遥感数字图像处理 实验三
三讲遥感图像处理3

原始图像
复合后图像 27
28
多源信息复合
1、遥感信息复合 2)不同时相的遥感数据复合
步骤 (1)配准 (2)直方图调整 (3)复合
29
多源信息复合
2、遥感与非遥感信息复合
步骤: 1、地理数据的网格化 (1) 网格数据生成 (2) 与遥感数据配准
1、n维多光谱空间
像元矢量
11多光谱变换1、n维多光谱间12多光谱变换
1、n维多光谱空间 每个像元点在多光谱空间中的位置都可以表示为一个N维向量X
x1
x2
X
xi
x1, x2 , xi , xn T
xn
13
多光谱变换
2、K-L变换[离散(Karhunen-Loeve)变换]
主 成 分 变 换 ( PCA, Principal Component Analysis)
数字图像增强
4 图像运算 5 多光谱变换
1
图像运算
两幅或多幅单波段图像,空间配准后可进行算术运算, 实现图像的增强。
1、差值运算:两幅同样行、列数的图像,对应像元的亮 度(灰度)值相减。差值图像提供了不同波段或不同时相图 像间的差异信息。
2、比值运算:两幅同样行、列数的图像,对应像元的亮 度(灰度)值相除(除数不为0)。比值图像,像元的亮度反 映了两个波段光谱比值的差异,常用来检测植被,消除“同 物异谱”现象。
2、最优遥感数据的选取:可选PCA变换后的前 两个波段。 3、复合
30
地层(R),化探(G)和重力(B)数据合成影像 31
遥感与地层,重力,化探融合影像
32
主要成矿地层影像
遥感实验三(图像分割)2010

卷积滤波
卷积(Convolutions)滤波是通过消除特定的空间频率来使图像增强,根据增强类型(低频、中频和高频)不同可分为低通滤波、带通滤波和高通滤波。此外还可以增强图像某些方向特征的方向滤波等。它们的核心部分是卷积核。ENVI提供很多卷积核,包括高通滤波(High Pass)、低通滤波(Low Pass)、拉普拉斯算子(Laplacian)、方向滤波(Directional)、高斯高通滤波(Gaussian High Pass)、高斯低通滤波(Gaussian Low Pass)、中值滤波(Median)、Sobel、Roberts,还可以自定义卷积核。具体操作如下:
下面对ENVI中各种滤波作一个简单的说明,如表5.1。
表5.1 各种滤波说明
滤波
说明
高通滤波器(High Pass)
高通滤波在保持图像高频信息的同时,消除了图像中的低频成分。它可以用来增强纹理、边缘等信息。高通滤波通过运用一个具有高中心值的变换核来完成(周围通常是负值权重)。ENVI默认的高通滤波器使用3×3的变换核(中心值为“8”,周围像元值为“-1”),高通滤波卷积核的维数必须是奇数。
二、实验内容
(1)利用直方图进行图像分割
实验步骤:1、打开实验图像(地物与直方图DSCF0153.JPG)并显示图像直方图
2、在直方图窗口,移动RGB拉伸的最小值分别为150,160,150,并分别应用,查看拉伸后的图像。
原图:
最小值150的拉伸:
最小值160的拉伸:
去除天空的操作:(菜单—basictools—bandmath)
3)Editable Kernel
卷积核中各项的值。在文本框中双击鼠标可以进行编辑,选择File->Save Kernel或者Restore Kernel,可以把卷积核保存为文件(.ker)或者打开一个卷积核文件。
用c,,语言编程实现遥感图像处理实习报告

用c,,语言编程实现遥感图像处理实习报告C语言基础编程实习报告(2011~2012学年第2学期)实习名称:认识实习分项名称:C语言基础编程系别:计算机与通信工程系专业:测控(1)班学号:姓名:实习地点:学校机房3楼实习时间:8月23日~8 月26日实习成绩:指导教师:严光银翟勇涛西南交通大学峨眉校区2012年8 月26 日一.实习目的和要求实习目的:1、巩固C语言编程基础知识2、熟练C语言调试中的常见错误及处理办法3、加强C语言综合编程能力训练4、熟练掌握C语言程序上机调试过程5、学会编写C语言程序解决简单计算题、字符串处理问题、日期和时间处理问题、高精度数处理等问题6、提高外文资料阅读理解的能力。
