(完整版)七年级下册数学实数练习题

合集下载

7年级下册实数50道题

7年级下册实数50道题

7年级下册实数50道题一、选择题(每题3分,共30分)1. 下列实数中,是无理数的是()A. 3.14B. 公式C. 公式D. 公式解析:选项A,3.14是有限小数,属于有理数。

选项B,公式是分数,属于有理数。

选项C,公式,是整数,属于有理数。

选项D,公式是开方开不尽的数,是无理数。

所以答案是D。

2. 在实数公式,0,公式,π中,最小的数是()A. \sqrt{2}$B.0C. 公式D.π解析:负数小于0和正数,公式。

所以在公式,0,公式,π中,最小的数是公式,答案是A。

3. 下列说法正确的是()A. 无限小数都是无理数B. 带根号的数都是无理数C. 无理数是无限不循环小数D. 实数包括正实数和负实数解析:选项A,无限循环小数是有理数,无限不循环小数才是无理数,所以A错误。

选项B,例如公式是有理数,所以B错误。

选项C,无理数的定义就是无限不循环小数,C正确。

选项D,实数包括正实数、0和负实数,所以D错误。

答案是C。

4. 公式的算术平方根是()A. 4B. 4C. 2D.±2解析:先计算公式,4的算术平方根是2(算术平方根是非负的),所以答案是C。

5. 若一个数的平方根是公式和公式,则这个数是()A. 1B. 2C. 4D. 9解析:一个正数的两个平方根互为相反数,所以公式。

展开得公式,公式,解得公式。

则其中一个平方根为公式,这个数是公式,答案是C。

6. 计算公式的结果是()A. 2B. 2C. 4D. 4解析:因为公式,所以公式,答案是B。

7. 比较大小:公式()公式A.>B.<C. =D. 无法确定解析:先将公式,公式。

因为12<18,所以公式,即公式,答案是B。

8. 已知公式,公式,则公式的值为()A. 1B. 9C. 1D. 9解析:公式,根据平方差公式公式。

这里公式,公式,则公式,答案是A。

9. 实数公式在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间解析:因为公式,即公式,答案是A。

七年级数学下册《实数》试题与答案

七年级数学下册《实数》试题与答案

七年级数学下册《实数》试题一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中真命题有( )①带根号的数都是无理数;②无限不循环小数是无理数;③数轴上的点表示的是全体实数; ④无限小数不一定是无理数;⑤有理数乘以无理数一定是无理数;⑥负数没有平根. A .1个 B .2个 C .3个 D .4个2.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015 B .2014 C .20152014 D .2015×20143.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+4.下列各项,是无理数的是( )A .227BC .0.23 D5.在下列各数:3.1415926、1π、0.2121121112、49100是( )A .1个B .2个C .3个D .4个6.下列四个实数中,是无理数的是( )A .2.020B .πC .227D .3.14159267.下列各数: 2.25-π,0.1010010001…,227,0中,无理数的个数是( ) A .2个 B .3个 C .4个 D .5个8.在实数0,,π,3-中,最小的数是( ).A .0B .C .πD .3-9.下列各数中,是无理数的是( )A .1-B .12C .πD .010.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间11.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .412.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10二、填空题(本大题共6小题,每小题3分,共18分)13.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.14.比较大小:3-(用“>”,“<”或“=”填空).15.对有理数a ,b 规定运算“*”的意义为2a b b α*=+,比如:57527*=+⨯,则方程1344x x *=-的解为__________.164______1.17.已知15x <<5x -=______.18.比较大小 ______0.5 .(填 “>”, “<”或 “= ”) 三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.计算:(1)225--(2)1-+20.“*”是规定的一种运算法则:a*b=a 2-3b .(1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;21.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.22.把下列各数分别填入相应的集合里:﹣|﹣5|,﹣1.234,3.14,﹣227,,﹣3π,0(﹣3)2,2.0303,0.3030030003…(每两个3之间依次多一个0).(1)无理数集合:{ };(2)整数集合:{ };(3)非负数集合:{ }.23.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯. 24.定义一种新运算:观察下列各式,并解决问题.1⊙3=1×4+3=7,3⊙1=3×4+1=13,5⊙4=5×4+4=24,4⊙3= .请你想一想:(1)a ⊙b = ;(2)若a≠b ,那么a ⊙b b ⊙a (填入“=”或“≠”).(3)计算:﹣5⊙(﹣4⊙3).七年级数学下册《实数》试题答案三、选择题(本大题共12小题,每小题3分,共36分。

