色。
数控机床的出现大大提高了生产效率和加工质量,而金刚石刀具作为一种高性能的切削工具,在数控机床中的应用也越来越广泛。
本文将探讨金刚石刀具在数控机床中的应用,并分析其优势和挑战。
一. 金刚石刀具的基本特性金刚石刀具由金刚石颗粒和金属粉末经压制、烧结等工艺制成,具有极高的硬度、耐磨性和热稳定性。
这些特性使得金刚石刀具在切削加工中具备以下优势:1. 高硬度:金刚石刀具的硬度仅次于金刚石,可用于切削超硬材料如陶瓷和高硬度合金等。
2. 耐磨性:金刚石刀具具有出色的耐磨性,可在切削过程中保持较长的使用寿命。
3. 热稳定性:金刚石刀具具有良好的热稳定性,可承受高温切削环境下的工作,不易变形。
二. 金刚石刀具在数控机床中的应用领域1. 切削加工金刚石刀具广泛应用于数控机床的切削加工领域,包括车削、铣削、钻削、磨削等。
由于金刚石刀具的高硬度和耐磨性,可用于加工硬度较高的材料,如钛合金、高速钢等。
同时,金刚石刀具还能够提供更高的加工精度和表面质量。
2. 精密加工在数控机床的精密加工中,金刚石刀具的应用更能体现出其独特的优势。
例如,在汽车零部件的精密加工过程中,采用金刚石刀具可以实现更高的加工精度和更好的表面质量。
3. 工具磨损监测由于金刚石刀具的耐磨性较高,因此可以通过监测金刚石刀具的磨损情况,准确地评估刀具的使用寿命。
这对机床的保养和刀具的及时更换具有重要意义,可降低生产成本,并提高生产效率。
三. 金刚石刀具在数控机床中的挑战虽然金刚石刀具在数控机床中有广泛的应用前景,但面临着一些挑战和限制:1. 成本高昂:金刚石刀具的制造成本较高,所以其售价也相对较高,这给广泛应用带来了一定的限制。
2. 技术要求高:金刚石刀具的加工工艺复杂,需要高精度和高温高压的条件,所以其生产过程要求较高的技术水平。
3. 刀具表面质量难以保证:由于金刚石刀具的硬度很高,常规的抛光或修整技术难以完成对其表面的加工,从而可能会影响到加工表面质量。
金刚石精密切削的定义

金刚石精密切削的定义1. 引言说到金刚石,大家可能第一反应就是“哇,那个超闪的钻石!”但其实,金刚石不仅仅是用来装饰的,咱们还可以把它用在切削加工上。
没错,金刚石精密切削就是这门绝活儿,它可以把金刚石这种硬得跟铁一样的材料,变得细腻无比,真是牛得不行啊。
2. 金刚石的特性2.1 硬度无敌首先,金刚石的硬度可以说是世界上数一数二的,连钢铁都甘拜下风,简直是“坚不可摧”的代名词。
想象一下,用它来切削其他材料,那简直是如鱼得水,游刃有余,省力又省心。
2.2 耐磨性极强除了硬度,金刚石的耐磨性也是一流的。
就像老话说的“磨刀不误砍柴工”,用金刚石切削工具,不仅能保持锋利,还能大大延长使用寿命,真是“一举两得”的好选择。
3. 精密切削的定义3.1 何谓精密切削那么,什么是精密切削呢?简单来说,就是通过高精度的切削工具对材料进行精准加工。
这可不是简单的“咔嚓”一声,而是需要科学的技术和工艺来确保每个细节都到位,完美无瑕。
3.2 金刚石在精密切削中的应用金刚石在这方面可是个大明星!它不仅能处理金属,还能处理玻璃、陶瓷等硬材料,简直是“全能型选手”。
想想看,车床上转动的金刚石刀具,切割出完美的形状,那种感觉,简直让人拍手叫好,心中默默赞叹。
4. 优势与应用4.1 效率提升用金刚石进行精密切削,可以大幅提升加工效率。
因为它的切削速度快,切削温度低,不容易变形,真是“马到成功”的好帮手。
