树状图或表格求简单事件的概率
求概率的简单方法

求概率的简单方法
答案解析:
一、列表法求概率
1、列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
2、列表法的应用场合当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
二、树状图法求概率
1、树状图法就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
2、运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
三、利用频率估计概率
1、利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
3、随机数在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。
把这些随机产生的数据称为随机数。
求概率的书写格式

求概率的书写格式中考数学中,概率题几乎是必考题,每年中考赋予的实际情境都不同,但考查的内容都是一样的,那就是利用列表或画树状图的方法求等可能事件的概率,题目本身都很简单,但是一定要注意解题步骤及书写规范,不然很容易丢分的。
习惯上,人们画树状图比较多,因为列表需要用尺子画表格,稍麻烦些。
一、解题步骤及书写规范共分3个步骤:1、列表或画树状图2、根据表格或树状图描述n和m3、把n和m代入公式P(A)=m/n求解下面就这三个步骤中需要注意的问题分别阐述下。
1、列表或画树状图.①转化分解把一个事件转化分解为2~3个步骤,比如4个球中随机摸2个,本来是同时进行的一件事可以转化分解为两个步骤:先摸一个球,再摸一个球。
再比如2男2女中随机抽取2个人,也可分2个步骤:先选一个,再选一个。
初中列表或画树状图求概率和高中排列组合计算概率不同,高中要“先分类,后分步”,这里却是“先分步,后分类”。
②注意“放回”还是“不放回”“不放回”体现在列表上就是对角线为空,体现在树状图上就是下一步比上一步种类少1③关于“开始”很多画树状图的答案上都有个“开始”对此问题,曾请教过一些年长的同事,说是早以前的课本上有“开始”,但是后来就取消了,已经取消了很多年,所以不需要写。
当然,你要是喜欢写也可以。
2、根据表格或树状图描述n和m.描述n时要特别强调“等可能”三个字,通常有两种写法:①共有n 种等可能的结果;②共有n种结果,它们的可能性都是相等的。
一般用第一种的多,因为简洁明了。
描述m时通常这样说:其中A事件包含的结果共有m种。
3、把n和m代入公式P(A)=m/n求解.代入公式时注意两点:①简单描述下事件A;②最后结果一定要化到最简,除不尽千万不要化成小数。
二、例题示范例、从两男两女中随机选两个人打扫卫生,求选取的两个人恰好是一男一女的概率解:画树状图如下:由树状图知,共有12种等可能的结果,其中选取的两人恰好是一男一女的结果有8种.∴P(恰好一男一女)=8/12=2/3.。
简单事件的概率

简单事件的概率1、简单事件类型:(1)必然事件:有些事件我们事先能肯定它一定会发生,这类事件称为必然事件;(2)不可能事件:有一些事件我们事先能肯定它一定不会发生,这类事件称为不可能事件;必然事件与不可能事件都是确定的。
(3)不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件。
2.概率的定义:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率。
P 必然事件=1, P 不可能事件=0, 0<P 不确定事件<13.概率的计算方法(1)用试验估算: 此事件出现的次数试验的总次数某事件发生的概率 (2)常用的计算方法:① 直接列举 ; ② 列表法 树状图 。
4.频率与概率的关系:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率人总是在一个固定数值附近摆动,这个固定数值就叫随机事件发生的概率,概率的大小反映了随机事件发生的可能性的大小。
频率与概率是两个不同的概念,概率是伴随着随机事件客观存在着的,只要有一个随机事件存在,那么这个随机事件的概率就一定存在;而频率是通过实验得到的,它随着实验次数的变化而变化,但当试验的重复次数充分大后,频率在概率附近摆动,为了求出一随机事件的概率,我们可以通过多次实验,用所得的频率来估计事件的概率。
练习:1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A .让比赛更富有情趣B .让比赛更具有神秘色彩C .体现比赛的公平性D .让比赛更有挑战性2.小张掷一枚硬币,结果是一连9次掷出正面向上,那么他第10次掷硬币时,出现正面向上的概率是( ).A .0B .1C .0.5D .不能确定3.关于频率与概率的关系,下列说法正确的是( ).A .频率等于概率B .当试验次数很多时,频率会稳定在概率附近C .当试验次数很多时,概率会稳定在频率附近D .试验得到的频率与概率不可能相等4.下列说法正确的是( ).A .一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等5.下列说法正确的是( ).A .抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B .“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C .一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D .抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ).A .21 B .31 C .61 D .817.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ).A .31 B .32 C .61 D .91 8.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( ).A .32 B .41 C .51 D .101 9.下面4个说法中,正确的个数为( ).(1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%”(3)小李说,这次考试我得90分以上的概率是200%(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小A .3B .2C .1D .010.下列说法正确的是( ).A .可能性很小的事件在一次试验中一定不会发生B .可能性很小的事件在一次试验中一定发生C .可能性很小的事件在一次试验中有可能发生D .不可能事件在一次试验中也可能发生概率的计算(重点)1、等可能事件的概率如果事件发生的各种结果的可能性相同,结果总数为n ,其中事件A 发生的可能的结果总数为m (m≤n),那么事件A 发生的概率为()nm A P =. 2、运用列表格、画树状图等列举方法来统计、计算等可能事件发生的结果总数和某种事件A 发生的可能的结果总数,从而计算简单事件发生的概率.【典例讲解】例1、袋中有1个红球,2个白球和3个黄球,球的质量与大小、外表均相同,搅匀后从中摸出一个球,则: ①任意从袋中摸得一个球,恰好是红球的概率. ②任意从袋中摸得一个球,恰好是白球的概率. ③任意从袋中摸两个球,恰好是红球和黄球的概率.直接列举由于6个球的外质均相同,所以任意摸出一球时,被摸出的球的概率为61,而红球只有一个,白球是2个,黄球是3个. ∴摸红球的概率为61;摸白球的概率为31,黄球为21. 而摸出两球时,所有的可能性为n=15种(如红白1,红白2,白1黄1,白1黄2,白1黄3,白2黄1,白2黄2,白2黄3,红黄1,红黄2,红黄3,白1白2,黄1黄2,黄1黄3,黄2黄3). 但事件“任意从袋中摸两个球,恰好是红球和黄球”的总数m=3,∴摸到红球和黄球的概率为51.例2、小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张.计算小明和小亮抽得的两个数字之和,如果和为奇数则小明胜,和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况;(2)请判断该游戏对双方是否公平,并说明理由.列表(1)从表中可看出小明和小亮抽得的数字之和可能为2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,故P (小明胜)=94, P (小亮胜)=95,所以此游戏对双方不公平. 画树状图(1)从树状图中可看出小明和小亮抽得的数字之和可能为2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,故P (小明胜)=94, P (小亮胜)=95,所以此游戏对双方不公平.例3、图为红心和梅花两组牌,每组牌面数字都分别是1,2,3.如果从每组牌中各抽一张,并将牌面数字相加,得数字和.求:(1)牌面数字和为奇数的概率;(2)牌面数字和为偶数的概率;(3)牌面数字和为6的概率;(4)牌面数字和为几的概率最大?这个概率是多少?例4.根据闯关游戏规则,请你探究“闯关游戏”的奥秘。