(完整版)七年级数学下册实数考试题及答案

(完整版)七年级数学下册实数考试题及答案

一、选择题1.数轴上表示1,2的对应点分別为A ,B ,点B 关于点A 的对称点为C ,则点C 所表示的数是( )A .21-B .12-C .22-D .22- 2.已知A ,B ,C 是数轴上三点,点B 是线段AC 的中点,点A ,B 对应的实数分别为1-和2,则点C 对应的实数是( )A .21+B .22+C .221-D .221+ 3.估算193+的值应在( ) A .5和6之间 B .6和7之间 C .7和8之间 D .8和9之间 4.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B .194+C .2194+D .192+ 5.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;④16的平方根是4±,其中正确的个数有( )A .0个B .1个C .2个D .3个6.若15的整数部分为a ,小数部分为b ,则a-b 的值为() A .615- B .156- C .815-D .158- 7.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n8.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .10 9.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .610.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上二、填空题11.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____12.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是_____.14.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.15.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 16.观察等式:2111==,21342+==,213593++==,21357164+++==,……猜想13572019++++⋅⋅⋅+=______.17.1x -(y +1)2=0,则(x +y )3=_____.18.31y -312x -x y的值是____. 19.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.20.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先52)⊕3=___.三、解答题21.观察下来等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______.22.对于实数a,我们规定:用符号为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 23.新定义:对非负数x“四舍五入”到个位的值记为<x>,即当n 为非负数时,若1122n x n -≤<+,则<x>=n . 例如<0>=<0.49>=0,<0.5>=<(1)49>=1,<2>=2,<(3)5>=<(4)23>=4,…试回答下列问题:(1)填空:<9.6>=_________;如果<x>=2,实数x 的取值范围是________________.(2)若关于x 的不等式组24130x x m x -⎧≤-⎪⎨⎪->⎩的整数解恰有4个,求<m>的值; (3)求满足65x x =的所有非负实数x 的值. 24.阅读理解:一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a 代表这个整数分出来的左边数,b 代表的这个整数分出来的中间数,c 代表这个整数分出来的右边数,其中a ,b ,c 数位相同,若b ﹣a =c ﹣b ,我们称这个多位数为等差数. 例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5;413223分成三个数41,32,23,并且满足:32﹣41=23﹣32;所以:357和413223都是等差数.(1)判断:148 等差数,514335 等差数;(用“是”或“不是”填空)(2)若一个三位数是等差数,试说明它一定能被3整除;(3)若一个三位数T 是等差数,且T 是24的倍数,求该等差数T .25.11,将这个数减去其整数部分,差∵23223<<,即23<<,∴的整数部分为2,小数部分为)2。

初一实数测试题及答案

初一实数测试题及答案

初一实数测试题及答案一、选择题(每题3分,共30分)1. 下列各数中,是实数的是()。

A. √2B. πC. 0.1010010001…D. i答案:A2. 比较两个实数的大小,以下说法正确的是()。

A. 2 > √2B. √2 > 2C. 2 = √2D. √2 < 2答案:D3. 下列各数中,是无理数的是()。

A. 0.5B. √4C. 0.333…D. 3.14答案:C4. 计算√16的值,正确的是()。

A. 4B. -4C. ±4D. 4或-4答案:A5. 计算√(-4)²的值,正确的是()。

A. 4B. -4C. 2D. -2答案:A6. 下列各数中,是实数的是()。

A. √(-1)B. √0C. √1D. √(-2)答案:C7. 计算√9的值,正确的是()。

A. 3B. -3C. ±3D. 3或-3答案:C8. 比较两个实数的大小,以下说法正确的是()。

A. √3 < 1.7B. √3 > 1.7C. √3 = 1.7D. √3 < 1.7答案:B9. 计算√(1/4)的值,正确的是()。

A. 1/2B. -1/2C. ±1/2D. 1/2或-1/2答案:A10. 下列各数中,是无理数的是()。

A. √9B. 0.5C. 0.333…D. 3.14答案:C二、填空题(每题3分,共30分)11. √25的值是________。

12. √(-3)²的值是________。

答案:313. √(2/3)的值是________。

答案:√6/314. √(-4)²的值是________。

答案:415. √(1/2)的值是________。

答案:√2/216. √(-1)²的值是________。

答案:117. √(-2)²的值是________。

18. √(1/3)的值是________。

七年级数学下册《实数》测试卷(含答案)

七年级数学下册《实数》测试卷(含答案)

七年级数学下册《实数》测试卷(含答案) 七年级数学下册《实数》测试卷班级:_______ 姓名:_______ 坐号:_______一、选择题(每小题3分,共30分)1、若x是9的算术平方根,则x是()A、3B、-3C、9D、812、下列说法不正确的是()A、1/25的平方根是±1/5B、-9是81的一个平方根C、0.2的算术平方根是0.04 D、-27的立方根是-33、若a的算术平方根有意义,则a的取值范围是()A、一切数B、正数C、非负数D、非零数4、在下列各式中正确的是()A、(-2)²=4B、±9=3C、16=8D、2²=45、估计76的值在哪两个整数之间()A、75和77B、76和77C、7和8D、8和96、下列各组数中,互为相反数的组是()A、-2与2B、-2和3/8C、-1/2与2D、│-2│和27、在-2,4,2,3.14,3-√5,这6个数中,无理数共有A、4个B、3个C、2个D、1个8、下列说法正确的是()A、数轴上的点与有理数一一对应B、数轴上的点与无理数一一对应C、数轴上的点与整数一一对应D、数轴上的点与实数一一对应9、下列运算中,错误的是()①1/25=1/5,②23/144×(-4)=±4,③-1=-3¹,④1/16+1/25=9/20A.1个 B.2个 C.3个 D.4个10、若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则b²-│a-b│等于()A、aB、-aC、2b+aD、2b-a二、填空题(每空2分,共18分)11、81的平方根是9,1.44的算术平方根是1.2.12、一个数的算术平方根等于它本身,则这个数应是0或1.13、3-8的绝对值是5.14、比较大小:27<42,5/2<1/√2.15、若25.36=5.036,253.6=15.906,则=.16、若5–10的整数部分为a,小数部分为b,则a=5,b=0.5.三、解答题(每题5分,共20分)17、3-27+(-3)²-3×(-1)¹³=3-27+9+3¹³=3¹³-18.18、3-27-√5=3-27-2.236≈-26.236.19、4x²-16=20,x²=9,x=±3;27(x-3)=-64,x=-1.四、21、已知5a+1和a-19是数m的平方根,求m的值。