这样一来,企业不仅能节省时间,还能降低成本,真是一箭双雕。
4.2 广泛应用这项技术的应用可谓是遍地开花,无论是汽车、航空,还是电子产品,都能看到它的身影。
比如说,在手机屏幕的加工中,金刚石切削让屏幕边缘光滑得像丝绸一样,手感超赞。
5. 未来发展5.1 技术创新随着科技的发展,金刚石精密切削的技术也在不断创新。
新材料、新工艺层出不穷,让切削的精度和效率都在不断提高,未来可期啊!。
5.2 市场前景相信随着对高品质产品的需求增加,金刚石精密切削的市场前景会越来越广阔。
金刚石工具在高端行业中的应用案例

金刚石工具在高端行业中的应用案例金刚石工具作为一种硬度极高的材料,具有优异的抗磨损和耐高温性能,因此在高端行业中得到广泛应用。
本文将结合多个高端行业领域,分别介绍金刚石工具在这些行业中的应用案例,以展现其在工业生产中的重要作用。
一、航空航天工业在航空航天工业中,因对复杂合金材料、高温合金和陶瓷材料等进行加工的需求迫切,金刚石工具成为了加工这些材料的首选工具。
以金刚石磨削工具为例,能够精密加工航空发动机叶片等零件,保证高精度和表面质量,确保飞行器的安全性和可靠性。
金刚石复合刀具在航空航天领域也有广泛应用,用于加工各种硬质合金、玻璃钢和碳纤维,提高了加工效率和精度。
二、汽车制造业在汽车制造领域,金刚石工具也发挥着重要作用。
金刚石砂轮被广泛应用于汽车发动机缸体和曲轴的加工中,能够高效地去除金属材料并保持高精度。
在汽车刹车片生产中,金刚石砂轮被用于切割和研磨碳化硅陶瓷等硬度高的材料,保证了制品的品质和使用寿命。
金刚石切削工具也在汽车制造的铝合金车轮加工中发挥着重要作用,能够提高生产效率和切削质量。
三、电子信息产业在电子信息产业中,金刚石工具也广泛应用于半导体、光电子器件和电子元件的加工。
金刚石刀具和刀片被用于分立器件、集成电路和光通信组件的切割和刀具加工中。
金刚石线切割工具用于玻璃切割、晶圆切割等精密加工,确保了加工精度和表面光洁度。
金刚石电镀涂层工具也被应用于印刷电路板(PCB)、太阳能电池片等器件的加工中,提高了加工精度和寿命。
四、医疗器械制造业在医疗器械制造领域,金刚石工具也有重要应用。
金刚石锯片被用于医用器械的材料切割,确保了切割面的光洁度和平整度。
金刚石磨具被用于人工心脏瓣膜、人工髋关节等高精度医疗器械的加工中,确保了产品的精准度和稳定性。
金刚石车削刀具广泛应用于医用镍钛合金、石墨复合材料等高难度材料的车削加工,提高了加工效率和切削质量。
通过以上案例,我们可以看到金刚石工具在航空航天、汽车制造、电子信息和医疗器械制造等高端行业中的重要应用。
金刚石的主要特点及应用

金刚石的主要特点及应用金刚石是一种由碳原子组成的同素异形体,具有许多独特的特点,使其在许多领域有重要的应用。
以下是金刚石的主要特点及应用。
1. 高硬度:金刚石是已知最硬的材料,其摩尔硬度达到10,在几乎所有物质中都具有很高的硬度,因此具有极强的耐磨性。
金刚石主要碳原子间的共价键较短且强,使其具有优秀的硬度和耐磨性。
此特点使得金刚石在切削、磨削和磨损材料的领域有广泛的应用,如刀具、磨料和磨具等。
2. 高热导率:金刚石具有良好的热导率,其热导率是铜的5倍,因此能够迅速将热量传递和散发。
这使得金刚石在高温高压、高速切削和高功率电子器件散热方面具有重要的应用,例如在钻井、切割和石墨陶瓷的切削加工中,金刚石具有优异的散热性能。
