浅谈汽车车载网络的应用

合集下载

浅谈汽车车载网络的应用网络

浅谈汽车车载网络的应用网络

浅谈汽车车载网络的应用网络汽车作为人们日常生活中最为重要的交通工具之一,随着科技的不断发展,汽车的智能化已经成为了一个不可回避的趋势。

而其中一个重要的方面就是车载网络的应用。

车载网络的应用不仅可以为车内乘客提供更加便捷高效的服务,还可以提高汽车的驾驶安全性。

下面,笔者将就汽车车载网络的应用网络进行浅谈。

什么是汽车车载网络?汽车车载网络就是指在汽车内部所构建的网络系统。

这个系统的建立需要利用一系列的硬件设备,例如路由器、Wi-Fi、蓝牙、3G/4G等。

这对汽车制造商来说意味着必须要设计和生产出能够与网络系统相兼容的汽车。

随着人们对于汽车内部娱乐和信息需求的不断增长,汽车车载网络的应用网络也变得越来越普遍。

汽车车载网络的应用网络车内娱乐随着智能手机的普及,人们对于车内娱乐系统的需求也越来越高。

通过车载网络,乘客能够使用手机、平板电脑或笔记本电脑来连接网络,并享受各类媒体内容,例如音乐、电影、电视节目、游戏等。

这大大提高了长途旅行的乘坐体验,也为短途出行提供了更多的选择。

车辆导航汽车车载网络在车辆导航方面的应用也非常广泛。

通过连接卫星导航系统或者利用3G/4G网络连接到互联网上的导航软件,驾驶员可以轻松地查找到目的地附近的各种信息,例如餐饮、加油站、停车场等。

而这样的系统也可以及时地为驾驶员提供到达目的地的最佳路线,以及实时的交通状况,最大限度地减少驾驶中的不确定因素。

车辆安全汽车车载网络在车辆安全方面也发挥着越来越重要的作用。

目前,汽车制造商已经开始将车载网络应用于车辆的后视镜摄像机、盲区监测器以及自动泊车系统等。

在事故发生时,这些系统可以及时地向驾驶员发送警报信息或者帮助驾驶员及时地避免事故的发生,提高汽车驾驶的安全性。

汽车车载网络的发展趋势随着汽车行业的快速发展,汽车车载网络的应用网络也在不断地更新和发展。

以下是未来几年汽车车载网络的一些发展趋势:5G网络随着5G技术的不断发展,大多数的汽车制造商都开始考虑将5G网络引入到汽车车载网络当中。

5G通信技术在车联网中的应用研究

5G通信技术在车联网中的应用研究

5G通信技术在车联网中的应用研究目录一、内容描述 (2)1.1 背景与意义 (3)1.2 国内外研究现状 (4)1.3 研究内容与方法 (5)二、5G通信技术概述 (6)2.1 5G技术的特点 (8)2.2 5G网络架构 (8)2.3 5G关键技术 (9)三、车联网发展现状与趋势 (11)3.1 车联网的定义与发展历程 (12)3.2 车联网的应用场景 (13)3.3 车联网的发展趋势 (15)四、5G通信技术在车联网中的应用模式 (16)4.1 基于5G的V2X通信 (17)4.2 边缘计算在车联网中的应用 (18)4.3 AI技术在车联网中的应用 (19)五、5G通信技术在车联网中的挑战与解决方案 (21)5.1 安全性问题 (22)5.2 通信延迟问题 (23)5.3 资源管理问题 (24)5.4 解决方案 (26)六、案例分析 (27)6.1 5G通信技术在智能交通中的应用 (28)6.2 5G通信技术在自动驾驶中的应用 (30)6.3 5G通信技术在车联网中的其他应用 (31)七、未来展望 (32)7.1 5G+车联网的发展前景 (34)7.2 5G通信技术在车联网中的创新方向 (35)7.3 对未来车联网产业的建议 (36)八、结论 (37)8.1 研究成果总结 (38)8.2 研究不足与展望 (39)一、内容描述随着科技的不断发展,5G通信技术已经逐渐成为现代通信领域的核心技术之一。