(完整版)人教版七年级数学下册实数试题(带答案) (一)

(完整版)人教版七年级数学下册实数试题(带答案) (一)

一、选择题1.按如图所示的程序计算,若开始输入的值为25,则最后输出的y 值是( )A .5B .5±C .5D .5±2.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( ) A .132 B .146C .161D .6663.数轴上表示1,2的对应点分別为A ,B ,点B 关于点A 的对称点为C ,则点C 所表示的数是( )A 21B .12C .22D 224.设实数a ,b ,c ,满足()<0a b c ac >>,且c b a <<,则x a x b x c -+++-的最小值为( ) A .3a b c ++B .bC .+a bD .c a --5.以下11个命题:①负数没有平方根;②内错角相等;③同旁内角互补,两直线平行;④一个正数有两个立方根,它们互为相反数;⑤无限不循环小数是无理数;⑥数轴上的点与实数有一一对应关系;⑦过一点有且只有一条直线和已知直线垂直;⑧不相交的两条直线叫做平行线;⑨从直线外一点到这条直线的垂线段,叫做这点到直线的距离.⑩开方开不尽的数是无理数;⑪相等的两个角是对顶角;其中真命题的个数为( ) A .5B .6C .7D .86.下列说法中,错误的有( ) ①符号相反的数与为相反数; ②当0a ≠时,0a >; ③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远; ⑤数轴上的点不都表示有理数. A .0个B .1个C .2个D .3个7.15a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158-8.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( ) A .1 B .2C .3D .49.现定义一种新运算“*”,规定a *b =ab +a -b ,如1*3=1×3+1-3,则(-2*5)*6等于( ) A .120 B .125C .-120D .-12510.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .6二、填空题11.对于正数x 规定1()1f x x=+,例如:11115(3),()11345615f f ====++,则f (2020)+f(2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 12.新定义一种运算,其法则为32a ca d bcb d =÷,则223x x xx--=__________ 13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.对于有理数a ,b ,规定一种新运算:a ※b=ab+b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 15.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是_____.16.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.17.若[x ]表示不超过x 的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论: ①[﹣x ]=﹣[x ];②若[x ]=n ,则x 的取值范围是n ≤x <n +1; ③x =﹣2.75是方程4x ﹣[x ]+5=0的一个解; ④当﹣1<x <1时,[1+x ]+[1﹣x ]的值为1或2. 其中正确的结论有 ___(写出所有正确结论的序号).18.将1,2,3,6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,如(5,4)表示的数是2(即第5排从左向右第4个数),那么(2021,1011)所表示的数是 ___.19.若()2210a b -++=.则a b =______.20.将1,2,3,6按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.三、解答题21.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=. (1)计算: 1.87<>= ;π= ; (2)①求满足12x <->=的实数x 的取值范围, ②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围. 22.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法:设22019202012222s =+++++ ①则22020202122222s =++++ ②②-①得,2021221s s s -==- 请仿照小明的方法解决以下问题: (1)291222++++=________;(2)220333+++=_________;(3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).23.观察下列各式:21131222-=⨯;21241333-=⨯;21351444-=⨯;……根据上面的等式所反映的规律, (1)填空:21150-=______;2112019-=______; (2)计算:2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭24.阅读材料:求值:2342017122222+++++⋯+, 解答:设2342017122222S =+++++⋯+,①将等式两边同时乘2得:2342018222222S =++++⋯+,②将-②①得:201821S =-,即2342017201812222221S =+++++⋯+=-. 请你类比此方法计算:()234201122222+++++⋯+.()2342133333(n +++++⋯+其中n 为正整数)25.阅读下面的文字,解答问题.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数;用{a }表示a 减去[a ]所得的差.例如:=1,[2.2]=2,1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法计算:]= {5= ;(2)若]=1,写出所有满足题意的整数x 的值: .(3)已知y 0是一个不大于280的非负数,且满足}=0.我们规定:y 1=],y 2=,y 3=],…,以此类推,直到y n 第一次等于1时停止计算.当y 0是符合条件的所有数中的最大数时,此时y 0= ,n = . 26.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:第一步:∵10=100,1000593191000000<<,∴10100<<.∴能确定59319的立方根是个两位数. 第二步:∵59319的个位数是9,39729= ∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,34<<,可得3040<<, 由此能确定59319的立方根的十位数是3,因此59319的立方根是39. (解答问题)根据上面材料,解答下面的问题(1)求110592的立方根,写出步骤.(2=__________. 27.先阅读然后解答提出的问题:设a 、b 是有理数,且满足3=-a b a 的值.解:由题意得(3)(0-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,a-3=0,b+2=0, 所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足2210x y -=+x+y 的值.28.我们知道,任意一个正整数n 都可以进行这样的分解:n p q =⨯(p ,q 是正整数,且p q ≤),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的完美分解.并规定:()p F n q=. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F (18)=3162=. (1)F (13)= ,F (24)= ;(2)如果一个两位正整数t ,其个位数字是a ,十位数字为1b -,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F (t )的最大值.29.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,的小数部分我们不可能全部写出来,而121.请解答下列问题:_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y -的平方根. 30.观察下列各式,并用所得出的规律解决问题:(11.414≈14.14141.4,……0.1732 1.732≈17.32,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2 3.873 1.225≈≈_____≈______.(31=10=100=,…… 小数点的变化规律是_______________________.(4 2.154≈0.2154≈-,则y =______.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据已知进行计算,并判断每一步输出结果即可得到答案.