要求:1.电子文档建立一个文件夹,名称为:学号姓名C基础如:学号为20106900,姓名为李四,则,文件夹名称:20106900李四C 基础①C基础编程(10个C程序)文件名格式:学号姓名简拼_题目编号A.c如:题号为1001,则文件名为:20106900LS_1001A.c②C强化编程(共10道,至少选做4道题)文件名格式:学号姓名简拼_题目编号B.c③实习报告电子文档:学号姓名C 基础.doc④改正错误分析示例中的错误2.实习报告(打印稿)二.实习方式和安排方式:上课与上机安排:三. 实习内容(一)C基础编程(选做6题)在杭电OJ成功提交的题目数:6在杭电OJ未成功提交的题目编号:无提交的电子文档中包含的C程序数:6从6道基础编程题中任选2道比较满意的题目,写出详细解题报告如下: ***************************第1题start***************************** (1)题目解析题目编号1108问题描述编写程序计算2个整数a、b的最小公倍数。
输入数据输入数据输入2个整数a和b,中间用空格间隔。
输出要求对于每次读入的一对整数,输出最小公倍数的结果。
每个结果以回车结束。
遥感数字图像处理-第3章 空间域处理方法

空间域处理方法
空间域处理方法
一、数值运算:单波段运算、多波段运算 二、集合运算:空间操作、波段操作 三、逻辑运算:求反、与、或、异或 四、数学形态学操作:腐蚀、膨胀、开运算、闭运算
难点:邻域运算、数学形态学操作 重点:各种运算的原理及其在图像处理中的应用
2
一、数值运算
单波段运算
包括点运算和邻域运算。
点运算是对单幅图像像元进行的逐像元数值运算,它将输入图 像映射为输出图像,输出图像每个像元的灰度值仅由对应的输入 像元点的灰度值决定,它不会改变图像内像元之间的空间关系。 若输入图像为g(x,y),输出图像为f(x,y),则点运算可表示为:
f (x, y) T[g(x, y)]
T为灰度变换函数,可为任意函数,根据灰度变换函数的不同,点 运算又可分为线性点运算、分段线性点运算和非线性点运算。
6
3
二、集合运算
空间操作
包括图像裁剪和图像镶嵌。
图像裁剪
图像裁剪的目的是为了保留图像中需要感兴趣的部分,将感兴趣区之 外的部分去除。
图像裁剪示意图
4
三、逻辑运算
逻辑运算又称布尔运算,逻辑常量只有两个,即0和1,用来表示两个 对立的逻辑状态“假”和“真”。逻辑变量与普通代数一样,可以用字 母、符号、数字及其组合来表示,当进行逻辑运算时逻辑变量需先通过 某种规则转换为逻辑常量。
5
四、数学形态学操作
ቤተ መጻሕፍቲ ባይዱ数学形态学是以形态为基础对图像进行分析的数学工具, 在图像去噪声、图像增强、图像分割等处理中应用较广。
数学形态学操作可以分为二值形态学和灰度形态学,灰度 形态学是由二值形态学扩展而来。基于数学形态学的图像处 理有两个基本运算,即腐蚀和膨胀,而以腐蚀和膨胀为基础 又形成了开运算和闭运算。
遥感数字图像处理实验教程(第二版)(韦玉春,秦福莹,程春梅著)PPT模板

12 实验九变化检测
实验九变化检测
一、目的和要求 二、实验内容 三、图像处理实验 四、课后思考练习 五、程序设计
13 附录1实验报告要求
附录1实验报告要 求
14 附录2实验报告模板
附录2实验报告模 板
15
附录3遥感数字图像处理实验 的相关软件
附录3遥感数字图像处理实验的相关 软件
16 附录4随书光盘内容说明
四、课后思考 练习
05
五、程序设计
ቤተ መጻሕፍቲ ባይዱ06
六、拓展实验
单击此处添加标题
单击此处添加文本具体内 容,简明扼要的阐述您的 观点。根据需要可酌情增 减文字,以便观者准确的 理解您传达的思想。
实验六图像滤波
七、课外阅读
10 实验七图像分割
实验七图像分割
01
一、目的和要 求
02
二、实验内容
03
三、图像处理 实验
遥感数字图像处理实验教程(第二版 )(韦玉春,秦福莹,程春梅著)
演讲人 2 0 2 X - 11 - 11
REPORT
01 第二版前言
第二版前言
02 第一版前言
第一版前言
03 实验内容和实验安排
实验内容和实验安 排
04 实验一实验准备
实验一实验准 备
一、目的和 要求
六、查看
01
软件的帮
单击此处添加标题
单击此处添加文本具体内 容,简明扼要的阐述您的 观点。根据需要可酌情增 减文字,以便观者准确的 理解您传达的思想。
07 实验四遥感图像的校正
实验四遥感图像的 校正
一、目的和要求 二、辐射校正实验 三、几何精纠正实验
08 实验五图像变换
实验五图像变换
遥感图像处理实验报告

遥感图像处理实习报告姓名:学号:联系方式:日期:一、实习要求(一)掌握使用ENVI进行各种图像基本操作;(二)熟练运用ENVI中工具进行图像图像校正、裁剪拼接、融合及图像增强处理;二、实习操作过程与实现结果(一)辐射校正及大气校正1、辐射校正(1)选择File->open,选择Landset8武汉数据中的‘’文件。