用树状图或表格求概率

用树状图或表格求概率相关知识点链接:1、频数与频率频数:在数据统计中,每个对象出现的次数叫做频数,频率:每个对象出现的次数与总次数的比值为频率。
2、概率的意义和大小:概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值.必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件发生的概率在0与1之间.【知识点1】频率与概率的含义在试验中,每个对象出现的频繁程度不同,我们称每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率,即把刻画事件A发生的可能性大小的数值,称为事件A发生的概率。
【例1】不透明的袋中有3个大小相同的球,其中2个位白色,1个位红色,每次从袋中摸出一(2)观察表中出现红球的频率,随着试验次数的增多,出现红球的概率______________。
【知识点2】通过实验运用稳定的频率来估计某一时间的概率在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近.我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的频率。
例2 三张除字母外完全相同的纸牌,字母分别是A,A,K,每次抽一张为试验一次,经过多(2)观察表格,估计摸到A的概率;(3)求摸到A的概率;【知识点3】利用画树状图或列表法求概率(重难点)【例4】有列表法求以下随机事件发生的概率掷一枚均匀的骰子,每次试验掷两次,求两次骰子夫人点数和为7的概率。
例5 明华外出游玩时带了2件上衣(白色、米色)和3条裤子(蓝色、黑色、棕色),他任意拿出一件上衣和一条裤子恰好是白色和黑色的概率是多少?题型一:求事件的概率例1 某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用表示)中抽取一个,再在三个上机题(题签分别用代码表示)中抽取一个进行考试,小亮在看不到题签的情况下,分别从笔试题和上机题中随机的各抽取一个题签(1)用画树状图或列表法表示出所有可能的结果。
10.2 可能性与概率 课件(苏科版八年级下册) (3)

其中能使甲乘坐上等车的所有情形 是ABC、ACB; 因为6种情形出现的可能性相等,所 以甲坐上等车的概率是2/6=1/3, 能使乙乘坐上等车的所有情形是 BAC、BCA、CAB. 乙坐上等车的概率是3/6=1/2.
本节课我的体会是
练习:
1.在一个不透明的袋子里放入除颜 色外完全相同的1个红球和1个白球, 搅匀后从中摸出一个球记下颜色, 放回后摇匀,再摸出一个,则两次 摸出的球均是红球的概率是 .
初中数学八年级下册 (苏科版)
zx``xk
等可能条件下的概率(3)
教学目标: 1.经历试验、统计等活动过程,在活动 中进一步发展学生合作交流的意识和 能力。 2.能用试验的方法估计一些复杂的随机 事件发生的概率。 3.能运用树状图和列表法计算简单事件 发生的概率。
教学重点:用树状图和列表法计算 简单事件发生的概率。 教学难点:能用试验的方法估计一 些复杂的随机事件发生的概率 教学建议:重视试验
解:
红1
假设两双手套的颜色分别为红、 黑,如下分析
红2
黑1
红2
黑2 黑1 红1 红2
黑1 黑2
红2 黑 黑 红 1 2 1 黑2 红1
P(配成一双)
=
4 12
ቤተ መጻሕፍቲ ባይዱ
=
1 3
练习 (1)张老师有3件不同的衬衫和2条不同
颜色的裤子,他要把裤子和衬衫搭配, 不同搭配的方法有 种. 6
练习 (2)从学校去小明家有4条路,从小明家去小华 家有5条路,现在老师要去家访,先去小明家再 去小华家,则共有 种走法.
②可能产生的结果为C和D,两者出现的可能性相 同且不分先后,从A和B分别画出两个分支,在分 支的第二行分别写上C和D.
例1. 抛掷一枚普通的硬币三次.有
北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习

第01讲_概率的进一步认识知识图谱概率的计算知识精讲一.用列表法和树状图法求事件的概率1.列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.2.树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的树丫形式,最末端的树丫个数就是总的可能的结果.二.用频率估计概率实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.三点剖析一.考点:概率的计算二.重难点:用列表法和树状图法求事件概率三.易错点:(1)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值;(2)复杂事件求概率的方法运用频率估算概率。
判断是否公平的方法运用概率是否相等,关注频率与概率的整合。
求简单事件的概率例题1、在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.1 3B.23C.16D.34【答案】B【解析】分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.北师大版本九年级上册第三章概率的进一步认识例题2、围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是2 3.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()A.4颗B.6颗C.8颗D.12颗【答案】C【解析】由题意得14223xx yxx y⎧=⎪++⎪⎨⎪=⎪+⎩;解得48yx=⎧⎨=⎩,由此可得,原来盒子中有白色棋子8颗例题3、某厂为新型号电视机上市举办促销活动,顾客购买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出两个球,摸到都是黄球的顾客获得大奖,摸到不全是黄球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你讲转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:转盘上用文字注明颜色和扇形的圆心角的度数,结合转盘简述获奖方式,不需要说明理由).【答案】见解析【解析】(1)符合,一共出现20种可能性,并且每种可能性都相同,所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(两黄球)212010==,即顾客获得大奖的概率为10%,获得小奖的概率为90%;(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36︒的扇形区域涂上黄色,其余的区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.随练1、如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C. D.【答案】C【解析】列表如下:共有6种情况,必须闭合开关S 3灯泡才亮,即能让灯泡发光的概率是=.故选C .随练2、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,它们除颜色外全部相同,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗【答案】B【解析】解:由题意得:25134x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩,解得23x y =⎧⎨=⎩故选:B .随练3、有一盒子中装有3个白色乒乓球,2个黄色乒乓球,1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是______颜色;(2)请你计算摸到每种颜色球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?