我对泛函分析的认识

我对泛函分析的认识
我对泛函分析的认识

我对分析的认识

从大一到大三,我们依次学习了数学分析,复变函数,实变函数,泛函分析。感觉这几门课层层深入,学到最后发现好多还是离不开数学分析。通过大二大三的学习,我发现实变函数和复变函数都是研究函数的数学性质的,虽然只是定义域不同,但两门课的内容大相径庭,实变函数可以看做是数学分析的后继课程,主要是分析(勒贝格积分理论)的内容,而复变函数的研究手段和课程内容对数学三大分支:分析(柯西积分理论),几何(黎曼面理论),代数(魏尔斯特拉斯级数理论)都有涉及,且都占有很重要的位置。

以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它的基础是点集论。所谓点集论,就是专门研究点所成的集合的性质的理论,也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。泛函就是定义域是一个函数集,而值域是实数集或者实数集的一个子集。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。

通过学习知道了有些函数是连续的但处处不可微,有的函数的有限导数并不是黎曼可积;还发现了连续但是不分段单调的函数,连续函数必定可积。勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来由推广到积分可以不是绝对收敛的。从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的老积分定义广大多了。也可以看出,实变函数论所研究的是更为广泛的函数。逼近理论,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近。如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质。逼近论就是研究那一类函数可以用另一类函数来逼近、逼近的方法、逼近的程度和在逼近中出现的各种情况。实变函数是对于测度来讲,可测函数及其积分,学习重点是Lebesgue 测度展开的一些讨论,泛函分析呢是对于函数空间来讲,主要就是一系列空间

(赋范线性空间,希尔伯特空间等等)的基本性质,包括里面函数的敛散性,空间的完备性之类的。

以上就是我对大学来学的分析的粗略认识,它在泛函分析在数学物理方程、概率论、计算数学、连续介质力学、量子物理学等学科有着广泛的应用。

泛函分析部分知识点汇总

度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离, 使之成为距离空间,这将是深入研究极限过程的一个有效步骤。 泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范 线性空间,就是一种带有线性结构的度量空间。 一、度量空间的进一步例子 1、度量空间 设x 是一个集合,若对于x 中任意两个元素x,y ,都有唯一确定的实数d(x,y) 与之对应,而且这一对应关系满足下列条件: 1° 的充要条件为x=y 2° 对任意的z 都成立, 则称 d(x,y) 是 x,y 之间的距离,称 d(x,y)为度量空间或距离空 间。x 中的元素称为点。 2、常见的度量空间 (1)离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称 为离散的度量空间。 (2)序列空间S 令S 表示实数列(或复数列)的全体,对S 中的任意两点 令 称 为序列空间。 (3)有界函数空间B(A ) 设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A) 中任意两点x,y ,定义 (4)可测函数空间 设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度, 若 ,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。令 (5)C[a,b]空间 令C[a,b] 表示闭区间[a,b]上实值(或复值)连续函数全体,对 C[a,b]中任意 两点x,y ,定义 二、度量空间中的极限、稠密集、可分空间 1、收敛点列 设 是(X ,d )中点列,如果存在 ,使 则称点列 是(X ,d ) 中的收敛点列,x 是点列 的极限。 收敛点列性质: (1)在度量空间中,任何一个点列最多只有一个极限,即收敛点列的极限是唯 一的。 (2)M 是闭集的充要条件是M 中任何收敛点列的极限都在M 中。 (,)0,(,)0d x y d x y ≥=(,)(,)(,)d x y d x z d y z ≤+,x y X ∈1,(,)0,if x y d x y if x y ≠?=?=?(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i i d x y ξηξη∞=-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-()m X <∞()f t ()g t |()()|11|()()| f t g t f t g t -<+-|()()|(,)1|()()|X f t g t d f g dt f t g t -=+-?(,)max |()()|a t b d x y x t y t ≤≤=-{}n x x X ∈lim (,)0n n d x x →∞={}n x {}n x