(2)选择Toolbox->Radiometric Correction->Radiometric Calibration工具,选择要校正的‘LC8LGN00_MTL_MultiSpectral’多光谱数据,设置定标参数(存储格式:BIL;单位转换“Scale Factor”的设置,单击Apply FLAASH Settings得到相应的参数),得到辐射定标后的结果。
2、大气校正(1)选择Toolbox->Radiometric Correction->Atmospheric Correction Module->FLAASH Atmospheric Correction工具;打开工具后设置参数:在FLAASH Atmospheric Correction Module Input Parameters 面板中如图设置各项参数;点击apply运行大气校正。
(2)大气校正运行结果(二)图像裁剪与拼接1、15米全色波段图像裁剪拼接(1)选择File->open,选择‘县界.shp’‘LC8LGN00_MTL’及‘LC8LGN00_MTL’文件。
(2)选择Toolbox->Regions of Interest->Subset Date from ROIs 工具;双击打开后input file面板选择38区段15米分辨率文件,input ROIs面板选择‘县界’文件。
点击‘OK’,38区段文件裁剪后如图。
(3)重复(2)中工具选择步骤;双击打开后在input file 面板选择39区段15米分辨率文件,在input ROIs面板选择‘县界’文件。
遥感图像处理实验报告_图像的空间域滤波处理
遥感图像处理实验报告(2013 —2014 学年第1学期)实验名称:图像的空间域滤波处理实验时间:实验地点:指导教师:专业班级:姓名:学号:一:实验目的掌握Matlab编程语言的基本语法掌握Matlab中imread()、imfilter()、imshow()、mat2gray()、等相关函数的用法及意义通过Matlab程序语言完成图像的空间域滤波处理,以达成边缘检测的目的二:实验内容在Matlab中,分别运用经典一阶梯度、Robert算子、Sobel算子、Prewitt算子及Laplacian 算子进行目标图像的边缘检测,互相对比实验结果,分析差异三:实验平台Windows 7 Ultimate SP1Matlab 2012b四:实验代码及Matlab使用心得(注释中)%清空工作空间clc;%清屏clear all;%关闭所有绘图窗口close all;%定义一个矩阵I 用来存储待处理图像,用imread()函数读取的数据格式为unit8I = imread('C:\Users\Administrator\Desktop\Matlab\data\barbara.png');%创建一个绘图窗口,并显示原图像figure(1);imshow(I);title('原图');%把unit8格式数据转换为doulbe格式,以便滤波计算I = double(I);%%%%%%%%%%%%%%%%%%%%%%%%%%%%经典一阶梯度%%%%%%%%%%%%%%%yjtdx = [0 0 0;-1 1 0;0 0 0];yjtdy = [0 -1 0;0 1 0;0 0 0];%imfilter()函数为一个滤波函数%其中有两个参数,外加一系列附加指令%如下中的I 代表被处理图像%yjtdx 代表滤波器%'replicate'是一个附加指令,因为处理过的数据,可能会超出原图像数据大小的上下限%这个附加指令令超出上下限的数据为最接近上下限的数据ImageYjtdx = imfilter(I, yjtdx, 'replicate');ImageYjtdy = imfilter(I, yjtdy, 'replicate');%将x与y方向上的处理结果进行几何平均,作为处理结果ImageYjtd= sqrt(ImageYjtdx.^2 + ImageYjtdy.