【详解】解:∵25的算术平方根是5,5不是无理数,∴再取5的平方根,而5的平方根为∴输出值y=故选:B.【点睛】本题考查实数分类及计算,判断每步计算结果是否为无理数是解题的关键.2.B解析:B【详解】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.详解:1.52=2.25,可得出有2个1;}2.52=6.25,可得出有4个2;3.52=12.25,可得出有6个3;4.52=20.25,可得出有8个4;5.52=30.25,可得出有10个5;则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146.故选B.点睛本题考查了估算无理数的大小.3.C解析:C【分析】根据数轴上两点之间的距离计算、对称的性质即可解决.【详解】根据对称的性质得:AC=AB设点C表示的数为a,则11-a解得:2a=【点睛】本题考查了数轴上两点之间的距离,图形对称的性质,关键是由对称的性质得到AC=AB.4.C解析:C【分析】<<,即可确定a,−b,c在数根据ac<0可知,a,c异号,再根据a>b>c,以及c b a轴上的位置,而|x−a|+|x+b|+|x−c|表示x到a,−b,c三点的距离的和,根据数轴即可确定.【详解】解:∵ac<0,∴a,c异号,∵a>b>c,∴a>0,c<0,<<,又∵c b a∴b>0,∴ a>b>0>c>-b又∵|x−a|+|x+b|+|x−c|表示x到a,−b,c三点的距离的和,当x在c时,|x−a|+|x+b|+|x−c|最小,最小值是a与−b之间的距离,即a+b故选:C.【点睛】本题考查了绝对值函数的最值问题,解决的关键是根据条件确定a,−b,c之间的大小关系,把求式子的最值的问题转化为距离的问题,有一定难度.5.A解析:A【分析】根据相关知识逐项判断即可求解.【详解】解:①“负数没有平方根”,是真命题②“内错角相等”,缺少两直线平行这一条件,是假命题;③“同旁内角互补,两直线平行”,是真命题;④“一个正数有两个立方根,它们互为相反数”,一个正数有一个立方根,是假命题;⑤“无限不循环小数是无理数”,是真命题;⑥“数轴上的点与实数有一一对应关系”,是真命题;⑦“过一点有且只有一条直线和已知直线垂直”,缺少在同一平面内条件,是假命题;⑧“不相交的两条直线叫做平行线”,缺少在同一平面内条件,是假命题;⑨“从直线外一点到这条直线的垂线段,叫做这点到直线的距离”,应为“从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离”,是假命题.⑩“开方开不尽的数是无理数”,是真命题;⑪“相等的两个角是对顶角”,相等的角有可能是对顶角,但不一定是对顶角,是假命题.所以真命题有5个.【点睛】本题考查判断真假命题、平方根、立方根、平行线的判定、无理数、实数与数轴关系、直线外一点到直线的距离、对顶角等知识,综合性较强,熟知相关知识点是解题关键.6.D解析:D【分析】根据相反数、绝对值、数轴表示数以及有理数的乘法运算等知识综合进行判断即可.【详解】解:符号相反,但绝对值不等的两个数就不是相反数,例如5和-3,因此①不正确;a≠0,即a>0或a<0,也就是a是正数或负数,因此|a|>0,所以②正确;例如-1>-3,而(-1)2<(-3)2,因此③不正确;例如-5表示的点到原点的距离比1表示的点到原点的距离远,但-5<1,因此④不正确;数轴上的点与实数一一对应,而实数包括有理数和无理数,因此⑤正确;综上所述,错误的结论有:①③④,故选:D.【点睛】本题考查相反数、绝对值、数轴表示数,对每个选项进行判断是得出正确答案的前提.7.A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】91516<<,<34<<,∴==,3,3a b)∴-=-=a b336故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.8.A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误; −64的立方根为-4,所以④错误;⑤正错误.故选:A . 【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.9.D解析:D 【详解】根据题目中的运算方法a *b =ab +a -b ,可得(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.故选D .点睛:本题主要考查了新定义运算,根据题目所给的规律(或运算方法),利用有理数的混合法则计算正确是解题关键.10.C解析:C 【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8. 【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,… ∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8. 故答案是:8. 【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….二、填空题 11.5 【分析】由已知可求,则可求. 【详解】 解:, , ,,故答案为:2019.5 【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5 【分析】由已知可求1()()1f x f x+=,则可求111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=.【详解】 解:1()1f x x=+, 111()1111x f x x x x x ∴===+++,11()()111xf x f x x x∴+=+=++,∴111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=, 1111(2020)(2019)(2)(1)()()()(1)201920192019.523202011++⋯+++++⋯+=+=+=+f f f f f f f f 故答案为:2019.5 【点睛】本题考查代数值求值,根据所给条件,探索出1()()1f x f x+=是解题的关键.12.【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得. 【详解】故答案为: 【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解 解析:3x【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得. 【详解】222322333()()x x x x x x x x x--=-⋅÷-⋅=故答案为:3x【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.13.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 14.①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.15.﹣2b【详解】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【详解】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.16.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.17.②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④【分析】根据若[]x表示不超过x的最大整数,①取 2.5x验证;②根据定义分析;③直接将 2.75-代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2,∴此时[﹣x]与﹣[x]两者不相等,故①不符合题意;②若[x]=n,∵[x]表示不超过x的最大整数,∴x的取值范围是n≤x<n+1,故②符合题意;③将x=﹣2.75代入4x﹣[x]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意;④当﹣1<x<1时,若﹣1<x<0,[1+x]+[1﹣x]=0+1=1,若x=0,[1+x]+[1﹣x]=1+1=2,若0<x<1,[1+x]+[1﹣x]=1+0=1;故④符合题意;故答案为:②④.【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解.18.1【分析】所给一系列数是4个数一循环,看是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:,表示的数是第个数,,第2021排的第1011个数为1.解析:1【分析】所给一系列数是4个数一循环,看(2021,1011)是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:(20201)2020 1234202020412102+⨯++++⋯⋯+==,(2021,1011)∴表示的数是第204121010112042221+=个数,204222151055541=⨯+,∴第2021排的第1011个数为1.故答案为:1.【点睛】本题考查算术平方根与规律型:数字的变化类,根据规律判断出是第几个数是解本题的关键.19.1【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入求值即可.