5G技术以其高速率、低时延、大连接等特性,为各行各业带来了前所未有的变革。

车联网作为物联网的重要分支,通过车载信息系统的互联互通,实现车与车、车与基础设施、车与行人的全面互联,从而提升道路交通效率、安全性和舒适性。

在这样的背景下,5G通信技术在车联网中的应用研究显得尤为重要。

本文旨在探讨5G技术在车联网中的具体应用场景、技术挑战以及未来发展趋势。

通过对现有案例的分析和技术原理的阐述,本文将揭示5G技术在车联网中的重要作用和广阔前景。

车联网技术的原理与应用研究

车联网技术的原理与应用研究

车联网技术的原理与应用研究车联网技术是指通过无线通信和计算机技术将汽车与互联网连接起来,实现车辆之间、车辆与道路基础设施之间的信息交互和数据共享。

它是智能交通系统的重要组成部分,为汽车提供了更加智能化、高效化的服务,提升了交通运输系统的安全性、舒适性和可靠性。

本文将从车联网技术的原理、应用领域和未来发展趋势等方面展开深入探讨。

一、车联网技术的原理1. 通信方式车联网技术通过无线通信技术实现车辆之间的信息交互。

常用的通信方式包括车载自组网、车辆与基站之间的通信和车辆与云端服务器之间的通信。

车载自组网采用无线局域网(WLAN)或蜂窝网络(如LTE)实现车辆之间的直接通信。

它能够提供低延迟和高带宽的通信连接,可以支持车辆之间的实时数据交互和多媒体应用。

车辆与基站之间的通信采用蜂窝网络技术,如4G和5G。

基站将车辆的数据传输到云端服务器,实现对车辆的全面监控和管理。

车辆与云端服务器之间的通信则使用互联网。

车辆将数据上传到云端,云端服务器通过数据分析和处理为车辆提供个性化的服务。

2. 数据采集与处理车联网技术通过各类传感器将车辆相关的数据采集到车载计算机中,包括车辆状态、位置信息、环境感知和驾驶人行为等。

数据采集完毕后,车辆将数据传输到云端服务器进行处理和分析。

云端服务器能够利用大数据和人工智能等算法对数据进行深度学习和预测,为车辆提供更加智能化的服务。

车辆的数据处理结果将通过无线通信回传到车辆,实现车辆与云端服务器之间的实时交互。

3. 应用平台与服务车联网技术的核心在于为车辆提供丰富的应用平台和服务。

通过云端服务器,车辆可以享受到导航、娱乐、安全驾驶和车辆维护等多种服务。

导航服务可以为驾驶者提供实时路况信息、导航规划和电子地图等功能,帮助驾驶者选择最优的路线和避开拥堵。

娱乐服务包括音乐播放、视频观看以及社交媒体等功能,为驾驶者和乘客提供愉悦的旅行体验。

安全驾驶服务通过车辆与基础设施之间的信息交互,提供车辆的远程监控、紧急救援和盗窃报警等功能,提升交通运输系统的安全性。

车联网技术在智能交通中的应用

车联网技术在智能交通中的应用

车联网技术在智能交通中的应用在当今科技飞速发展的时代,车联网技术正逐渐成为智能交通领域的关键驱动力。

车联网,简单来说,就是将车辆与各种信息源连接起来,实现车辆与车辆、车辆与基础设施、车辆与互联网之间的通信和信息交换。

这项技术的应用,为解决交通拥堵、提高交通安全、优化出行效率等诸多交通难题带来了新的思路和方法。

一、车联网技术的基本概念与构成车联网技术主要包括车辆感知技术、通信技术、数据处理技术以及应用服务技术等几个方面。

车辆感知技术是车联网的基础,它通过各种传感器,如摄像头、雷达、激光雷达等,实时获取车辆的行驶状态、周边环境信息等。

这些传感器能够检测到车辆的速度、加速度、位置、方向,以及周围的车辆、行人、道路状况等。

通信技术则是实现车联网信息传输的关键。

目前,常用的通信技术包括专用短程通信(DSRC)、蜂窝移动通信(如 4G、5G)等。

DSRC 技术适用于车辆之间以及车辆与道路基础设施之间的短距离、高速率通信,而蜂窝移动通信则能够提供更广泛的覆盖范围和更强大的数据传输能力,满足车联网对远程控制、信息娱乐等应用的需求。

数据处理技术负责对海量的车辆和交通数据进行分析和处理,提取有价值的信息。

通过大数据分析、人工智能算法等手段,可以对交通流量进行预测、对交通事故进行预警、对车辆故障进行诊断等。

应用服务技术则是将处理后的信息转化为具体的应用服务,如智能导航、自动驾驶辅助、远程车辆诊断、交通拥堵预警等,为驾驶者和交通管理部门提供决策支持。

二、车联网技术在智能交通中的具体应用1、智能导航与路径规划基于车联网技术,智能导航系统能够实时获取交通路况信息,包括道路拥堵情况、施工路段、事故发生地点等,并根据这些信息为驾驶者提供最优的行车路径规划。