3. 高折射率:金刚石的折射率非常高,可达到2.42,使其成为最常用的光学材料之一。
使用金刚石制作的透镜和棱镜具有高透明度和优良的光学性能,广泛应用于激光、光纤通信、光学设备和高品质珠宝等领域。
4. 宽带隙:金刚石具有宽带隙,几乎没有杂质电子能级,因此具有良好的电绝缘性和高耐压性。
这使得金刚石在制造高压高功率电子器件方面有重要应用,如金刚石晶体管和金刚石二极管等。
此外,金刚石也可用作电子和电气绝缘材料,例如在微电子器件的绝缘层中应用。
5. 化学稳定性:金刚石在常温下对大多数溶剂和酸碱具有优异的稳定性,仅在高温下和氧气存在的条件下才会被氧化。
这使得金刚石在电化学、化学传感器和防腐蚀领域有重要应用,如电化学研究、化学传感器和涂层材料等。
综上所述,金刚石具有高硬度、高热导率、高折射率、宽带隙和化学稳定性等独特特点,使其在切削加工、光学、电子器件、化学传感器和防腐蚀等许多领域有广泛的应用。
金刚石的特殊性质使其成为一种重要的工程材料,推动了许多领域的科技进步和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金刚石切削技术及其应用-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
金刚石车削技术及其应用
2008/1/16/15:01 来源:慧聪网五金行业频道
1.金刚石车床的技术关键
金刚石车床与镜面铣床相比,其机械结构更为复杂,技术要求更为严格。
除了必须满足很高的运动平稳性外,还必须具有很高的定位精度和重复精度。
镜面铣削平面时,对主轴只需很高的轴向运动精度,而对径向运动精度要求较低。
金刚石车床则须兼备很高的轴向和径向运动精度,才能减少对工件的形状精度和表面粗糙度的影响。
目前市场上提供的金刚石车床的主轴大多采用气体静压轴承,轴向和径向的运动误差在50nm以下,个别主轴的运动误差已低于25nm。
金刚石车床的滑台在90年代以前绝大部分采用气体静压支承,荷兰的Hembrug公司则采用液体静压支承。
进入90年代以来,美国的Pneumo公司(现已与Precitech公司合并)的主要产品Nanoform600和250也采用了具有高刚性、高阻尼和高稳定性的液体静压支承滑台。
2.金刚石车床的布局
金刚石车床的布局最初沿袭了传统车床的结构,主轴固定在床身上,横向沿台(X轴)装在纵向滑台(Z轴)上。
因为纵、横滑台的导轨相互垂直,故又被称为十字滑台布局。
其优点是技术成熟,结构紧凑,荷兰Hembrug公司的super-mikroturn就一直采用这种结构(图1)。
十字滑台布局的缺点在于纵横两滑台运动时相互影响,当对动态精度要求高时,这种缺点就尤为突出。
金刚石车床的基本数据如表1所示。
表1金刚石车床技术参数和性能示例
最大车削直径和长度/mm400×200
最高转速r/mm3000、5000或7000
最大进给速度mm/min5000
数控系统分辩率/mm0.0001或0.00005
重复精度(±2σ)/mm≤0.0002/100
主轴径向圆跳动/mm≤0.0001
主轴轴向圆跳动/mm≤0.0001
滑台运动的直线度/mm≤0.001/150
横滑台对主轴的垂直度/mm≤0.002/100
主轴前静压轴承(φ100mm)的刚度/(N/μm)径向1140
轴向1020
主轴后静压轴承(φ80mm)的刚度/(N/μm)640
纵横滑台的静压支承刚度/(N/μm)720