【详解】∵,∴,∴a-2=0, b+1=0,∴a=2,b=-1,∴=,故答案为:1【点睛】本题主要考解析:1【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入a b求值即可.【详解】∵()2a-,20∴()2a-==,20∴a-2=0, b+1=0,∴a=2,b=-1,∴a b=2-=,(1)1故答案为:1【点睛】本题主要考查非负数的性质,解题的关键是掌握偶次乘方的非负性和算数平方根的非负性. 20.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1, 1+2+3+4+5+6+3=24,24÷4=6,则(7,3,.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.三、解答题21.(1)2,3 (2)①5722x ≤<②330,,42 (3)00.5a ≤< 【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值; (3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】 (1) 1.87<>=2;π=3;(2)①∵12x <->= ∴1121222x --<+≤ 解得5722x ≤<; ②∵43x x <>=∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =-故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.22.(1)1021-;(2)21332-;(3)111n a a +-- 【分析】(1)设式子等于s ,将方程两边都乘以2后进行计算即可;(2)设式子等于s ,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s ,将方程两边都乘以a 后进行计算即可.【详解】(1)设s=291222++++①, ∴2s=29102222++++②, ②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++①, ∴3s=22021333+++②,②-①得:2s=2133-, ∴21332s -=, 故答案为: 21332-; (3)设s=231n a a a a ++++①, ∴as=231n n a a a a a +++++②, ②-①得:(a-1)s=11n a +-,∴s=111n a a +--. 【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.23.(1)49515050⨯;2018202020192019⨯;(2)10102019. 【分析】 (1)根据已知数据得出规律,2111111n n n ⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,进而求出即可; (2)利用规律拆分,再进一步交错约分得出答案即可.【详解】解:(1)21150-=49515050⨯; 2112019-=2018202020192019⨯; (2)2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1324352018202022334420192019⨯⨯⨯⨯⨯⨯⨯⨯…… =1202022019⨯ =10102019. 【点睛】此题主要考查了实数运算中的规律探索,根据已知运算得出数字之间的变化规律是解决问题的关键.24.(1)2121-;(2)()n 11312+-. 【解析】【分析】 ()1设23420S 122222=+++++⋯+,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;()2同理即可得到所求式子的值.【详解】解:()1设23420S 122222=+++++⋯+,将等式两边同时乘2得:2345212S 222222=++++⋯+,将下式减去上式得:212S S 21-=-,即21S 21=-,则234202112222221+++++⋯+=-;()2设234n S 133333=+++++⋯+①,两边同时乘3得:234n n 13S 333333+=++++⋯++②,-②①得:n 13S S 31+-=-,即()n 11S 312+=-, 则()234n n 11133333312++++++⋯+=-.【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,解题的关键是明确题意,运用题目中的解题方法,运用类比的数学思想解答问题.25.(1)2;32)1、2、3;(3)256,4【分析】(1)依照定义进行计算即可;(2)由题可知,04x <<,则可得满足题意的整数的x 的值为1、2、3;(3)由0=,可知,0y 是某个整数的平方,又0y 是符合条件的所有数中最大的数,则0256y =,再依次进行计算.【详解】解:(1)由定义可得,2=,[52=,{53∴=故答案为:2;3.(2)[]1x =,2∴<,即04x <<,∴整数x 的值为1、2、3.故答案为:1、2、3.(3)0{}0y =,即0==,∴2t =,且t 是自然数,0y 是符合条件的所有数中的最大数,0256y ∴=,1[16]16y ∴===,2[4]4y ===,3[2]2y ===,41y ===,即4n =.故答案为:256,4.【点睛】本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键.26.(1)48;(2)28【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.【详解】解:(1)第一步:10100=,11059210100000000<<,10100∴, ∴能确定110592的立方根是个两位数.第二步:110592的个位数是2,38512=,∴能确定110592的立方根的个位数是8.第三步:如果划去110592后面的三位592得到数110,45,可得4050,由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:10=100=,1000219521000000<<,10100∴<,∴能确定21952的立方根是个两位数.第二步:21952的个位数是2,38512=,∴能确定21952的立方根的个位数是8.第三步:如果划去21952后面的三位952得到数21,23<,可得2030,由此能确定21952的立方根的十位数是2,因此21952的立方根是28.28,故答案为:28.【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.27.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x 、y 的值,进而可求x+y 的值.【详解】解:∵2210x y -=+∴()22100x y --+-=, ∴2210x y --=0-=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y 的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.28.(1)113,23(2)所以和谐数为15,26,37,48,59;(3)F (t )的最大值是34. 【分析】(1)根据题意,按照新定义的法则计算即可.(2)根据新定义的”和谐数”定义,将数用a,b 表示列出式子解出即可.(3)根据(2)中计算的结果求出最大即可.【详解】解:(1)F (13)=113,F (24)=23; (2)原两位数可表示为10(1)b a -+新两位数可表示为101a b +-∴10110(1)36a b b a +----=∴101101036a b b a +--+-=∴9927a b -=∴3a b -=∴3a b =+ (16b <≤且b 为正整数 )∴b=2,a=5; b=3,a=6, b=4,a=7,b=5,a=8 b=6,a=9所以和谐数为15,26,37,48,59(3)所有“和谐数”中,F (t )的最大值是34. 【点睛】本题为新定义的题型,关键在于读懂题意,按照规定解题.29.(1) 4;(2)1;(2) ±12.【分析】(1(2a 、b 的值,再代入求出即可;(3的范围,求出x 、y 的值,再代入求出即可.【详解】解:(1)∵45, ∴4,故答案为4;(2)∵2<3,∴-2,∵34,∴b=3,∴;(3)∵100<110<121,∴1011,∴110<111,∵,其中x 是整数,且0<y <1,∴x=110,,∴+10=144,的平方根是±12.【点睛】键.30.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(11.41414.14≈141.4≈,……0.1732 1.732≈17.32,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位. 故答案为:两;右;一;(2 3.873 1.225≈12.25≈0.3873;故答案为:12.25;0.3873;(31=10=100=,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵2.154≈0.2154≈-, ∴0.2154≈, ∴0.2154≈-,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。