泛函分析课程论文

泛函分析课程论文 数学与计算科学学院 09数本2班 黄丽萍 2009224725 大四新学年开始了,我们也开始学习了一门综合性及专业性强的课程——泛函分析。首先,理解下“泛函分析”这个概念。 泛函分析是20世纪发展起来的一门新学科,其中泛函是函数概念的推广,对比函数是数与数之间的对应关系,我们发现泛函是函数和数之间的对应关系。在学习泛函分析前,我们先确定学习目标:理解和掌握“三大空间和三大定理”。所以在接下来的两章内容的学习中,我们将先学习“两大空间”——度量空间和赋范线性空间及其相关知识(第七章和第八章)。在学习中慢慢体味泛函分析的综合性及专业性。 第七章的标题已经明确给出了学习任务——度量空间和赋范线性空间。 §1 度量空间 §1.1 定义:若X 是一个非空集合,:d X X R ?→是满足下面条件的实值函数,对于,x y X ?∈,有 (1)(,)0d x y =当且仅当x y =; (2)(,)(,)d x y d y x =; (3)(,)(,)(,)d x y d x z d y z ≤+, 则称d 为X 上的度量,称(,)X d 为度量空间。 【理解】度量空间就是:集合+距离;(满足非负性、对称性及三点不等式) 其实度量空间是在实变函数中接触的知识,但其在泛函分析学科中的重要性,我们可以通过度量空间的进一步例子来感受。 §1.2 度量空间的进一步例子 例:1、离散的度量空间(,)X d ,设X 是一个非空集合,,x y X ?∈,当1,(,)0,=x y d x y x y ≠?=??当当。

2、序列空间S ,i =1i |-|1(,)21+|-|i i i i d x y ξηξη∞ =∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t A d x y x y ∈=是度量空间 4、连续函数[a,b]C ,(,)max|(t)-(t)|a t b d x y x y ≤≤=是度量空间 5、空间2l ,122=1(,)[(-)]k k i d x y y x ∞=∑是度量空间 §1.3度量空间中的极限,稠密集,可分空间 §1.3.1极限:类似数学分析定义极限,如果 {}n x 是(,)X d 中点列,如果?x X ∈,使n l im (,)=0n d x x →∞,则称点列{}n x 是(,)X d 中的收敛点列,x 是点列{}n x 的极限。 同样的类似于n R ,度量空间中收敛点列的极限是唯一的。 §1.3.2稠密子集与可分空间:设X 是度量空间,E 和M 是X 中两个子集,令 M M M ?表示的闭包,如果E ,那么称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 是可分空间。 即:{},n n M E x E x M s t x x n ??∈??→→∞在中稠密对 §1.3.3 例子 1、 n 维欧氏空间n R 是可分空间; 2、 坐标为有理数的全体是n R 的可数稠密子集; 3、 l ∞是不可分空间。 §1.4 连续映射 §1.4.1定义:设 (,),(,),> 0,X (,) < (T ,T ) < ,o o o o X X d Y Y d T X Y x X d x x x d x x T x εδδε==∈ 是两个度量空间,是到中映射,如果对于任意给定的正数,存在正数 使对 中一切满足 的 ,有 则称在连续。

泛函分析答案

泛函分析答案: 1、 所有元素均为0的n ×n 矩阵 2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的 λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 】 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=( 21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y) = ( 1 ||n p i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)0(n ∞),这时记作 0lim n n x x -->∞ =,或 简单地记作x n x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,for every x,y ∈E 8、设E 为线性赋范空间,{x n }∞ n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 $ 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2(a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2(a,b ), 2|()|b a f t dt ? <∞。 当 L 2(a,b )中内积的定义为(f,g )= _____ ()()b a f t g t dt ? (其中f(t),g(t)∈L 2(a,b ))时其为Hilbert 空间。 ★ 12、算子表示一种作用,一种映射。设X 和Y 是给定的两个线性赋范空间,集合D ?X , 若对D 中的每一个x ,均有Y 中的一个确定的变量y 与其对应,则说这种对应关系确定