【答案】(1)白(2)16(3)公平【解析】(1)因为白色的乒乓球数量最多,所以最有可能是白色(2)摸出一球总共有6种可能,它们的可能性相等,摸到白球有3种、黄球有2种、红球有1种.所以P (摸到白球)=3162=,P (摸到黄球)=2163=,P (摸到红球)=16;(3)答:公平.因为P (摸到白球)=12,P (摸到其他球)=21162+=,所以公平.列表法和树状图法求概率例题1、如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是__________.【答案】715【解析】列表得(1,8)(1,7)(1,6)(1,5)(1,4);(2,8)(2,7)(2,6)(2,5)(2,4);(3,8)(3,7)(3,6)(3,5)(3,4);其中为偶数的有7种,故数字和为偶数的概率是715例题2、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,1-,2-,3-四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为__________.【答案】38【解析】画树状图,得因为共有16种可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况所以两次摸出的小球上两个数字乘积是负数的概率63168==.例题3、有十张正面分别标有数字3-,2-,1-,0,1,2,3,4,5,6的不透明卡片,他们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,将该卡片上的数字加1记为b .则数字a ,b 使得关于x 的方程210ax bx +-=有解的概率为___________.【答案】710【解析】列表得:一共有(3,2)--、(2,1)--、(1,0)-、(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7);数字a ,b 使得关于x 的方程210ax bx +-=有解的情况有:(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7)七种,则710P =.例题4、在平面直角坐标系中给定以下五个点A (2-,0)、B (1,0)、C (4,0)、D (2-,92)、E (0,6-),在五个形状、颜色、质量完全相同的乒乓球上标上A 、B 、C 、D 、E 代表以上五个点.玩桌球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y 轴)的概率是()A.12B.35C.710D.45【答案】B【解析】所有的摸球情况有:ABC 、ABD 、ABE 、ACD 、ACD 、ACE 、ADE 、BCD 、BCE 、BCE 、BDE 、CDE 共有10种情况;其中,ABC 时,三点都在x 轴上,共线,不能确定一条抛物线;而ABD 、ACD 、ADE 时,A 、D 的横坐标都是2-,不复合函数的定义;所以能确定一条抛物线的情况有:10136--=,所以35P =.随练1、把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x ,把第二次转动停止后指针指向的数字的2倍记作y ,以长度分别为x 、y 、5的三条线段能构成三角形的概率为__________.【答案】49【解析】列表可得因此,点(),A x y 的个数共有9个;则x 、y 、5的三条线段能构成三角形的有4组,可得49P =.随练2、在不透明的口袋中,有五个形状、大小、质地完全相同的小球,五个小球分别标有数字2-、1-、0、2、3,现从口袋中任取一个小球,并将该小球上的数字作为点C 的横坐标,然后放回摇匀,再从口袋中人去一个小球,并将该小球上的数字作为点C 的纵坐标,则点C 恰好与点A (2-,2)、B (3,2)构成直角三角形的概率是_________.【答案】25【解析】画树状图如下:共有25种情况,当点C的坐标为(2-,2-)、(2-,1-)、(2-,0)、(2-,3)、(1-,0)、(2,0)、(3,2-)、(3,1-)、(3,0)、(3,3)共10种情况时,构成直角三角形,P(直角三角形)102 255 ==.用频率估计概率例题1、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【答案】D【解析】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.例题2、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:40075015003500700090003696621335320363358073根据表中数据,估计这种幼树移植活率的概率为__________(精确到0.1).【答案】0.9【解析】(0.9230.8830.8900.9150.9050.8970.902)70.9x=++++++÷≈例题3、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n)100150200500摸到白球次数(m)5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当n很大时,摸到白球的概率将会接近0.6.(2)由(1)可得,摸到白球的概率是35,摸到黑球的概率是25;(3)由(2)可得,口袋中白球的个数320125=⨯=个;黑球的个数22085=⨯=个.随练1、如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).【答案】0.5【解析】由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:7961550≈0.5.随练2、某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:的次数n 100150200500800”的次数m 68111136345564的频率m(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1)【答案】(1)见解析;(2)0.7;(3)0.7;(4)252 【解析】(1)的次数n 100150200500800”的次数68111136345564的频(2)当n 很大时,频率将会接近681111363455647010.71001502005008001000+++++=+++++(3)获得铅笔的概率约是0.7(4)扇形的圆心角约是0.7360252⨯=拓展1、一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.4 9B.13C.16D.19【答案】D【解析】列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为1 9.2、在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?【答案】(1)嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4;(2)列表法:由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=612=12,∵P1=34,P2=12,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.3、从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率____.【答案】13【解析】由关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4,可求得a 的值,由关于x 的方程x 2+4x+a=0有解,可求得a 的取值范围,继而求得答案.∵一次函数y=2x+a 与x 轴、y 轴的交点分别为:(﹣2a,0),(0,a ),∴|﹣2a|×|a|×12=4,解得:a=±4,∵当△=16﹣4a ≥0,即a ≤4时,关于x 的方程x 2+4x+a=0有解,∴使关于x 的方程x 2+4x+a=0有解,且使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4的概率为:13.故答案为:134、王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是__________.【答案】王红【解析】共9种情况,和为7的情况数有3种,王红获胜的概率为39;和为8的情况数有2种,刘芳获胜的概率为29; 王红获胜的可能性较大.5、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n )100150200500摸到白球次数(m )5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n 很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当\(n\)很大时,摸到白球的概率将会接近\(0.6\).(2)由(1)可得,摸到白球的概率是\(\frac{3}{5}\),摸到黑球的概率是\(\frac{2}{5}\);(3)由(2)可得,口袋中白球的个数\(=20\times \frac{3}{5}=12\)个;黑球的个数\(=20\times \frac{2}{5}=8\)个.6、在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.【答案】(1)见解析;(2);(3).【解析】(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.。