同时,智能导航还可以与车辆的自动驾驶系统相结合,实现自动变道、自动超车等功能,提高出行效率。

例如,当导航系统检测到前方道路拥堵时,它会自动为驾驶者规划一条避开拥堵路段的新路线。

汽车车载网络系统的认识

汽车车载网络系统的认识
数据链路层
数据链路层最重要的作用就是通过一些数据链路层的协议, 在不可靠的物理链路上实现可靠的数据传输。
16
汽车车载网络系统的认识
五、车载网络的分类

用途


应用范围


功能


车身系统局域网 安全系统局域网 动力传动系统局域网 信息系统局域网
车内局域网 车外局域网
面向传感器、执行器控制的低速网络 面向独立模块间数据共享的中速网络 面向高速、实时闭环控制的多路传输网 面向多媒体信息的高速传输网络 面向乘员的安全系统高速、实时网络
12
汽车车载网络系统的认识
三、车载网络系统的组成
通信协议
通信协议是控制通信实体间有效完成信息交换的一组约定 和规则。
通信协议的三要素
(1)语法:确定通信双方之间“如何讲”,即通信信息帧 的格式。 (2)语义:确定通信双方之间“讲什么”,即通信信息帧 的数据和控制信息。 (3)定时规则:确定事件传输的顺序以及速度匹配。
6
汽车车载网络系统的认识
二、车载网络技术的发展史
5、1987年,全球最大的半导体芯片制造商,美国因特尔公司 开发出了第一枚CAN的芯片82526。荷兰最大的电子公司飞 利浦公司很快也推出了CAN的芯片82C200。 6、1992年,奔驰公司作为第一个采用CAN总线技术的公司, 将CAN总线系统装配在客车上。 7、1993年11月,国际化标准组织公布了CAN协议的国际标 准ISO11898以及ISO11519。
9
汽车车载网络系统的认识
三、车载网络系统的组成
数据总线
数据总线是电控单元之间传输数据和信息的通道,就是通 常所说的“信息高速公路”。数据总线的功用就是传输数 据和信息。数据总线的传输介质常用双绞线、同铀电缆和 光纤。