七年级数学(下)第六章《实数——实数》练习题含答案

七年级数学(下)第六章《实数——实数》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是有理数的是A.0.9B.–3C.πD.1 3【答案】D【解析】A、0.9=910=31010,是无理数,故此选项错误;B、–3是无理数,故此选项错误;C、π是无理数,故此选项错误;D、13是有理数,故此选项正确.故选D.2.下列说法中错误的是A.数轴上的点与实数一一对应B.实数中没有最小的数C.a、b为实数,若a<b,则a<bD.a、b为实数,若a<b,则3a<3b【答案】C3.实数a、b在数轴上的位置如图所示,则下列各式表示正确的是A.b–a<0 B.1–a>0C.b–1>0 D.–1–b<0【答案】A【解析】由题意,可得b<–1<1<a,则b–a<0,1–a<0,b–1<0,–1–b>0.故选A.4.如图,数轴上点P表示的数可能是A2B5C10D15【答案】B24591015 251015B.5.在实数0,–2,15A.0 B.–2C.1 D5【答案】B【解析】∵0,–2,15–5–2;故选B.6.若m14n,且m、n为连续正整数,则n2–m2的值为A.5 B.7C.9 D.11【答案】B【解析】∵m14n,且m、n为连续正整数,∴m=3,n=4,则原式=7,故选B.+的值为7.|63||26A.5 B.526-C.1 D.61【答案】C【解析】原式=3–6+6–2=1.故选C.8.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72[72]=8[8]=2[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是A.82 B.182C.255 D.282【答案】C二、填空题:请将答案填在题中横线上.95__________16__________.【答案】5 25516,4的平方根是±2162.故答案为:5;±2.10.已知:n24n n的最小值为__________.【答案】624n6n,则6n是完全平方数,∴正整数n的最小值是6,故答案为:6.11.比较大小–2__________–3>”、“<”或“=”填空).【答案】<【解析】–2=50–348,5048,∴–2<–3,故答案为:<.12.用“※”定义新运算:对于任意实数a 、b ,都有a ※b =2a 2+B .例如3※4=2×32+4=22※2=__________. 【答案】8※2=2×3+2=6+2=8.故答案为:8.13.计算:|+.【解析】|+14.计算:|2.【答案】3【解析】|2–2+5. 故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.计算:(1)–14–2|(2)4(x +1)2=25【解析】(1)原式=–1–2–3+2=–4 (2)方程整理得:(x +1)2=254, 开方得:x +1=±52, 解得:x =1.5或x =–3.5.16.把下列各数填在相应的大括号内:20%,0,3π,3.14,–23,–0.55,8,–2,–0.5252252225…(每两个5之间依次增加1个2). (1)正数集合:{__________…}; (2)非负整数集合:{__________…}; (3)无理数集合:{__________…}; (4)负分数集合:{__________…}. 【解析】(1)正数集合:{20%,3π,3.14,8…};(2)非负整数集合:{8,0…};(3)无理数集合:{3π,–0.525225……}; (4)负分数集合:{–23,–0.55…}.故答案为:(1)20%,3π,3.14,8;(2)8,0;(3)3π,–0.525225…;(4)–23,–0.55.17.如图:观察实数a 、b 在数轴上的位置,(1)a __________0,b __________0,a –b __________0(请选择<,>,=填写). (2)化简:2a –2b –2()a b -.18.(1)计算并化简(结果保留根号)①|1–2|=__________; ②23|=__________; ③34|=__________; ④45(2)计算(结果保留根号):233445……20172018|.【解析】(1)①|12|=2–1;②2332;③3443④4554; 21324354.(2)原式324354+……2018201720182.。