(完整版)泛函分析复习与总结,推荐文档

《泛函分析》复习与总结 (2014年6月26日星期四 10:20--- 11:50) 第一部分 空间及其性质 泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函 分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的 性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。 以下几点是对第一部分内容的归纳和总结。 一.空间 (1)距离空间 (集合+距离)!验证距离的三个条件:称为是距离空间,如果对于 (,)X ρ,,x y z X ∈(i) 【非负性】,并且当且仅当 (,)0x y ρ≥(,)0x y ρ=【正定性】; x y =(ii) 【对称性】; (,)(,)x y y x ρρ=(iii) 【三角不等式】。 (,)(,)(,)x y x y y z ρρρ≤+距离空间的典型代表:空间、空间、所有的赋范线性空间、 s S 所有的内积空间。 (2)赋范线性空间 (线性空间 + 范数) !验证范数的三个条件:称为是赋范线性空间,如果 (,||||)X ?是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,x y X ∈(i) 【非负性】,并且当且仅当【正定性】 ||||0x ≥||||0x =0x =; (ii) 【齐次性】; ||||||||||ax a x =?

(iii) 【三角不等式】。 ||||||||||||x y x y +≤+赋范线性空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间()、空间(1,2,3,n =L p l 1p ≤≤∞([,])p L a b )、空间、空间、Banach 空间、所有的1p ≤≤∞[,]C a b [,]k C a b 内积空间(范数是由内积导出的范数)。 (3)内积空间 (线性空间 + 内积) !验证内积的四个条件:称为是内积空间,如果 (,(,))X ??是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,,x y z X ∈(i) 【非负性】,并且当且仅当【正 (,)0x x ≥(,)0x x =0x =定性】; (ii) 【第一变元可加性】; (,)(,)(,)x y z x z x z +=+(iii) 【第一变元齐次性】; (,)(,)ax z a x z =(iv) 【共轭对称性】。 (,)(,)x z z x =内积空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间、空间。1,2,3,n =L 2l 2([,])L a b 注. 1) 从概念的外延来理解, 有如下的关系: {内积空间}{赋范线性空间}{距离空间}. ??2) 内积可导出范数, 范数可导出距离, 反之未必. 例如在赋范 线性空间中, 如果范数满足平行四边形公式, 则由范数可以定义内 积. 3) 在距离空间中,,当 0k x x ρ??→?0(,)0k x x ρ→; k →∞赋范线性空间中,,当;|||| 0k x x ???→?0||||0k x x -→k →∞

《应用泛函分析》前四章重点复习大纲

1 第1章预备知识 1.1集合的一般知识 1.1.1概念、集合的运算 上限集、上极限 下限集、下极限 1.1.2映射与逆映射 1.1.3可列集 可列集 集合的对等关系~(定义1.1)1.2实数集的基本结构 1.2.1建立实数的原则及实数的序关系 阿基米德有序域(定义1.4)1.2.2确界与确界原理 上确界sup E(定义1.5) 下确界inf E 确界原理(定理1.7) 1.2.3实数集的度量结构 数列极限与函数极限 单调有界原理 区间套定理 Bolzano-Weierstrass定理 Heine-Bore定理 Cauchy收敛准则 1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续 函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛 逐点收敛(定义1.11) 一致收敛(定义1.12) Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质 极限与积分可交换次序 1.4 Lebesgue积分 1.4.1一维点集的测度 开集、闭集 有界开集、闭集的测度m G m F 外测度内测度 可测集(定义1.16) 1.4.2可测函数 简单函数(定义1.18) 零测度集 按测度收敛 1.4.3 Lebesgue积分 有界可测集上的Lebesgue积分 Levi引理 Lebesgue控制收敛定理(性质1.9) R可积、L可积 1.4.4 Rn空间上的Lebesgue定理 1.5 空间 Lp空间(定义1.28) Holder不等式 Minkowski不等式(性质1.16)