九年级数学上册第三章概率的进一步认识 全章学案 新版北师大版
第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率一、读一读(学习目标)1.学会用树状图和列表法计算涉及两步试验的随机事件发生的概率。
2. 进一步经历用树状图、列表法计算两步以上随机实验的概率的过程.二、试一试(一)计算涉及两步试验的随机事件发生的概率1.认真阅读课本60页—61页内容并完成下列问题。
(1)现有两组相同的牌,每组两张。
牌面数字分别为1和2. (如右图)从每组牌中各摸出一张,在一次试验中,如果摸得第一张牌的牌面数字为1,那么摸第二张牌时,摸得牌面数字为几的可能性大?如果摸得第二张牌的牌面数字为2呢?要写出解答的过程。
(2)随机掷一枚均匀的硬币两次,至少有一次反面朝上的概率是多少?(用两种方法解答)(3)小颖有两件上衣,分别是红色和白色,有两条裤子,分别是黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?(二)计算涉及两步以上试验的随机事件发生的概率认真阅读课本62页—63页,思考课本中提出的问题。
例1.小明、小颖和小凡做“石头、剪刀、布”游戏。
游戏规则如下:由小明和小颖做“石头、剪刀、布”游戏,如果两个人手势相同,那么小凡胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜拳头”的规则决定小明和小颖中的获胜者。
做一做:例2.小明和小军两人一起做游戏。
游戏规则如下:每人从1,2,…,12中任选一个数,然后两个人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数和谁就获胜;如果两个人选择的数都不等于掷得的点数之和;就再做一次上述游戏,直至决出胜负。
如果你是游戏者你会选择哪个数?三、练一练1.掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是_______________.2.随机掷三枚硬币,出现三个正面朝上的概率是___________________3.一只箱子里面有3个球,其中2个白球,1个红球,他们出颜色外均相同。
九年级数学概率复习课
《概率》主备人:枣庄二十九中张芳(薛城区)课时课题:概率课型:复习课授课时间:2013年4月216日,星期二,第二节课教学目标:1.会借助树状图和列表法计算简单事件发生的概率.2.了解大量重复试验时频率可以作为简单事件发生概率的估计值.3.通过概率的计算,解决一些简单的实际问题.教学重点:1.会借助树状图和列表法计算简单事件发生的概率.2.。
通过概率的计算,解决一些简单的实际问题.教学难点:通过概率的计算,解决实际问题.教法及学法指导:本节课以学生活动为主,尽可能在自主研讨交流过程中逐渐引导、启发学生建立知识体系,归纳、总结本考点学习中的收获、困难及需要改进的地方。
教学过程一、热点关注,知识回顾[师]同学们,今天我们一起来复习概率,对我们来讲,概率的考题都相对简单,首先我们来看一下命题的热点。
(课前将学案发给学生,学生提前阅读,先自主研讨试题,梳理知识,归纳技能和技巧,课上给学生5分钟的时间予以梳理常见考点然后进行小组交流.)考点一:事件的类型例1(2012四川资阳)下列事件为必然事件的是( )A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球【解析】必然事件是指一定会发生的事件,A 是不确定事件,B 是不确定事件,C 是不确定事件,D 是必然事件.【点评】事件包括确定事件和不确定事件,确定事件包括必然事件和不可能事件,必然事件发生的概率是1,不可能事件发生的概率为0,而不确定事件发生的概率在0和1之间. 考点二:概率的意义例2(2012福建漳州)下列说法中错误的是【 】A .某种彩票的中奖率为1%,买100张彩票一定有1张中奖B .从装有10个红球的袋子中,摸出1个白球是不可能事件C .为了解一批日光灯的使用寿命,可采用抽样调查的方式D .掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是61 【解析】A .某种彩票的中奖率为1%,是中奖的频率接近1%,所以买100张彩票可能中奖,也可能没中奖,所以A 选项的说法错误B .从装有10个红球的袋子中,摸出的应该都是红球,则摸出1个白球是不可能事件,所以B 选项的说法正确;C .为了解一批日光灯的使用寿命,可采用抽样调查的方式,而不应采用普查的方式,所以C 选项的说法正确;D .掷一枚普通的正六面体骰子,共有6种等可能的结果,则出现向上一面点数是2的概率是61,所以D 选项的说法正确. 【点评】在理解概率的定义时,有一点必须注意:即使某事件发生的概率是,也并不意味着做m 次随机试验,事件就一定会发生一次,当试验次数很大时,试验频率接近理论概率,但是不一定等于理论概率. 考点三:用列举法求概率例3(2012连云港)现有5根小木棒,长度分别为:2,3,4,5,7(单位:cm),从中任意取出3根.(1)列出所选的3根小木棒的所有可能情况;(2)如果用这3根小木棒首尾顺次相接,求它们能搭成三角形的概率.【解析】不要遗漏或重复可能的情况,只有较小的两条线段的和>最大的线段的三条线段才能组成三角形(1)选的3根小木棒的所有可能情况是(2,3,4)(2,3,5)(2,3,7)(3,4,5)(3,4,7)(4,5,2)(4,5,7)(5,7,2)(5,7,3)(5,7,2)共10种情况.(2)由三角形三边关系可知只有(3,4,5)(2,3,4)(4,5,2)(4,5,7)(5,7,3)这5种能构成三角形.所以P (构成三角形)=51102. 【点评】本题考查简单事件概率计算。
九年级数学用树状图或表格求概率
学以致用 2.某商场门前有一停车场,共有八个停 车位,分成两排,已有三辆车分别停放在 了1、4、6号车位。今有甲、乙两位顾 客乘车去商场,他们先后将车随机停放 在了停车场,问甲、乙二人所乘的车并 排停放在一起的概率是多少?
1 5 2 6 3 7 4 8
思考讨论 袋中装有四个红色球和两个兰色球, 它们除了颜色外都相同; (1)随机从中摸出一球,恰为红球的
第二次摸球号 第一次摸球号
1
2
3
4
5
6
1
2 3 4
(1,1) (1,2) (1,3)(1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4)(2,5) (2,6) (3,1)(3,2) (3,3) (3,4) (3,5) (3,6) (4,1)(4,2) (4,3)(4,4)(4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4)(6,5) (6,6)
老师提示 用树状图或表格可以清晰 地表示出某个事件所有可能 出现的结果,从而使我们较 容易求简单事件的概率.
初中数学资源网
问题深入
准备两组相同的牌,每组三张,三张牌面的 数字分别是1、2、3.从两组牌中各摸出一 张为一次试验,上述结果又会是怎样呢?
1 2 3
1 2 3
第六章 频率与概率
1.频率与概率 (2)
回顾与思考
频率与概率的关系
当试验次数很大时,一个事件发 生的频率也稳定在相应的概率附 近.因此,我们可以通过多次试验,
用一个事件发生的频率 来估计这一事件发生的概率.
实践与猜想
还记得上节课的摸牌游戏吗?
准备两组相同的牌,每组两张,两张 牌面的数字分别是1和2.从两组牌中 各摸出一张为一次试验.