车联网技术在智能交通中的应用与实践

车联网技术在智能交通中的应用与实践

车联网技术在智能交通中的应用与实践第1章车联网技术概述 (4)1.1 车联网的定义与发展历程 (4)1.2 车联网的关键技术 (4)1.3 车联网在智能交通中的作用与意义 (5)第2章车联网体系结构 (5)2.1 车联网体系结构设计原则 (5)2.2 车联网物理层与网络层技术 (6)2.2.1 物理层技术 (6)2.2.2 网络层技术 (6)2.3 车联网应用层与服务层设计 (6)2.3.1 应用层设计 (6)2.3.2 服务层设计 (6)第3章车联网通信技术 (7)3.1 车载无线通信技术 (7)3.1.1 车载自组网(VANET) (7)3.1.2 车载传感器网络 (7)3.1.3 车载无线通信技术比较与展望 (7)3.2 车联网网络协议与标准 (7)3.2.1 车联网通信协议概述 (7)3.2.2 车联网标准化组织与进展 (7)3.2.3 车联网协议的互操作性与兼容性 (7)3.3 车联网信息安全与隐私保护 (7)3.3.1 车联网信息安全概述 (7)3.3.2 车联网安全防护技术 (8)3.3.3 车联网隐私保护策略 (8)3.3.4 车联网信息安全与隐私保护发展趋势 (8)第4章车联网数据采集与处理 (8)4.1 车联网数据采集技术 (8)4.1.1 传感器数据采集 (8)4.1.2 车载终端数据采集 (8)4.1.3 车联网通信技术 (8)4.2 车联网大数据处理技术 (8)4.2.1 数据预处理 (8)4.2.2 数据存储与管理 (8)4.2.3 数据挖掘算法 (9)4.3 车联网数据挖掘与分析 (9)4.3.1 交通流量分析 (9)4.3.2 驾驶行为分析 (9)4.3.3 车辆故障预测 (9)4.3.4 环境监测与预警 (9)第5章车联网在智能交通管理中的应用 (9)5.1 智能交通信号控制 (9)5.1.1 车联网与信号灯联动 (9)5.1.2 车联网在紧急车辆优先通行中的应用 (9)5.2 智能交通监控与调度 (9)5.2.1 车联网在交通监控中的应用 (9)5.2.2 车联网在公交车辆调度中的应用 (10)5.3 智能交通信息服务 (10)5.3.1 车联网在实时导航中的应用 (10)5.3.2 车联网在交通安全提示中的应用 (10)5.3.3 车联网在智能停车服务中的应用 (10)第6章车联网在智能车辆控制中的应用 (10)6.1 车联网辅助驾驶技术 (10)6.1.1 车载传感器与车联网数据融合 (10)6.1.2 车联网实时交通信息推送 (10)6.1.3 车联网智能导航系统 (10)6.2 自动驾驶与车联网 (11)6.2.1 车联网在自动驾驶技术中的作用 (11)6.2.2 车联网环境下自动驾驶协同控制 (11)6.2.3 车联网在自动驾驶安全防护中的应用 (11)6.3 车联网在新能源汽车中的应用 (11)6.3.1 车联网在电动汽车远程监控中的应用 (11)6.3.2 车联网在新能源汽车能量管理中的作用 (11)6.3.3 车联网在新能源汽车智能充电中的应用 (11)第7章车联网在智能公共交通领域的应用 (11)7.1 智能公交系统 (11)7.1.1 公交车辆监控与管理 (11)7.1.2 公交优先通行技术 (11)7.1.3 公交线路优化与调度 (11)7.2 出行服务与共享经济 (12)7.2.1 共享出行服务 (12)7.2.2 智能出行导航 (12)7.2.3 个性化出行服务 (12)7.3 车联网在物流领域的应用 (12)7.3.1 车辆实时监控与调度 (12)7.3.2 货物运输追踪与追溯 (12)7.3.3 智能配送与末端物流 (12)第8章车联网与智能交通融合创新 (12)8.1 车联网与物联网的融合 (12)8.1.1 车联网与物联网的体系架构 (12)8.1.2 车联网与物联网的数据融合 (13)8.1.3 车联网与物联网的协同应用 (13)8.2 车联网与人工智能的融合 (13)8.2.1 车联网与人工智能的技术架构 (13)8.2.2 车联网与人工智能在智能驾驶中的应用 (13)8.2.3 车联网与人工智能在交通管理中的应用 (13)8.3 车联网与边缘计算的融合 (13)8.3.1 车联网与边缘计算的技术架构 (13)8.3.2 车联网与边缘计算在数据实时处理中的应用 (13)8.3.3 车联网与边缘计算在智能交通场景中的应用 (13)第9章车联网技术实践案例 (14)9.1 城市智能交通系统 (14)9.1.1 案例一:城市交通信号灯控制 (14)9.1.2 案例二:公交优先系统 (14)9.1.3 案例三:智能交通信息服务 (14)9.2 高速公路智能管控 (14)9.2.1 案例一:高速公路拥堵预警 (14)9.2.2 案例二:高速公路处理 (14)9.2.3 案例三:高速公路不停车收费 (14)9.3 停车场智能管理 (14)9.3.1 案例一:智能停车导航 (14)9.3.2 案例二:停车场预约服务 (14)9.3.3 案例三:停车场智能收费 (15)第10章车联网技术发展前景与挑战 (15)10.1 车联网技术发展趋势 (15)10.1.1 概述 (15)10.1.2 5G通信技术的融合与发展 (15)10.1.3 大数据与云计算在车联网中的应用 (15)10.1.4 人工智能技术在车联网中的融合与创新 (15)10.1.5 车联网与智能交通的深度结合 (15)10.2 车联网技术挑战与应对策略 (15)10.2.1 安全性问题 (15)10.2.1.1 数据安全与隐私保护 (15)10.2.1.2 网络安全与信息安全 (15)10.2.2 系统兼容性与标准化问题 (15)10.2.2.1 不同标准体系的融合 (15)10.2.2.2 设备兼容性与互操作性 (15)10.2.3 技术创新与产业应用的衔接 (15)10.2.3.1 技术研发与产业需求的对接 (15)10.2.3.2 产业链上下游的协同发展 (15)10.2.4 应对策略 (15)10.2.4.1 建立健全安全防护体系 (15)10.2.4.2 推进标准化工作,促进产业协同 (15)10.2.4.3 加强产学研合作,推动技术创新与应用 (15)10.3 车联网产业生态构建与政策支持 (15)10.3.1 车联网产业生态构建 (15)10.3.1.1 产业链整合与优化 (15)10.3.1.2 平台化发展与服务创新 (15)10.3.1.3 跨行业合作与共赢 (16)10.3.2 政策支持 (16)10.3.2.1 政策法规与产业政策的制定 (16)10.3.2.2 产业扶持与资金支持 (16)10.3.2.3 试点示范与推广普及 (16)10.3.2.4 国际合作与竞争策略 (16)第1章车联网技术概述1.1 车联网的定义与发展历程车联网,即车载自组网(VANET,Vehicular Adhoc Network),是指利用先进的无线通信技术,将行驶中的车辆与周围环境、其他车辆以及交通基础设施进行信息交换和共享的网络体系。