2 第2章度量空间与赋范线性空间 2.1度量空间的基本概念 2.1.1距离空间 度量函数 度量空间(X,ρ) 2.1.2距离空间中点列的收敛性 点列一致收敛 按度量收敛 2.2度量空间中的开、闭集与连续映射 2.2.1度量空间中的开集、闭集 开球、闭球 内点、外点、边界点、聚点 开集、闭集 2.2.2度量空间上的连续映射 度量空间中的连续映射(定义2.7) 同胚映射 2.3度量空间中的可分性、完备性与列紧性 2.3.1度量空间的可分性 稠密子集(定义2.9) 可分性 2.3.2度量空间的完备性 度量空间中Cauchy列(定义2.11) 完备性 完备子空间 距离空间中的闭球套定理(定理2.9) 闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性 列紧集、紧集(定义2.13) 全有界集 2.4 Banach压缩映射原理 压缩映像 不动点 Banach压缩映射原理(定理2.16)2.4.1应用 隐函数存在性定理(例2.31) 2.5 线性空间 2.5.1线性空间的定义 线性空间(定义2.17) 维数与基、直和 2.5.2线性算子与线性泛函 线性算子 线性泛函(定义2.18) 零空间ker(T)与值域空间R(T) 2.6 赋范线性空间 2.6.1赋范线性空间的定义及例子 赋范线性空间 Banach空间(定义2.20) 2.6.2赋范线性空间的性质 收敛性——一致收敛 绝对收敛 连续性与有界性 2.6.3有限维赋范线性空间 N维实赋范线性空间

泛函分析学习心得

泛函分析学习心得 学习《实变函数论与泛函分析》这门课程已有将近一年的时间,在接触这门课程之前就已经听闻这门课程是所有数学专业课中最难学的一门,所以一开始是带着一种“害怕学不好”的心理来学.刚开始接触的时候是觉得很难学,知识点很难懂,刚开始上课时也听不懂,只顾着做笔记了.后来慢慢学下来,在课前预习、课后复习研究、上课认真听课后发现没有想象中的那么难,上课也能听懂了.因此得出了一个结论:只要用心努力去学,所有课程都不会很难,关键是自己学习的态度和努力的程度. 在学习《泛函分析》的前一个学期先学习了《实变函数论》,《实变函数论》这部分主要学习了集合及其运算、集合的势、n 维空间中的点集、外测度与可测集、Lebesgue 可测集的结构、可测函数、P L 空间等内容,这为这学期学习《泛函分析》打下了扎实的基础.我们在这个学期的期中之前学习的《泛函分析》的主要内容包括线性距离空间、距离空间的完备性、内积空间、距离空间中的点集、不动点定理、有界线性算子及其范数等.下面我谈谈对第一章的距离空间中部分内容的理解与学习: 第一章第一节学习了线性距离空间,课本首先给出了线性空间的定义及其相关内容,这与高等代数中线性空间是基本一样的,所以学起来比较容易.接着是距离空间的学习,如果将n 维欧氏空间n R 中的距离“抽象”出来,仅采用性质,就可得到一般空间中的距离概念: 1.距离空间(或度量空间)的定义: 设X 为一集合,ρ是X X ?到n R 的映射,使得使得X z y x ∈?,,,均满足以下三个条件: (1))(0,≥y x ρ,且)(0,=y x ρ当且仅当y x =(非负性) (2))()(x y y x ,,ρρ=(对称性) (3))()()(z y y x z x ,,,ρρρ+≤(三角不等式), 则称X 为距离空间(或度量空间),记作)(ρ,X ,)(y x ,ρ为y x ,两点间的距离. 学习了距离空间定义后,我们可以验证:欧式空间n R ,离散度量空间,连