2022-2023学年上学期初中数学北师大版九年级期末必刷常考题之用树状图或表格求概率
2022-2023学年上学期初中数学北师大版九年级期末必刷常考题之用树状图或表格求概率一.选择题(共5小题)1.(2021春•盐湖区校级期末)现有4根木棒,长度分别为4cm、6cm、8cm、10cm,从中任取三根木棒,能够组成三角形的概率是()A.B.C.D.2.(2021春•法库县期末)下列事件发生的概率为0的是()A.随意掷一枚均匀的硬币两次,至少有一次反面朝上B.今年冬天黑龙江会下雪C.随意掷两个均匀的骰子,朝上面的点数之和为18D.一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域3.(2021春•垦利区期末)如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号1﹣5的小正方形中任意一个涂黑,则3个被涂黑的正方形组成的图案是一个轴对称图形的概率是()A.1 B.C.D.4.(2020秋•龙华区期末)一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是()A.B.C.D.5.(2020秋•沙坪坝区校级期末)不透明的盒子里有3个形状、大小、质地完全相同的小球,上面分别标记数字1、2、3,从中随机抽出一个小球,放回后再随机抽出1个小球,把第1次抽出的小球上的数字作为两位数a的十位数字,第2次抽出的小球上的数字作为两位数a的个位数字,则两位数a是3的倍数的概率为()A.B.C.D.二.填空题(共5小题)6.(2020秋•集贤县期末)学校组织团员同学参加实践活动,共安排2辆车,小王和小李随机上了一辆车,结果他们同车的概率是.7.(2021•海城市模拟)甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红球的概率是.8.(2021春•沙坪坝区校级期末)现有三张分别标有数字﹣2、﹣1、1的卡片,它们除了数不同外其余完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a;放回后从卡片中再任意抽取一张,将上面的数字记为b,则一次函数y=ax+b的图象经过第一象限的概率为.9.(2021春•浦东新区校级期末)在一个布袋中,装有除颜色外其它完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个红球的概率是.10.(2021春•渝中区校级期末)如图,用两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配出紫色,那么可配成紫色的概率是.三.解答题(共5小题)11.(2021春•高港区期末)一个不透明的袋中装有2个白球,3个红球,每个球除颜色外都相同,将球摇匀.(1)①从中任意摸出1个球是黑球;②从中任意摸出1个球是白球;③从中任意摸出1个球是红球;④从中任意摸出3个球,其中有红球.上述事件是随机事件的是,是确定事件的是(只填序号).将它们的序号按发生的可能性从小到大的顺序排列为.(2)现往袋中放入黑、白两种球共4个,每个球与袋中的球除颜色外都相同,将球摇匀,此时从中任意摸出1个球,摸到三种颜色的球的概率都相等,则放入的黑球个数为,白球的个数为.12.(2021春•新城区校级期末)一个不透明的口袋中放有14个白球,16个黑球,若干个红球,每个球除颜色外都相同.(1)某同学从袋子里每次随机摸出一个球,记下颜色后放回袋子,然后再摸出一个球,记下颜色后放回袋子…,如此一共摸球20次,其中摸出红球的次数为4次,求这次摸球活动中红球出现的频率;(2)若袋子中白球的数量比红球的数量的2倍还多2个,求从袋中任取一个球是黑球的概率.13.(2020秋•雁塔区校级期末)防疫期间,全市所有学校都严格落实测温进校的防控要求.我校开设了A、B、C三个测温通道,某天早晨,小颖和小明将随机通过测温通道进入校园.(1)小颖通过A通道进入校园的概率是;(2)利用画树状图或列表的方法,求小颖和小明通过同一通道进入校园的概率.14.(2021春•漳州期末)一个袋中装有4个红球,6个白球,8个黑球,每个球除颜色外其余完全相同.(1)求从袋中随机摸出一个球是白球的概率;(2)从袋中摸出6个白球和a(a>2)个红球,再从剩下的球中摸出一个球.①若事件“再摸出的球是红球”为不可能事件,求a的值;②若事件“再摸出的球是黑球”为随机事件,求这个事件的概率.15.(2021春•崇川区期末)某单位组织员工进行新冠疫苗接种,现有A,B,C三辆车去医院,它们出发的先后顺序随机,财务科的王会计要早点出发,她只坐第一个出发的那辆车,张会计手上还有一些事务需要处理,她要坐第三个出发的那辆车.请你运用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)这两人中,谁乘坐到A车的可能性大?请说明理由.2022-2023学年上学期初中数学北师大版九年级期末必刷常考题之用树状图或表格求概率参考答案与试题解析一.选择题(共5小题)1.(2021春•盐湖区校级期末)现有4根木棒,长度分别为4cm、6cm、8cm、10cm,从中任取三根木棒,能够组成三角形的概率是()A.B.C.D.【考点】三角形三边关系;列表法与树状图法.【专题】概率及其应用;数据分析观念.【分析】列举出从4根木棒中任取三根木棒,所有可能出现的结果情况,再根据概率公式进行计算即可.【解答】解:从中任取三根木棒所有可能的情况为(4、6、8),(4、6、10),(6、8、10),(4、8、10)4种情况,其中(4、6、8),(6、8、10),(4、8、10)这3种能构成三角形,所以能够构成三角形的概率是,故选:C.【点评】本题考查列表法或树状图法求简单随机事件发生的概率,列举出所有可能出现的结果情况是解决问题的关键.2.(2021春•法库县期末)下列事件发生的概率为0的是()A.随意掷一枚均匀的硬币两次,至少有一次反面朝上B.今年冬天黑龙江会下雪C.随意掷两个均匀的骰子,朝上面的点数之和为18D.一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域【考点】随机事件;概率的意义;概率公式;列表法与树状图法.【专题】概率及其应用;数据分析观念.【分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1;必然事件概率为1;不可能事件概率为0.【解答】解:A、是随机事件,概率大于0并且小于1,不符合题意;B、是随机事件,概率大于0并且小于1;是必然事件,概率=1,不符合题意;C、是不可能事件,概率=0,符合题意;D、是随机事件,概率大于0并且小于1,不符合题意;故选:C.【点评】本题考查了概率的意义,概率的意义反映的只是这一事件发生的可能性的大小,概率取值范围:0≤p≤1,其中必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0;随机事件,发生的概率大于0并且小于1.事件发生的可能性越大,概率越接近于1,事件发生的可能性越小,概率越接近于0.3.(2021春•垦利区期末)如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号1﹣5的小正方形中任意一个涂黑,则3个被涂黑的正方形组成的图案是一个轴对称图形的概率是()A.1 B.C.D.