基于无线网络的车辆自组网研究和应用

基于无线网络的车辆自组网研究和应用近年来,基于无线网络的车辆自组网(VANET)逐渐成为交通领域研究的热点问题。

VANET利用车载设备之间的通信,将车辆形成一个自适应的、互相协作的网络。

该网络可以实现车辆之间的信息交换和共享,以提高车辆的安全性和效率。

本文将对基于无线网络的车辆自组网的研究和应用进行探讨。

一、基于无线网络的车辆自组网的概述基于无线网络的车辆自组网是指在车辆之间建立一种基于无线通信的通信网络。

该网络在车辆之间传递信息,协调车辆之间的行动,并提高交通效率和安全性。

车辆自组网使用一种称为车对车(V2V)通信的技术来交换数据。

这种技术使车辆之间可以通过无线网络直接通信,而不需要通过传统的基础设施(如移动网络、卫星信号等)。

通过此种通信方式,车辆可以在高速公路和城市道路上不受限制地传输数据。

此外,车辆自组网还可以集成其他感知技术,如雷达、GPS定位等,从而更好地监测交通流量。

二、基于无线网络的车辆自组网的核心技术1. V2V通信技术车辆自组网的核心技术之一是车对车(V2V)通信技术。

该技术通过车辆之间的无线通信实现信息的传递。

V2V通信技术包括Wi-Fi、Bluetooth、ZigBee、LTE等各种不同的协议和标准。

其中,802.11p协议是用于车辆之间通信的一种广泛采用的技术。

2. 路途感知技术路途感知技术包括雷达、车道偏离警告系统、GPS等。

这些技术可以向车辆提供交通流量、车速和距离等信息。

此外,路途感知技术可以通过V2V通信技术将这些信息传输给其他车辆。

3. 车辆位置跟踪技术车辆位置跟踪技术可以实现对车辆位置的实时跟踪。

这对于交通管理和调度非常重要,因为它可以提高交通流量的效率。

此外,车辆位置跟踪技术还可以帮助管理车辆共享和停车。

三、基于无线网络的车辆自组网的应用1. 提高交通安全VANET可用于提高交通安全。

它可以帮助驾驶员避免交通事故。

例如,VANET可以引入车道偏离、交通拥堵等特殊情况的警告系统来提醒驾驶员注意安全。

3智能网联汽车网络通信技术应用

1.LIN总线 LIN(Local Interconnect Network)是面向汽车低端分布式 应用的低成本,低速串行通信总线。它的目标是为现有汽车 网络提供辅助功能,在不需要CAN总线的带宽和多功能的场 合使用,降低成本。 LIN总线包含一个宿主节点和一个或多个从属节点,所有 节点都包含一个被分解为发送和接收任务的从属通讯任务, 而宿主节点还包含一个附加的宿主发送任务,在实时LIN总线 中,通讯总是由宿主任务发起的。LIN总线拓扑图如右图所示。
智能网联汽车网络技术
(2)V2X技术 V2X主要包含vehicle-to-vehicle(V2V),vehicle-to-infrastructure(V2I),vehicle-tonetwork(V2N)以及vehicle-to-pedestrian(V2P),如下图所示。
智能网联汽车网络技术
车载网络技术
除了宿主节点的命名之外,LIN网络中的节点不使用有关系统设置的任何信息。LIN总线上的 所有通讯都由主机节点中的主机任务发起,主机任务根据进度表来确定当前的通讯内容,发送相 应的帧头,并为报文帧分配帧通道,总线上的从机节点接收帧头之后,通过解读标识符来确定自 己是否应该对当前通讯做出响应、做出何种响应(如下图所示)。基于这种报文滤波方式,LIN 可实现多种数据传输模式,且一个报文帧可以同时被多个节点接收利用。LIN总线物理层采用单 线连接,两个电控单元间的最大传输距离为40m。
车载网络技术
在总线上实行“线与”,“0”为显性电平、“1”为隐性电平,当总线有至少一个节点发送 显性电平时,总线呈现显性电平;所有节点均发送隐性电平或者不发送信息时,总线呈隐性电 平,即显性电平起着主导作用。LIN总线报文帧如下图所示。
车载网络技术
由于LIN总线一般最大值在12V左右,因此可以设置示波器的垂直档位为2V/div,时基可以 设置为500μs左右。LIN总线波形如下图所示。

浅谈汽车网络技术的运用

浅谈汽车网络技术的运用随着互联网技术的不断发展,汽车网络技术也在逐步普及和提高应用。

汽车网络技术是将汽车系统、车载设备、智能交通等智能化设备与互联网技术相结合,实现车辆间、车路间的信息交流和数据共享。

本文将重点探讨汽车网络技术的运用。

一、智能交通系统的应用智能交通系统是指利用现代通信、计算机、控制等高新技术,将各种运输系统、设施及其组成部分互联互通起来,实现信息交换、控制管理等多种功能的系统。