泛函分析答案

泛函分析答案: 1、所有元素均为0的n ×n 矩阵 2、设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z)foreveryx,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=(21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y)=(1 ||n p i i i x y =-∑)1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n ?∞),这时记作 0lim n n x x -->∞ =,或简单地记作x n ?x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iffx=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,foreveryx,y ∈E 8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2 (a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2 (a,b ),2|()|b a f t dt ?<∞。

实变函数与泛函分析要点

实变函数与泛函分析概要 第一章集合基本要求: 1、理解集合的包含、子集、相等的概念和包含的性质。 2、掌握集合的并集、交集、差集、余集的概念及其运算性质。 3、会求已知集合的并、交、差、余集。 4、了解对等的概念及性质。 5、掌握可数集合的概念和性质。 6、会判断己知集合是否是可数集。 7、理解基数、不可数集合、连续基数的概念。 8、了解半序集和Zorn引理。 第二章点集基本要求: 1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。 2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。掌握聚点的性质。 3、掌握开核、导集、闭区间的概念及其性质。 4、会求己知集合的开集和导集。 5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。 6、会判断一个集合是非是开(闭)集,完备集。 7、了解Peano曲线概念。 主要知识点:一、基本结论: 1、聚点性质§2 中T1聚点原则: P0是E的聚点? P0的任一邻域内,至少含有一个属于E而异于P0的点?存在E中互异的点列{Pn},使Pn→P0 (n→∞) 2、开集、导集、闭集的性质§2 中T2、T3 T2:设A?B,则A ?B ,· A? · B, - A? - B。 T3:(A∪B)′=A′∪B′. 3、开(闭)集性质(§3中T1、2、3、 4、5) T1:对任何E?R?,?是开集,E′和― E都是闭集。(?称为开核,― E称为闭包的理由也 在于此) T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE是开集。T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。 T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。 T5:(Heine-Borel有限覆盖定理)设F是一个有界闭集,?是一开集族{Ui}i?I 它覆盖了F(即Fс ∪ i?IUi),则?中一定存在有限多个开集U1,U2…Um,它们

泛函分析课程总结

泛函分析课程总结 数学与计算科学学院 09数本5班 符翠艳 2009224524 序号:26 一.知识总结 第七章 度量空间和赋范线性空间 1. 度量空间的定义:设X 是一个集合,若对于X 中任意两个元素,x y ,都有唯 一确定的实数(),d x y 与之相对应,而且满足 ()()()()()()()1,0,,0=;2,,;3,,,,d x y d x y x y d x y d y x d x y d x z d z y z ≥=?? ??=????≤+?? 、的充要条件是、、对任意都成立。 则称d 为X 上的一个度量函数,(d X ,)为度量空间,),(y x d 为y x ,两点间的度量。 2. 度量空间的例子 ①离散的度量空间(),X d 设X 是任意的非空集合,对X 中任意两点,x y X ∈,令 ()1,,0,x y d x y x y ≠?? =??=?? 当当 ②序列空间S 令S 表示实数列(或复数列)的全体,对S 中任意两点 ()()12n 12,,...,,...,,...,,...n x y ξξξηηη==及,令 ()11,21i i i i i i d x y ξηξη∞ =-=+-∑ ③有界函数空间B (A ) 设A 是一给定的集合,令B (A )表示A 上有界实值(或复值)函数全体,对B (A )中任意两点,x y ,定义 (),()()sup t A d x y x t y t ∈=- ④可测函数空间m(X) 设m(X)为X 上实值(或复值)的L 可测函数全体,m 为L 测度,若()m X ≤∞,对任意两个可测函数()()f t g t 及,令 ()()(),1()() X f t g t d f g dt f t g t -=+-?