【考点】轴对称图形;列表法与树状图法.【专题】概率及其应用;数据分析观念.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,4处,5处,选择的位置共有4处,其概率为.故选:B.【点评】考查了概率公式的知识,解题的关键是了解轴对称的定义及概率的求法,难度不大.4.(2020秋•龙华区期末)一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】概率及其应用;应用意识.【分析】根据题意画出树状图,由概率公式即可得两次都摸到红球的概率.【解答】解:画出树状图:根据树状图可知:所有等可能的结果共有6种,其中两次都摸到红球的有2种,∴两次都摸到红球的概率是=;故选:D.【点评】本题考查了列表法与树状图法以及概率公式,解决本题的关键是画出树状图.5.(2020秋•沙坪坝区校级期末)不透明的盒子里有3个形状、大小、质地完全相同的小球,上面分别标记数字1、2、3,从中随机抽出一个小球,放回后再随机抽出1个小球,把第1次抽出的小球上的数字作为两位数a的十位数字,第2次抽出的小球上的数字作为两位数a的个位数字,则两位数a是3的倍数的概率为()A.B.C.D.【考点】列表法与树状图法.【专题】概率及其应用;数据分析观念.【分析】根据题意画出树状图,利用概率公式求解.【解答】解:画树状图得:共有9种等可能的情况,其中能被3整除的有12,21,33共3种情况,所以两位数a是3的倍数的概率为=,故选:A.【点评】考查了列表法与树状图法求概率,解题的关键是能够将所有等可能的结果列举出来,难度不大.二.填空题(共5小题)6.(2020秋•集贤县期末)学校组织团员同学参加实践活动,共安排2辆车,小王和小李随机上了一辆车,结果他们同车的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】2辆车分别用A、B表示,则利用树状图可展示所有4种等可能的结果数,再找出他们同车的结果数,然后根据概率公式求解.【解答】解:2辆车分别用A、B表示,画树状图:共有4种等可能的结果数,其中他们同车的结果数为2,所以他们同车的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.7.(2021•海城市模拟)甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红球的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取出的两个球都是红的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,取出的两个球都是红的有1种情况,∴取出的两个球都是红的概率为:.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.(2021春•沙坪坝区校级期末)现有三张分别标有数字﹣2、﹣1、1的卡片,它们除了数不同外其余完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a;放回后从卡片中再任意抽取一张,将上面的数字记为b,则一次函数y=ax+b的图象经过第一象限的概率为.【考点】一次函数的性质;列表法与树状图法.【专题】概率及其应用;数据分析观念.【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:列表如下﹣2﹣11﹣2(﹣2,﹣2)(﹣1,﹣2)(1,﹣2)﹣1(﹣2,﹣1)(﹣1,﹣1)(1,﹣1)1(﹣2,1)(﹣1,1)(1,1)由表知,共有9种等可能结果,其中一次函数y=ax+b的图象经过第一象限的有5种结果,∴一次函数y=ax+b的图象经过第一象限的概率为,故答案为:.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.也考查了一次函数的性质.9.(2021春•浦东新区校级期末)在一个布袋中,装有除颜色外其它完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个红球的概率是.【考点】列表法与树状图法.【专题】概率及其应用;数据分析观念.【分析】画树状图,共有12个等可能的结果,摸到的两个红球的结果有2个,再由概率公式求解即可.【解答】解:画树状图如图:共有12个等可能的结果,摸到的两个红球的有2种结果,∴摸到的两个红球的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.10.(2021春•渝中区校级期末)如图,用两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配出紫色,那么可配成紫色的概率是.【考点】列表法与树状图法.【专题】概率及其应用;应用意识.【分析】用列表法表示所有可能出现的结果情况,从中找出能配成紫色的情况,即可求出配紫的概率.【解答】解:用列表法表示所有可能出现的结果情况如下:共有6种等可能出现的结果,其中能配成紫色的有2种,所以,能配成紫色的概率为=,故答案为:.【点评】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是解决问题的关键.三.解答题(共5小题)11.(2021春•高港区期末)一个不透明的袋中装有2个白球,3个红球,每个球除颜色外都相同,将球摇匀.(1)①从中任意摸出1个球是黑球;②从中任意摸出1个球是白球;③从中任意摸出1个球是红球;④从中任意摸出3个球,其中有红球.上述事件是随机事件的是②③,是确定事件的是①④(只填序号).将它们的序号按发生的可能性从小到大的顺序排列为①②③④.(2)现往袋中放入黑、白两种球共4个,每个球与袋中的球除颜色外都相同,将球摇匀,此时从中任意摸出1个球,摸到三种颜色的球的概率都相等,则放入的黑球个数为3,白球的个数为1.【考点】随机事件;列表法与树状图法.【专题】统计与概率;数据分析观念.【分析】(1)根据题意,可以写出各个小题中的概率和相应的事件,从而可以解答本题;(2)根据摸到三种颜色的球的概率都相等,可知三种颜色的球的数量相等,从而可以得到放入的黑球个数和白球个数.【解答】解:(1)①从中任意摸出1个球是黑球的概率为0,是不可能事件,是确定事件;②从中任意摸出1个球是白球的概率是,是随机事件;③从中任意摸出1个球是红球的概率是,是随机事件;④从中任意摸出3个球,其中有红球概率是1,是必然事件,是确定事件;故答案为:②③,①④,①②③④;(2)∵一个不透明的袋中装有2个白球,3个红球,又往袋中放入黑、白两种球共4个,从中任意摸出1个球,摸到三种颜色的球的概率都相等,∴三种颜色的球的数量相等,∴放入的黑球个数为3,白球个数为1,故答案为:3,1.【点评】本题考查概率、随机事件与必然事件、等可能事件,解答本题的关键是求出相应的概率,写出相应的事件.12.(2021春•新城区校级期末)一个不透明的口袋中放有14个白球,16个黑球,若干个红球,每个球除颜色外都相同.(1)某同学从袋子里每次随机摸出一个球,记下颜色后放回袋子,然后再摸出一个球,记下颜色后放回袋子…,如此一共摸球20次,其中摸出红球的次数为4次,求这次摸球活动中红球出现的频率;(2)若袋子中白球的数量比红球的数量的2倍还多2个,求从袋中任取一个球是黑球的概率.