智能交通系统可以通过车载设备、路边设施和后台管理系统相互配合,实现导航、交通安全、车辆控制等功能。

在汽车网络技术的支持下,智能交通系统得以实现车辆状态监测和智能交通控制,例如行车记录仪、车载导航、交通预测、车联网通信、远程诊断等。

同时,智能交通系统能够收集出行状况,为城市交通管理部门提供重要数据,以便更加科学地管理城市交通。

二、智能驾驶技术的应用智能驾驶技术是将传感器、控制系统、通信技术等各种技术融入到汽车内部系统中,实现车辆自主导航和行驶的技术。

智能驾驶技术可以通过车辆主动控制,实现自主避障、自动追随、自动泊车等功能。

在汽车网络技术的支持下,智能驾驶技术的应用也得到了大幅度提高。

例如利用车载传感器和数据处理技术,实现自动刹车、自动跟车、车道保持等功能。

同时,智能驾驶技术能够协助驾驶员辅助行驶、提高驾驶安全性。

未来,智能驾驶技术将成为新一代汽车的必备技术。

智能警示系统是一种通过车载设备和互联网技术,实现行车安全提示的智能化设备。

智能警示系统能够准确检测车辆对前面的障碍物和行车状态,从而为驾驶员提供更为安全、舒适的驾乘体验。

在汽车网络技术的支持下,智能警示系统可以实现强制刹车、紧急避让等方式,帮助驾驶员在道路行驶中避免危险。

同时,智能警示系统可以快速地识别道路标志,帮助驾驶员减少交通违规行为。

四、智能化保养服务的应用智能化保养服务是指利用汽车网络技术,实现自动化保养、故障自诊断、远程控制等服务的智能化设备。

智能化保养服务能够通过车载设备和云端服务系统,自动采集车辆运行状态数据,从而完成精准的故障自诊断和保养服务。

车载网络知识点总结

车载网络知识点总结一、车载网络的概念车载网络是指将汽车内部的电子设备、传感器、控制单元等与移动通信网络连接起来,实现车辆信息传输和互联的一种网络系统。

通过车载网络,车辆可以连接互联网,实现远程控制和互联互通。

车载网络的发展与智能化汽车的发展密切相关,可以为驾驶人员、乘客提供更丰富的信息服务和更便捷的交通出行方式。

二、车载网络的技术架构车载网络的技术架构主要包括车辆内部网络、车辆对外通信、车辆与云端通信等几个主要部分。

1. 车辆内部网络:车辆内部网络是指车载网络中用于连接车辆内部各种设备和传感器的网络系统。

通常采用CAN总线、LIN总线等方式进行连接,实现车辆内部各种设备之间的数据传输和通信。

2. 车辆对外通信:车辆对外通信是指车辆通过移动通信网络与外部互联网进行数据传输和通信的部分。

车辆可以通过3G/4G/5G网络连接互联网,实现远程控制、车辆信息传输等功能。

3. 车辆与云端通信:车辆与云端通信是指车辆通过移动通信网络与云端服务器进行数据传输和通信的部分。

通过车辆与云端的通信,可以实现车辆数据的上传、下载,车辆远程控制和管理等功能。

三、车载网络的应用场景车载网络的应用场景非常广泛,主要包括车辆信息服务、车辆远程控制、车辆安全监控等几个方面。

1. 车辆信息服务:通过车载网络,车辆可以连接互联网,实现导航、音乐、视频、在线购物等丰富的信息服务。

驾驶人员、乘客可以在车辆内部享受不同于传统汽车的娱乐和工作方式。

2. 车辆远程控制:通过车载网络,车主可以通过手机App或者互联网远程控制车辆的启动、熄火、空调、车窗、车灯等功能。

提高了车主对车辆的便捷控制。

3. 车辆安全监控:通过车载网络,车辆可以实时上传自身位置、状态信息到云端服务器,可以实现车辆追踪、监控和报警等功能。

提高了车辆的安全性和管理效率。

四、车载网络的安全性车载网络的安全性是非常重要的,因为一旦发生安全漏洞或攻击,可能对车辆和驾驶人员的生命财产造成严重威胁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈汽车车载网络的应用
摘要:车载网络是现代汽车电子技术发展的必然趋势,本文就车载网络形成的必要性及其应用进行了系统地分析,以便更好地理解新一代汽车电子控制系统。