十字滑台相互影响的主要原因是X向滑台的重量要由Z向滑台来支撑。
为了解决这一问题,德国蔡司公司研制了一种改进的十字滑台(图2)。
其关键在于床身采用了大面积的花岗岩,Z向导轨直接加工在床身上,X向导轨虽然仍加工在Z向滑台上,但X向滑台的重量不再由Z向沿台来支撑,而是通过四条静压支柱直接由床身来支撑。
Z向滑台只起带动和导向X向滑台的作用,而无支撑功能。
十字滑台的另一个缺点是加工难度高,要达到高的纵横滑台导轨间的垂直度,需要大量的手工刮研工作量。
在劳动成本日益增长的今天,这种耗时费力的结构的缺点日益明显。
因而在80年代出现了T形布局(T-Base)。
T形布局车床的主轴装在纵向或横向滑台上,刀架则装在另一滑台上(见图3),从而彻底解决了两滑台相互影响的问题。
这种布局有利于提高机床的闭环刚度。
另外,纵横两移动轴的垂直度可在装配时进行调整,生产成本较低,成为当前金刚石车床的主流布局。
上述结构的金刚石车床在加工简单几何形状如平面、圆锥和圆柱面时,刀刃与工件的接触的在加工过程中保持不变,但在加工复杂形状如椭球面时,刀刃与工件的接触点随刀具的位置而变化。
如果刀刃的几何形状精度不高,其误差将被直接复印在工件上,从而限制了机床的加工精度。
解决这一问题,通常有两种途径:一是提高刀具的形状精度、但无论是购置新刀具或重磨刀具,都要付出成倍于普通刀具的代价;另一途径是改变机床的结构,在刀架下面装一数控精密转台(见图4)。
刀具移动时,转台根据工件的曲率和刀尖的圆弧半径作相应转动,从而使工件与刀刃的接触点保持不变。
但数控精密转台的造价很高,因此在对该两方案取舍时,必须进行经济分析比较。
3.金刚石车削的应用范围和技术参数
金刚石车削早期主要用来加工有色金属如元氧铀或铝合金等,其主要产品是各种光学系统中的反射镜,如射电望远镜的主镜面,LiDA(激光探测)系统中的各镜面以及激光切割机床中的反射镜等。
在东西方军备竞赛时期,各种红外光学元件的需求量猛增,金刚石车削可加工各种红外光学材料如锗、硅、ZnS和ZnSe等,工件的形状多为非球面,这样就可大大减少光学元件的数量,因为红外材料的透射率较低,元件少可提高光学系统的透光性能,另外还可节约昂贵的红外材料。
在日常消费品中,金刚石车削常被用来加工有机玻璃和各种塑料,其应用实例有大型投影电视屏幕、照像机的塑料镜片以及树脂隐形眼镜镜片。
在大批量生产的产品中,光学元件多采用挤压成形或压注成形。
成形所用的型腔多采用金刚石车削来完成的。
型腔材料除超高强度镍钢外还有工具钢和陶瓷等。
超高强度镍钢是模压成形时应用最广的材料,因为它既满足模具的硬度要求,又可用金刚石车削出最佳的形状精度和表面质量。
用金刚石刀具加工工具钢时,刀具易产生化学磨损这是因为工具钢中碳元素与金刚石产生化学反应之故。
所以此时要在刀架上附加一个超声振动装置,或者改用立方
氮化硼刀具进行加工。
用金刚石车削直径在100mm以下的工件时,形状误差可控制在0.1μm以下。
工件表面粗糙度除与切削参数及机床特性有关外,还取决于材料的特性,绝大多数可用金刚石车削的材料的表面粗糙度可达到Rq1~5nm。
金刚石车削的刀具的参数与镜面铣相似,金属材料多用零度前角刀具加工,红外材料和脆性材料则多用负前角刀具加工。
金刚石车削的切削参数根据工件材料和机床特性而定。
通常主轴转速低于2000r/min,个别可达5000r/min。
隐形眼镜镜片车床较特殊,其转速可达10000r/min。