【考点】列表法与树状图法.【专题】一次方程(组)及应用;概率及其应用;数据分析观念;应用意识.【分析】(1)用摸到红球的次数除以摸球的总次数即可;(2)设口袋中红球的个数为x,根据“白球的数量比红球的数量的2倍还多2个”建立方程求出x的值,再利用概率公式求解即可.【解答】解:(1)这次摸球活动中红球出现的频率为4÷20=0.2;(2)设口袋中红球的个数为x,根据题意,得:2x+2=14,解得x=6,∴袋中红球的个数为6,∴从袋中任取一个球是黑球的概率为=.【点评】本题考查的是概率公式.用到的知识点为:概率=所求情况数与总情况数之比.13.(2020秋•雁塔区校级期末)防疫期间,全市所有学校都严格落实测温进校的防控要求.我校开设了A、B、C三个测温通道,某天早晨,小颖和小明将随机通过测温通道进入校园.(1)小颖通过A通道进入校园的概率是;(2)利用画树状图或列表的方法,求小颖和小明通过同一通道进入校园的概率.【考点】列表法与树状图法.【专题】概率及其应用;数据分析观念.【分析】(1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)小颖从A测温通道通过的概率为,故答案为:;(2)列表格如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C由表可知,共有9种等可能的结果,其中小颖和小明从同一个测温通道通过的有3种可能,所以小颖和小明从同一个测温通道通过的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.14.(2021春•漳州期末)一个袋中装有4个红球,6个白球,8个黑球,每个球除颜色外其余完全相同.(1)求从袋中随机摸出一个球是白球的概率;(2)从袋中摸出6个白球和a(a>2)个红球,再从剩下的球中摸出一个球.①若事件“再摸出的球是红球”为不可能事件,求a的值;②若事件“再摸出的球是黑球”为随机事件,求这个事件的概率.【考点】随机事件;概率公式;列表法与树状图法.【专题】概率及其应用;模型思想;应用意识.【分析】(1)袋中共装18个球,其中白球有6个,占总数的,即可求出摸出白球的概率;(2)①袋子中如果没有红球,即“再摸出的球是红球”为不可能事件,此时a=4;②根据题意可知,若事件“再摸出的球是黑球”为随机事件,此时袋中有1个红球,8个黑球,求出摸出黑球的概率即可.【解答】解:(1)袋中共有4+6+8=18个球,其中白球有6个,所以从袋中随机摸出一个球是白球的概率为=;(2)①袋中如果没有红球,即“再摸出的球是红球”为不可能事件,此时a=4;②根据题意可知,若事件“再摸出的球是黑球”为随机事件,此时袋中有1个红球,8个黑球,所以摸出黑球的概率为=.【点评】本题考查简单随机事件的概率,理解概率的意义,列举出所有可能出现的结果情况是解决问题的关键.15.(2021春•崇川区期末)某单位组织员工进行新冠疫苗接种,现有A,B,C三辆车去医院,它们出发的先后顺序随机,财务科的王会计要早点出发,她只坐第一个出发的那辆车,张会计手上还有一些事务需要处理,她要坐第三个出发的那辆车.请你运用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)这两人中,谁乘坐到A车的可能性大?请说明理由.【考点】列表法与树状图法.【专题】概率及其应用;模型思想.【分析】(1)利用树状图表示所有可能出现的结果情况即可;(2)分别求出王会计、张会计乘坐A车的概率,进而得出结论.【解答】解:(1)用树状图表示所有可能出现的结果如下:(2)王会计、张会计乘坐A车的可能性是相等的,理由:王会计乘坐A车的可能性为:,张会计乘坐A车的可能性为:=,因此王会计、张会计乘坐A车的可能性是相等的.【点评】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是求相应概率的关键.考点卡片1.一次函数的性质一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b <0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.2.三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略.3.轴对称图形(1)轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.(2)轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.(3)常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等等.4.随机事件(1)确定事件事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.(2)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.5.概率的意义(1)一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p 就叫做事件A的概率,记为P(A)=p.(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.(3)概率取值范围:0≤p≤1.(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.6.概率公式(1)随机事件A的概率P(A)=.(2)P(必然事件)=1.(3)P(不可能事件)=0.7.列表法与树状图法(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.(5)当有两个元素时,可用树形图列举,也可以列表列举。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 7 第三章 概率的进一步认识 1 用树状图或表格求概率(一) 一、学生知识状况分析 在以前的学习,已经通过试验、统计等活动感受随机事件发生的频率的稳定性即“当试验次数很大时,事件发生的频率稳定在相应概率的附近”,了解到事件的概率,体会到概率是描述随机现象的数学模型。本章在此基础上结合具体的情景,让学生经历猜测、试验、收集试验数据、设计试验方案、分析试验结果等活动过程,进一步让学生体会数学在生活中的价值及发展合作意识。
二、教学任务分析 本课时介绍两种计算概率的方法——树状图和表格法; 要求会借助树状图和表格法计算简单的事件发生概率.为此建立教学目标如下: 1.知识与技能目标: ①进一步理解当试验次数较大时试验频率稳定于概率. ②会借助树状图和列表法计算涉及两步试验的随机事件发生的概率. 2.方法与过程目标: 合作探究,培养合作交流的意识和良好思维习惯. 3.情感态度价值观 积极参与数学活动, 提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣.发展学生初步的辩证思维能力. 教学重点:借助树状图和列表法计算涉及两步试验的随机事件发生的概率. 教学难点:理解两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性.正确应用树状图和列表法计算涉及两步试验的随机事件发生的概率.