关键词:车载网络车身系统动力传动系统安全系统信息系统
一、引言
随着汽车工业日新月异的发展,现代汽车上使用了大量的电子控制装置,许多中高档轿车上采用了十几个甚至二十几个电控单元,而每一个电控单元都需要与相关的多个传感器和执行器发生通讯,并且各控制单元间也需要进行信息交换,如果每项信息都通过各自独立的数据线进行传输,这样会导致电控单元针脚数增加,整个电控系统的线束和插接件也会增加,故障率也会增加等诸多问题。

为了简化线路,提高各电控单元之间的通信速度,降低故障频率,一种新型的数据网络CAN 数据总线应运而生。

CAN总线具有实时性强、传输距离较远、抗电磁干扰能力强;在自动化电子领域的汽车发动机控制部件、传感器、抗滑系统等应用中,CAN的位速率可高达1Mbps。

同时,它可以廉价地用于交通运载工具电气系统中。

二、CAN总线简介
CAN,全称为“Controller Area Network”,即控制器局域网,是由ISO定义的串行通讯总线,主要用来实现车载各电控单元之间的信息交换,形成车载网络系统,CAN数据总线又称为CAN—BUS总线。

它具有信息共享,减少了导线数量,大大减轻配线束的重量,控制单元和控制单元插脚最小化,提高可靠性和可维修性等优点。

CAN被设计作为汽车环境中的微控制器通信,在车载各电子控制装置ECU之间交换信息,形成汽车电子控制网络。

其工作采用单片机作为直接控制单元,用于对传感器和执行部件的直接控制。

每个单片机都是控制网络上的一个节点,一辆汽车不管有多少块电控单元,不管信息容量有多大,每块电控单元都只需引出两条导线共同接在节点上,这两条导线就称作数据总线(Bus)。

CAN数据总线中数据传递就像一个电话会议,一个电话用户就相当于控制单元,它将数据“讲入”网络中,其他用户通过网络“接听”数据,对这组数据感兴趣的用户就会利用数据,不感兴趣的用户可以忽略该数据。

一个由CAN总线构成的单一网络中,理论上可以挂接无数个节点,但实际应用中,所挂接的节点数目会受到网络硬件的电气特性或延迟时间的限制。

使用计算机网络进行通信的前提是,各电控单元必须使用和解读相同的“电子语言”,这种语言称“协议”。

汽车电脑网络常见的传输协议有多种,为了并实现与众多的控制与测试仪器之间的数据交换,就必须制定标准的通信协议。

随着CAN在各种领域的应用和推广,1991年9月Philips Semiconductors 制定并发布了CAN技术规范(Version 2.0)。

该技术包括A和B两部分。

2.0A给出了CAN 报文标准格式,而2.0B给出了标准的和扩展的两种格式。

1993年11月ISO颁布了道路交通运输工具—数据信息交换—高速通信局域网国际标准ISO 11898,为控制局域网的标准化
和规范化铺平了道路。

美国的汽车工程学会SAE 2000年提出的J 1939,成为货车和客车中控制器局域网的通用标准。

三、CAN-BUS数据总线的组成与结构
CAN-BUS系统主要包括以下部件:CAN控制器、CAN收发器、CAN-BUS数据传输线和CAN-BUS终端电阻。


1.CAN控制器,CAN收发器
CAN-BUS上的每个控制单元中均设有一个CAN控制器和一个CAN收发器。

CAN控制器主要用来接收微处理器传来的信息,对这些信息进行处理并传给CAN收发器,同时CAN 控制器也接收来自CAN收发器传来的数据,对这些数据进行处理,并传给控制单元的微处理器。

CAN收发器用来接收CAN控制器送来的数据,并将其发送到CAN数据传输总线上,同时CAN收发器也接收CAN数据总线上的数据,并将其传给CAN控制器。

2.数据总线终端电阻
CAN-BUS数据总线两端通过终端电阻连接,终端电阻可以防止数据在到达线路终端后象回声一样返回,并因此而干扰原始数据,从而保证了数据的正确传送,终端电阻装在控制单元内。