初一下实数测试题及答案

初一下实数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是实数?A. √2B. -√2C. πD. √(-1)答案:ABC2. 计算下列哪个表达式的结果是实数?A. √(-9)B. √(16)C. √(-4) + √(-4)D. √(25)答案:D3. 如果一个数的平方是16,那么这个数是:A. 4B. -4C. 4或-4D. 以上都不是答案:C4. 下列哪个数是有理数?A. πB. √3C. 0.1010010001…(每两个1之间0的个数逐次增加)D. 3/45. 一个数的绝对值是其本身,这个数是:A. 正数B. 负数C. 非负数D. 非正数答案:C6. 两个相反数的和是:A. 0B. 1C. -1D. 无法确定答案:A7. 下列哪个数是无理数?A. 2.71828B. √2C. 1/7D. 0.33333答案:B8. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. 无法确定答案:B9. 计算下列哪个表达式的结果是无理数?B. √(16/9)C. √(2)D. √(9)答案:C10. 如果一个数的相反数是其本身,那么这个数是:A. 0B. 1C. -1D. 无法确定答案:A二、填空题(每题4分,共20分)1. √9的值是______。

答案:32. 一个数的绝对值是5,这个数可以是______。

答案:±53. 两个数相加等于0,那么这两个数互为______。

答案:相反数4. 一个数的平方根是2,那么这个数是______。

答案:45. 如果一个数的立方根是-2,那么这个数是______。

答案:-8三、解答题(每题10分,共50分)1. 计算:(√3 + 1)(√3 - 1)。

答案:(√3 + 1)(√3 - 1) = 3 - 1 = 22. 已知一个数的平方是25,求这个数。

答案:这个数是±5。

3. 计算:√(64) + √(25) - √(49)。

七年级数学下册 专题 实数的运算计算题(共45小题)(解析版)