^2);%figure()函数创建一个绘图窗口figure(2);%绘制处理后的图像%在用imshow()函数显示图像时要注意,因为现在的处理结果是double类型的,而不是unit8类型%而imshow()在显示图像时,只有unit8类型的矩阵图像数据可以直接输入直接显示%而对于double类型的矩阵,imshow()认为其灰度空间是从0到1,而不是从0-256或其它%也就是说,对于double类型的矩阵,imshow()函数不知道矩阵所代表的图像的灰度级数是多少%这时就需要用mat2gray()函数对double型矩阵做归一化,所谓归一化,就是把原矩阵中的数据%映射至0-1的数据空间中,这时,经m at2gray()函数处理过的矩阵,其中所有元素都在0-1范围内%再用imshow()函数进行显示,才可得到正常的显示结果imshow(mat2gray(ImageYjtd));title('经典一阶梯度处理结果'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%Robert算子%%%%%%%%%%%%%%%%% Robert1 =[-1 0 0;0 1 00 0 0];Robert2 =[0 -1 0;1 0 00 0 0];ImageRobert1 = imfilter(I, Robert1, 'replicate');ImageRobert2 = imfilter(I, Robert2, 'replicate');ImageRobert = sqrt(ImageRobert1.^2 + ImageRobert2.^2);figure(3);imshow(mat2gray(ImageRobert));title('Robert算子处理结果'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%Sobel算子%%%%%%%%%%%%%%%%%% Sobel1 = [1 2 1;0 0 0;-1 -2 -1];Sobel2 = [-1 0 1;-2 0 2;-1 0 1];ImageSobel1 = imfilter(I, Sobel1, 'replicate');ImageSobel2 = imfilter(I, Sobel2, 'replicate');ImageSobel = sqrt(ImageSobel1.^2 + ImageSobel2.^2);figure(4);imshow(mat2gray(ImageSobel));title('Sobel算子处理结果'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%Prewitt算子%%%%%%%%%%%%%%%%% Prewitt1 = [-1 -1 -1;0 0 0;1 1 1];Prewitt2 = [-1 0 1;-1 0 1;-1 0 1];ImagePrewitt1 = imfilter(I, Prewitt1, 'replicate');ImagePrewitt2 = imfilter(I, Prewitt2, 'replicate');ImagePrewitt = sqrt(ImagePrewitt1.^2 + ImagePrewitt2.^2);figure(5);imshow(mat2gray(ImagePrewitt));title('Prewitt算子处理结果'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%Laplacian算子%%%%%%%%%%%%%%%% Laplacian = [0 -1 0;-1 4 -1;0 -1 0];ImageLaplacian = imfilter(I, Laplacian, 'replicate');%滤波结果中可能出现负数,因此需要用abs()函数取绝对值ImageLaplacian = abs(ImageLaplacian);figure(6);imshow(mat2gray(ImageLaplacian));title('Laplacian算子处理结果'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%五:实验结果(仅列一例)六:实验心得1:Matlab部分Matlab是一个命令行式的、解释式的程序语言,学习难度低,在矩阵和数字处理上处速度也很快,有时间我会继续学习2:滤波算子部分1):Laplacian算子对噪声比较敏感,图像颗粒感较强时得到的处理结果很差,在几乎没有噪声的图像中,Laplacian算子的处理结果却出奇的好。
数字图像处理实验三(邻域平均法和中值滤波)
数字图像处理 实验三
邻域平均法(box 模板)和中值滤波处理
加入脉冲噪声后的图像:testnoise.bmp 去噪过程 结果图像
请设计程序,分别用邻域平均法,其模板为:
和中值滤波法对testnoise 图像进行去噪处理(中值滤波的模板的大小也设为3×3)。