泛函分析习题解答

第七章 习题解答 1.设(X ,d )为一度量空间,令 }),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解 不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。 因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明 (1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 2 1 ),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集ΛΛn o o o 21,包含B ,而且B o n n =?∞ =1 。 证明 令n n n o n n B x d Bo o .2,1},1 ),({K =<==是开集:设n o x ∈0,则存在B x ∈1,使 n x x d 1),(10<。设,0),(1 10>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是 开集 显然B o n n ??∞=1 。若n n o x ∞ =?∈1 则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此

实变函数学习心得

实变函数学习心得 实变函数课在我国高等学校数学系的教学计划中属于专业基础课,是一门承上启下的课。下面是为大家准备的实变函数学习心得体会,希望大家喜欢! 实变函数学习心得体会范文篇1 学习实变函数这们课已经一个学期了,对于我们数学专业的学生,大学最难的一门课就是实变函数论与实变函数这门课了。我们用的教材难度比较大,所以根据我自己学习这门课的心得与方法,有以下几点: 1、复习并巩固数学分析等基础课程。学习实变函数这门课程要求我们以数学分析为学习基础,因此,想学好这门课必须有相对比较扎实的数学分析基础。 2、课前预习。实变函数是一门比较难的课程,龙老师上课也讲得比较快、比较抽象,因此,适当的预习是必要的,了解老师即将讲什么内容,相应地复习与之相关内容。如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得比较好的效果。 3、上课认真听讲,认真做笔记。龙老师是一位博学的老师,上课内容涵盖许多知识。因此,上课应注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,实变函数这门课比较难,所以建议听课是一个全身心投入听、记、思相结合的过程。 4、课后复习,做作业,做练习。我们作为大三的学生,我们要学

会抓住零碎的时间复习实变函数课堂的学习内容,巩固学习。复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某些定理证明的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,理解并掌握其证明思路。做作业、做练习时,大家要重视基本概念和基本原理的理解和掌握,不要一头扎进题海中去。 所以,我们学习实变函数总的来说要把握课前、课时与课后的任务,学习内容要多下功夫掌握基本概念和原理及其证明思路,尽可能地掌握作业题目,在记忆的基础上理解,在完成练习中深化理解,在比较中构筑知识结构的框架,是提高学习实变函数课程效率的重要途径。 实变函数学习心得体会范文篇2 古语有云:微机原理闹危机,汇编语言不会编,随机过程随机过,量子力学量力学,实变函数学十遍。其它的不好说,这实变函数确实要多看几遍的。虽然我曾旁听过这门课,但是对于其中的种种总感觉模模糊糊,不甚明了。前几日在网上down了一个完整的教学视频,便想着把这门课重新来过,遂借着这片地方留下一些印记,好督促自己万不可半途而废。 1、集合列的极限有上下极限之分,只有当上下极限相等时,才称集合列存在极限。对于上极限可以这样定义: {x|x属于无穷多个An}.无穷多是用文字语言来进行形象的描述,那么转换成数学的语言应该是怎样的呢?类比数学分析中的聚点原理,我们可以假设若x属于某个Am,那么一定可以找到mm,使得x也属于m,如若不然,x就属于有限个集合,而不是无穷多个了。上述

泛函分析重要内容

们同意前人的提法,认为线性泛函与无穷维空间上引进坐标的思想有关,而对偶理论则有如无穷维线性空间上的解析几何学。 Chp.1 距离线性空间 SS1. 选择公理,良序定理,佐恩引理 有序集的定义: (1)若a在b之先,则b便不在a之先。 (2)若a在b之先,b在c之先,则a在c之先。 这种先后关系记作 良序集:A的任何非空子集C都必有一个属于C的最先元素。 良序集的超限归纳法: (1)为真,这里是A中最先的元素。 2)对一切,为真,则亦真 那么对一切皆真。 选择公理 设N={N}是一个非空集合构成的族,则必存在定义在N上的函数f,使得对一切N都有 部分有序 称元素族X是部分有序的,如果在其中某些元素对(a,b)上有二元关系,它据有性质: 例如X中包换关系 在部分有序集下,有上界、极大元和完全有序 其中完全有序的C:。 例如在复数域中,按大小关系定义两个复数的关系,则复平面是部分有序的,实轴、虚轴是完全有序的。 佐恩引理 设X非空的部分有序集,如果X的任何完全有序子集都有一个上界在X中,则X必含有极大元。 从现代观点来看,泛函分析研究的主要是研究实数域或者复数域上的完备赋线性空间。 SS2. 线性空间,哈迈尔(Hamel)基 线性空间的定义:加法交换、加法结合、有零元,有负元、有单位元等。 线性流形:线性空间中的非空子集,如果它加法封闭、数乘封闭。 线性流形的和M+N:所有形如m+n的元素的集合,其中m∈M, n∈N。 线性流形的直和:如果M∩N={θ},则以代替M+N 如果,则称M与N是代数互补的线性流形。 于是有下述定理:

定理2.1 设M,N是线性空间X的线性流形,则当且仅当对每个x∈X都有唯一的表达式 x=m+n, m∈M,n∈N. 定理2.2 若,则dimX=dimM+dimN Hamel基的定义: 设X是具有非零元的线性空间,X的子集H称为X的Hamel基,如果 (1)H是线性无关的。 (2)H成的线性流形是整个空间。 则有Hamel基和线性无关子集的关系: 定理2.3 设X是线性空间,S是X中任意的线性无关子集,则存在X的一个Hamel基使得 推论任何非零线性空间必有Hamel基 由定理2.3,可有 定理2.4 设M是线性空间X的线性流形,则必有线性流形使得,即N是M的代数补。 SS3 距离空间(度量空间),距离线性空间 定义了距离(满足正定性、对称性和三角不等式的映射)d(x,y)的空间即为距离空间,记为 按距离收敛: 设距离空间中的点列使得 ,则称按d(·,·)收敛到x,简记为 距离线性空间: 设赋有距离d(·,·)的线性空间X满足 (1) (2) 距离线性空间的例子 例1 有界序列空间(m) 设X代表所有有界数列的集合,设

泛函分析知识点

泛函分析知识点 知识体系概述 (一)、度量空间和赋范线性空间 第一节 度量空间的进一步例子 1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得?x,y,z ∈X,下列距离公理成立: (1)非负性:d(x,y)≥0,d(x,y)=0?x=y; (2)对称性:d(x,y)=d(y,x); (3)三角不等式:d(x,y)≤d(x,z)+d(z,y); 则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间 例1 离散的度量空间 例2 序列空间S 例3 有界函数空间B(A) 例4 可测函数空M(X) 例5 C[a,b]空间 即连续函数空间 例6 l 2 第二节 度量空间中的极限,稠密集,可分空间 1. 开球 定义 设(X,d )为度量空间,d 是距离,定义 U(x 0, ε)={x ∈X | d(x, x 0) <ε} 为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限 定义 若{x n }?X, ?x ∈X, s.t. ()lim ,0n n d x x →∞ = 则称x 是点列{x n }的极限. 3. 有界集 定义 若()(),sup ,x y A d A d x y ?∈=<∞,则称A 有界 4. 稠密集 定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ?,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。 5. 可分空间 定义 如果X 有一个可数的稠密子集,则称X 是可分空间。 第三节 连续映射 1.定义 设X=(X,d),Y=(Y , ~ d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任 意给定的正数ε,存在正数0δ>,使对X 中一切满足 ()0,d x x δ < 的x ,有 ()~ 0,d Tx Tx ε <,