三、教学过程分析 本节设计五个教学环节 第一环节:温故而知新,可以为师矣 2 / 7
第二环节:一花独放不是春,百花齐放春满园 第三环节:会当凌绝顶,一览众山小 第四环节:问渠哪得清如许 为有源头活水来 第五环节:学而时习之,不亦乐乎. 第一环节:温故而知新,可以为师矣 问题再现:小明和小凡一起做游戏。在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜。 (1)这个游戏对双方公平吗? (2)在一个双人游戏中,你是怎样理解游戏对双方公平的?如果是你,你会设计一个什么游戏活动判断胜负? 遇到了新问题:小明、小凡和小颖都想去看周末电影,但只有一张电影票。三人决定一起做游戏,谁获胜谁就去看电影。游戏规则如下: 连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜。 你认为这个游戏公平吗?(如果不公平,猜猜谁获胜的可能性更大?) 设计目的:使学生再次体会“游戏对双方是否公平”,并由学生用自己的语言描述出“游戏公平吗”的含义是游戏的双方获胜的概率要相同。同时,巧妙的利用一个“如果是你,你会设计一个什么游戏活动判断胜负?”的问题,引发学生的思考及参与的热情,如果学生说出“掷硬币”的方法,自然引出本节课的内容。 第二环节:一花独放不是春,百花齐放春满园 活动内容:(1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格: 抛掷的结果 两枚正面朝上 两枚反面朝上 一枚正面朝上、一枚反面朝上 频数 频率 (2)5个同学为一个小组,依次累计各组的试验数据,相应得到试验100次、200次、300次、400次、500次……时出现各种结果的频率,填写下表,并绘制成相应的折现统计图。 3 / 7
试验次数 100 200 300 400 500 … 两枚正面朝上的次数 两枚正面朝上的频率 两枚反面朝上的次数 两枚反面朝上的频率 一枚正面朝上、一枚反面朝上的次数 一枚正面朝上、一枚反面朝上的频率 (3)由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率。由此,你认为这个游戏公平吗? 活动体会:从上面的试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上。一枚反面朝上”发生的概率大于其他两个事件发生的概率。所以,这个游戏不公平,它对小凡比较有利。 深入探究:在上面抛掷硬币试验中, (1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样? (3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生可能性是否一样?如果第一枚硬币反面朝上呢? 请将各自的试验数据汇总后,填写下面的表格: 抛掷第一枚硬币 抛掷第二枚硬币 正面朝上的次数 正面朝上的次数 反面朝上的次数 反面朝上的次数 正面朝上的次数 反面朝上的次数 表格中的数据支持你的猜测吗? 探究体会:由于硬币是均匀的,因此抛掷第一枚硬币出现“正面朝上”和“反面朝上”的概率相同。无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的。所以,抛掷两枚均匀的硬币,出现的(正,正)(正,反)(反,正)(反,反)四种情况是等可能的。 因此,我们可以用下面的树状图或表格表示所有可能出现的结果: 4 / 7
其中,小明获胜的结果有一种:(正,正)。所以小明获胜的概率是41; 小颖获胜的结果有一种:(反,反)。所以小颖获胜的概率也是41; 小凡获胜的结果有两种:(正,反)(反,正)。所以小凡获胜的概率是42。 因此,这个游戏对三人是不公平的。 利用树状图或表格,我们可以不重复,不遗留地列出所有可能的结果,从而比较方便地求出某些事件发生的概率。 活动目的:对于随机现象,学生一般都有一些朴素的想法,这些想法有的是正确的,有的是错误的,因此要让学生亲自经历对随机现象的探索过程,亲自经历猜测、试验、收集试验数据、设计试验方案、分析试验结果等活动过程,以获得事件发生的概率。了解随机现象的特点,了解概率的意义,树立试验探究的观念,这是概率教学的核心思想。 第三环节:会当凌绝顶,一览众山小 活动内容1:准备两组相同的牌,每组两张,两张牌的牌面数字 分别是1和2.从每组牌中各摸出一张牌,称为一次试验。 (1)一次试验中两张牌的牌面数字和可能有哪些值? (2)(同位合作试验)依次统计试验30次、60次、90次的牌面情况,填写下表: 5 / 7
第一张牌的牌面数字 第二张牌的牌面数字 第一张牌的牌面数字为1的次数 第二张牌的牌面数字为1的次数 第二张牌的牌面数字为2的次数 第一张牌的牌面数字为2的次数 第二张牌的牌面数字为1的次数 第二张牌的牌面数字为2的次数 (3)依次统计试验30次、60次、90次时两张牌的牌面数字和分别等于2,3,4的频率,填写下表。 试验次数 30 60 90 两张牌的牌面数字和等于2的频率 两张牌的牌面数字和等于3的频率 两张牌的牌面数字和等于4的频率 (4)你认为两张牌的牌面数字和为多少的概率最大? (5)请你估计,两张牌的牌面数字和等于3个概率是多少? (6)请你利用本节课学习的树状图或表格,计算两张牌的牌面数字和等于3个概率,验证(5)中你的估计。 解:方法一:(1)一次试验中.两张牌的牌面数字的和等可能的情况有: 1+1=2;1+2=3;2+1=3;2+2=4. 共有四种情况.而和为3的情况有2种,因此, P(两张牌的牌面数字和等于3)= 42=21. 两张牌的牌面数字的和有四种等可能的情况,而 两张牌的牌面数字和为3的情况有2次,因此.两张 牌的牌面数字的和为3的概率为42=21. 方法二:两张牌的牌面数字的和有四种等可能的情况, 也可以用树状图来表示而两张牌的牌面数字和为3 的情况有2次,因此.两张牌的牌面数字的和为3 的概率为42=21. 方法三:通过列表的方式 6 / 7
活动内容2:(回归开始的问题类型,加以巩固提升本节课知识) 一个盒子中装有一个红球、一个白球。这些球除颜色外都相同,从中随机地摸出一个球,记下颜色后放回,再从中随机摸出一个球。求: (1)两次都摸到红球的概率; (2)两次摸到不同颜色球的概率; (3)只有一张电影票,通过做这样一个游戏,谁获胜谁就去看电影。如果是你,你如何选择? 如果学生没想到这些方法,教师可以以呈现表格、或者提问的方式等引出这些不同的求法,从而引出列表法.用树状图或表格,知道利用这些方法,可以方便地求出某些事件发生的概率.在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的. 活动效果及注意事项:学生一般都会用树状图或表格求出某些事件发生的概率,也能体会到这种方法的简便性,但是容易忽略各种情况出现的可能性是相同的这个条件.教师注意提醒,在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的. 第四环节:问渠哪得清如许 为有源头活水来 活动内容:1、本节课你有哪些收获?有何感想? 2、用列表法求概率时应注意什么情况? 活动目的:通过对本节课的小结,加深对本节知识的理解,理解掌握树状图和列表法求理论概率的方法,并熟练应用,同时注意用列表法求概率时应注意各种情况发生的可能性务必相同。 活动效果及注意事项:注意及时发现学生练习中出现的错误,进行讲评,使学生能当堂掌握用树状图和列表法求理论概率. 第五环节:学而时习之,不亦乐乎 1. (必做题)随堂练习.
第二张牌面数字 第一张牌面数字 1 2
1 2