得出实验结果图像后,比较这两种方法去噪的效果好坏,并分析具体原因。
完成上述工作后,使用程序进行验证分析:使用邻域平均法时,3×3和5×5模板大小对图像进行处理的效果有何差别?并分析原因。
附加说明:程序框架可以参考第二次实验指导书上给出的示例程序。
邻域平均法 中值滤波法
⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡1111*1111191。
遥感图像处理实验
遥感图像处理实验遥感图像处理实验目录实验二影像的地理坐标定位和校正实验三使用ENVI进行正射校正实验四图像镶嵌实验五图像融合实验六波段组合计算及图像增强实验七图像分类实验八使用ENVI进行三维曲面浏览与飞行实验九地图制图09级林学四班汤瑞芳20090143 注:本实验报告共分为两部分,其一为实验的详细过程,其二为实验结果的整理及实验心得实验二影像的地理坐标定位和校正实验目的:1)掌握如何在ENVI中对影像进行地理校正2)添加地理坐标3)如何使用ENVI进行影像到影像的几何校正实验内容:1图像文件头文件的修改步骤:1)打开并显示SPOT数据ENVI主菜单中file →open image file,从envidata目录bldr_reg文件夹下的bldr_sp.img文件,从可用波段列表对话框中点击Grey scale,点击Load Band按钮加载这幅影像到一个新的显示窗口中。
2)修改ENVI头文件中的地图信息右击bldr_sp.img—》Map inf,快捷菜单Edit Map Information。
点击Projection/Datum文本旁边的箭头切换按钮,DMS或者DDEG,分别在度分秒和十进制的度之间进行切换。
点击Cancel,推出Edit Map Information对话框。
修改图像的pixel size信息,添加公里网格和地图标注。
保存图像。
file →save image as →image file。
输出路径和输出文件名称2 影像对影像的几何配准利用SPOT图像校正Landsat TM步骤:1)打开TM图像从ENVI主菜单中,选择file →open image file,从envidata目录下的bldr_reg子目录选择bldr_tm.img 文件。
在列表中选择band3,点击display#1按钮,并从下拉式菜单中选择new display。
点击Load Band 按钮,把TM的band3波段的影像加载到新显示窗口中。
遥感实验三 图像增强
实验三图像增强一、目的掌握PCI软件的几种图像增强的方法二、内容1、彩色增强(合成)1)Imageworks简介(电子枪、图像板)2)彩色增强(合成)A.真彩色合成a.在Imageworks中打开文件b.调入图像打开并调入图像后,c.配置电子枪右图中上方的R G B称为电子枪d.结果图像B.标准假彩色(彩红外)合成a.在Imageworks中打开文件b.调入图像c.配置电子枪d.结果图像2、直方图增强(反差处理)1)PCI软件中的几种增强方法其中:第一个:不增强第二个:线性增强第三个:平方根增强第四个:自适应增强第五个:均衡化增强第六个:频率增强右侧为调节亮度和对比度2)编辑LUT(edit—LUT)图中:左侧红线代表校正图像种的空白处A打开文件B调入图像C直方图增强(PCI软件提供的)配置电子枪D编辑LUTE保存LUTF调入直方图表段G结果图像3、空间滤波(平滑、锐化)★首先,打开File utility,到Edit 菜单下的Add Channel…,然后添加6个8U 通道。
1)平滑:A.打开文件B.调入图像:增加六个通道C.滤波a.选择滤波类型b.选择滤波器大小c.选择输入输出图像版d.运行input1,2,3 到output 4,5,6,其他设置不变,重复三次,最后效果图如下:D.保存图像E.结果图像2)锐化——与平滑的步骤一样 锐化效果图,如下:4、波段比值(介绍NDVI的运算)NDVI=(b4-b3)/(b4+b3)★首先,打开File utility,到Edit 菜单下的Add Channel…,然后添加1个32R通道。
1)介绍NDVI的运算2)PCI软件中实践A.打开文件。
打开4个图像板,2个8U,1个32RB.调入图像C.到Tool菜单下的Modelling…,写入算法后进行。
D.保存图像点击run,结果如下:保存图像:5、PCA★首先,打开File utility,到Edit 菜单下的Add Channel…,然后添加3个8U通道。