3.数据传输总线
数据传输总线大部分车型用的是两条双向数据线,分为高位﹝CAN-H﹞和低位﹝CAN-L﹞数据线。

为了防止外界电磁波干扰和向外辐射,两条数据线缠绕在一起,要求至少每2.5cm 就要扭绞一次,两条线上的电位是相反的,电压的和总等于常值。

四、车载网络的应用分类
车载网络按照应用加以划分,大致可以分为4个系统:车身系统、动力传动系统、安全系统、信息系统。

1.动力传动系统
在动力传动系统内,动力传动系统模块的位置比较集中,可固定在一处,利用网络将发动机舱内设置的模块连接起来。

在将汽车的主要因素—跑、停止与拐弯这些功能用网络连接起来时,就需要高速网络。

动力CAN数据总线一般连接3块电脑,它们是发动机、ABS/EDL及自动变速器电脑(动力CAN数据总线实际可以连接安全气囊、四轮驱动与组合仪表等电脑)。

总线可以同时传递10组数据,发动机电脑5组、ABS/EDL电脑3组和自动变速器电脑2组。

数据总线以
500Kbit/s速率传递数据,每一数据组传递大约需要0.25ms,每一电控单元7~20ms发送一次数据。

优先权顺序为ABS/EDL电控单元→发动机电控单元→自动变速器电控单元。

在动力传动系统中,数据传递应尽可能快速,以便及时利用数据,所以需要一个高性能的发送器,高速发送器会加快点火系统间的数据传递,这样使接收到的数据立即应用到下一个点火脉冲中去。

CAN数据总线连接点通常置于控制单元外部的线束中,在特殊情况下,连接点也可能设在发动机电控单元内部。

2.车身系统
与动力传动系统相比,汽车上的各处都配置有车身系统的部件。

因此,线束变长,容易受到干扰的影响。

为了防干扰应尽量降低通信速度。

在车身系统中,因为人机接口的模块、节点的数量增加,通信速度控制将不是问题,但成本相对增加,对此,人们正在摸索更廉价的解决方案,目前常常采用直连总线及辅助总线。

舒适CAN数据总线连接一般连接七个控制单元,包括中央控制单元、车前车后各一个受控单元及四个车门的控制单元。

舒适CAN数据传递有七大功能:中控门锁、电动窗、照明开关、空调、组合仪表、后视境加热及自诊断功能。

控制单元的各条传输线以星状形式汇聚一点。

这样做的好处是:如果一个控制单元发生故障,其他控制单元仍可发送各自的数据。

该系统使经过车门的导线数量减少,线路变得简单。

如果线路中某处出现对地短路,对正极短路或线路间短路,CAN系统会立即转为应急模式运行或转为单线模式运行。

数据总线以62.5Kbit/s速率传递数据,每一组数据传递大约需要1ms,每个电控单元20ms 发送一次数据。

优先权顺序为:中央控制单元→驾驶员侧车门控制单元→前排乘客侧车门控制单元→左后车门控制单元→右后车门控制单元。

由于舒适系统中的数据可以用较低的速率传递,所以发送器性能比动力传动系统发送器的性能低。

整个汽车车身系统电路主要有三大块:主控单元电路、受控单元电路、门控单元电路。

主控单元按收开关信号之后,先进行分析处理,然后通过CAN总线把控制指令发送给各受控端,各受控端响应后作出相应的动作。

车前、车后控制端只接收主控端的指令,按主控端的要求执行,并把执行的结果反馈给主控端。

门控单元不但通过CAN总接收主控端的指令,还接收车门上的开关信号输入。

根据指令和开关信号,门控单元会做出相应动作,然后把执行结果发往主控单元。

(1)安全系统
这是指根据多个传感器的信息使安全气囊启动的系统,由于安全系统涉及到人的生命安全,加之在汽车中气囊数目很多,碰撞传感器多等原因,要求安全系统必须具备通信速度快、通信可靠性高等特点。

(2)信息系统
信息系统在车上的应用很广泛,例如车载电话、音响等系统的应用。

对信息系统通信总线的要求是:容量大、通信速度非常高。

通信媒体一般采用光纤或铜线,因为此两种介质传输的
速度非常快,能满足信息系统的高速化需求。

五、CAN总线技术在汽车中应用的关键技术
利用CAN总线构建一个车内网络,需要解决的关键技术问题有:
(1)总线传输信息的速率、容量、优先等级、节点容量等技术问题
(2)高电磁干扰环境下的可靠数据传输
(3)确定最大传输时的延时大小
(4)网络的容错技术
(5)网络的监控和故障诊断功能
(6)实时控制网络的时间特性
(7)安装与维护中的布线
(8)网络节点的增加与软硬件更新(可扩展性)
六、结束语
CAN总线作为一种可靠的汽车计算机网络总线,现已开始在先进的汽车上得到应用,从而使得各汽车计算机控制单元能够通过CAN总线共享所有的信息和资源,以达到简化布线、减少传感器数量、避免控制功能重复、提高系统可靠性和可维护性、降低成本、更好地匹配和协调各个控制系统之目的,随着汽车电子技术的发展,具有高度灵活性、简单的扩展性、优良的抗干扰性和纠错能力的CAN总线通信协议必将在汽车电控系统中得到更广泛的应用。

相关文档
最新文档