实变函数与泛函分析课程教学大纲

《实变函数与泛函分析》课程教学大纲 一、课程基本信息 课程代码:110047 课程名称:实变函数与泛函分析 英文名称:Real variable analysis And Functional analysis 课程类别:专业基础课 学时:50 学分:3 适用对象:信息与计算科学专业本科 考核方式:考试,平时成绩30%,期末成绩70% 先修课程:数学分析和高等代数 二、课程简介 中文简介:实变函数起源于对连续而不可微函数以及Riemann可积函数等的透彻研究,在点集论的基础上讨论分析数学中一些最基本的概念和性质,其主要内容是引入Lebesgue积分并克服了Riemann积分的不足。它是数学分析的继续、深化和推广,是一门培养学生数学素质的重要课程,也是现代数学的基础。泛函分析起源于经典的数学物理边值问题和变分问题,同时概括了经典分析的许多重要概念,是现代数学中一个重要的分支,它综合运用了分析、代数与几何的观点和方法研究、分析数学和工程问题,其理论与方法具有高度概括性和广泛应用性的特点。 英文简介:Real variable analysis And Functional analysis is a theoretical course of mathematics which can be used in variable fields such as engineering and technology, physics, chemical, biology, economic and other fields. The educational aim in this course is to develop the abilities of students in analyzing and solving practical problem by the special ways of Real variable analysis And Functional analysis’ thinking and reasoning. 三、课程性质与教学目的 本课程是在实变函数与泛函分析基本理论的基础上,着重泛函分析的应用,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。本课程就其实质来说是方法性的,但对于应用学科的学生来说,作为授课的目的,则是知识性的,故在教学方法和内容的选择上来说,只能让学生了解那些体现实变函数与泛函分析基本特征的思想内容,冗难的证明过程应尽量避免。本课程要求如下: 1. 理解和掌握集合间的关系和集与映射间的关系,了解度量空间的相关概念和Lebesgue可测集的有关内容和性质。

泛函分析课程总结论文

泛函分析课程总结论文 第一部分:知识点体系 第七章:度量空间和赋范线性空间 度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。 泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。 一、度量空间的进一步例子 1、度量空间的定义 定义1.1 设X 为一个集合,一个映射X X R ?→d :.若对于任何x ,y,z 属 于X ,有 1°d(,)0x y ≥,且d(,)0x y =当且仅当x y =(非负性); 2°(,)(,)d x y d y x =(对称性); 3°(,)(,)(,)d x y d x z d z y ≤+ (三角不等式) 则称d 为集合X 的一个度量,同时称 () ,X d 为一个度量空间 (课本第二章第一节中已经讲解了度量空间的定义,第七章第一节接着讲解度量空间,下面介绍六种度量空间。) 2、常见的度量空间 例2.1 离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称 为离散的度量空间。 例2.2 序列空间S 令S 表示实数列(或复数列)的全体,对S 中的任意两点 令 称 为序列空间。 例2.3 (3)有界函数空间B(A ) 设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体, 对B(A)中任意两点x,y ,定义 ,x y X ∈1,(,)0,if x y d x y if x y ≠?=?=?(,)X d 1212(,,...,,...),(,,...,,...), n n x y ξξξηηη==1|| 1(,)21||i i i i i i d x y ξηξη∞ =-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n维欧氏空间n R(有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X是一个集合,若对于X中任意两个元素x,y,都有唯一确定的实数d()与之对应,而且这一对 应关系满足下列条件: 1°d()≥0 ,d()=0 ?x=y(非负性) 2°d()= d() (对称性) 3°对?z ,都有d()≤d()() (三点不等式) 则称d()是x、y之间的度量或距离(或),称为 ()度量空间或距离空间()。 (这个定义是证明度量空间常用的方法)

注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(),只要 满足1°、2°、3°都称为度量。这里“度量”这个名 称已由现实生活中的意义引申到一般情况,它用来描 述X 中两个事物接近的程度,而条件1°、2°、3°被 认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个 集合X 上若有两个不同的度量函数1d 和2d ,则我们认为 (X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观 起见,今后称度量空间()中的元素为“点” ,例如若 x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间()时可以省略度量函数d ,而称“度 量空间X ” 。 1.1举例 1.11离散的度量空间:设X 是任意的非空集合,对X 中任意两点∈X ,令 ()1x y d x y =0x=y ≠??? ,当,,当,则称(X ,d )为离散度量空间。 1.12 序列空间S :S 表示实数列(或复数列)的全体,d()=1121i i i i i i ?η?η∞=-+-∑; 1.13 有界函数空间B(A):A 是给定的集合,B(A)表示A 上有界

相关文档
最新文档