七年级下册数学《第六章实数》专题实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算:(1)(5)2+(−3)2+3−8;(2)(﹣2)3×18−327×(−【分析】(1)原式利用平方根及立方根定义计算即可求出值;(2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值.【解答】解:(1)原式=5+3+(﹣2)=8﹣2=6;(2)原式=(﹣8)×18−3×(−13)=(﹣1)﹣(﹣1)=﹣1+1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(2022•庐江县二模)计算:0.04+3−8−【分析】先计算被开方数,再开方,最后加减.【解答】解:原式=0.2﹣2−=0.2﹣2−45=0.2﹣2﹣0.8=﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键.3.(2022春•上思县校级月考)计算:(1)−12+16+|2−1|+3−8;(2)23+|3−2|−364+9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案.【解答】解:(1)−12+16+|2−1|+3−8;=﹣1+4+2−1﹣2=2;(2)原式=23+2−3−4+3=3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算:(1)16+(−3)2+327;(2)3−3+|1−33|﹣(−3)2.【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;【解答】解:(1)16+(−3)2+327=4+3+3=10;(2)3−3+|1−33|﹣(−3)2=−33+33−1﹣3=﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算:(1)3−8+4−(−1)2023;(2)(−9)2−364+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)3−8+4−(−1)2023=﹣2+2﹣(﹣1)=0+1=1;(2)(−9)2−364+|−5|−(−2)2=9﹣4+5﹣4=6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算:(1)−12−0.64+3−27−125(2)3+(−5)2−3−64−|3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算;(2)先计算平方根、立方根和绝对值,再进行加减运算.【解答】解(1)−12−0.64+3−27−=﹣1﹣0.8﹣3﹣0.2=﹣5;(2)3+(−5)2−3−64−|3−5|=3+5+4+3−5=23+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:16−(−1)2022−327+|1−2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案.【解答】解:原式=4﹣1﹣3+2−1=2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−364+|3−2|.【分析】这里,先算﹣12022=﹣1,364=4,|3−2|=2−3,再进行综合运算.【解答】解:﹣12022−364+|3−2|=﹣1﹣4+2−3=﹣3−3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)3125+(−3)2−【分析】先化简各式,然后再进行计算即可解答.【解答】解:3125+(−3)2−=5+3−27=5+3﹣(−23)=5+3+23=823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:3−27|−2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:3−27|−2|+1=﹣3+12×4+2+1=﹣3+2+2+1=2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+3−8+(−3)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:﹣12+|﹣2|+3−8+(−3)2=﹣1+2+(﹣2)+3=﹣1+2﹣2+3=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|2−2|+49+3(−3)3.【分析】按照实数的运算顺序进行运算即可.【解答】解:原式=1+2−2+7−3=7−2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|3−2|+3−8×12+(−3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减.【解答】解:原式=2−3+(﹣2)×12+3=2−3−1+3=4−3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+(−4)2+38+【分析】先算乘方、开方,再算乘法,最后算加减.【解答】解:原式=﹣1+4+2+10×35=﹣1+4+2+6=11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键.15.(2021秋•峨边县期末)计算:|5−3|+(−2)2−3−8+5.【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案.【解答】解:原式=3−5+2+2+5=7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:(−3)2−2×+52×3−0.027.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案.【解答】解:原式=3﹣2×32+52×(﹣0.3)=3﹣3−52×310=0−34=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可.【解答】解:原式=1+3﹣(﹣1)×2=4+2=6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算:(1)364−81+3125+3;(2)|−3|−16+38+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案;(2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=4﹣9+5+3=3;(2)原式=3﹣4+2+4=5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算:(1)﹣23+3−27−(﹣2)2+1681(2)(﹣3)2×(﹣2)+364+9.【分析】(1)先计算乘方、立方根和平方根,再计算加减;(2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减.【解答】解:(1)﹣23+3−27−(﹣2)2=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+364+9=﹣9×2+4+3=﹣18+4+3=﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算:(1)(3)2−163−8;(2)(﹣2)3×)2013−327;(3)(−4)2+32+42.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答.【解答】解:(1)(3)2−16+3−8=3﹣4+(﹣2)=﹣3;(2)(﹣2)3×+(﹣1)2013−327=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)(−4)2+32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−16+3−8+(−2)2;(2)3−27+|2−3|−(−16)+23.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−16+3−8+(−2)2=3﹣4+(﹣2)+4=1.(2)3−27+|2−3|−(−16)+23=﹣3+(2−3)﹣(﹣4)+23=﹣3+2−3+4+23=3+3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:(−3)2×−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减.【解答】解:原式=3×(−12)−14+1=−32−14+1=−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:3−8+9−(−1)2022+|1−2|.【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可.【解答】解:3−8+9−(−1)2022+|1−2|.=﹣2+3−54+1+2−1=−14+2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题:(11+−1);(2)35−|−35|+23+33.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1+=27+=23+34=1712;(2)35−|−35|+23+33=35−35+23+33=53.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(3−1)−|3−2|−364.【分析】先去括号,化简绝对值,开立方,再计算加减即可.【解答】解:原式=23−2﹣(2−3)﹣4=23−2﹣2+3−4=33−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−3−64−|﹣3|.【分析】先算乘方,再算乘法,后算加减,即可解答.【解答】解:﹣22×(﹣112)2−3−64−×|﹣3|=﹣4×94−(﹣4)−43×3=﹣9+4﹣4=﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算:(1)|7−2|﹣|2−π|−(−7)2;(2)﹣22×(−4)2+3(−8)3×(−12)−327.【分析】(1)先化简绝对值和平方根,再计算加减;(2)先算乘方和根式,再计算乘法,最后加减.【解答】解:(1)|7−2|﹣|2−π|−(−7)2=7−2−(π−2)﹣7=7−2−π+2−7=﹣π;(2)﹣22×(−4)2+3(−8)3×(−12)−327=﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:0.01×121+0.81.【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(7−2)+3−8+|3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣27+4﹣2+2−3=9﹣27−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:(−3)2+(﹣1)2020+3−8+|1−2|【分析】先化简各式,然后再进行计算即可解答.【解答】解:(−3)2+(﹣1)2020+3−8+|1−2|=3+1+(﹣2)+2−1=3+1﹣2+2−1=1+2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:16+3−27−3−|3−2|+(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−3−2+3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022(−4)2×(−12)3−|1−3|.【分析】先化简各式,然后再进行计算即可解答.−(−4)2×(−12)3−|1−3|=−23+4×(−18)﹣(3−1)=−23+(−12)−3+1=−76−3+1=−16−3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:81+3−27−2(3−3)−|3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣23+6﹣(2−3)=6﹣23+6﹣2+3=10−3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:3(−1)3+3−27+(−2)2−|1−3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(3−1)=﹣1﹣3+2−3+1=﹣1−3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+(−2)2−364+|3−2|.【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−3=﹣1−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)1+3−27−30.125+(2)|7−2|﹣|2−|−(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7−2−π+2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:30.008×172−82÷【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:30.008×−172−82÷=0.2×54−15÷(−15)=14+75=7514【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:33−2(1+3)+(−2)2+|3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=33−2﹣23+2+2−3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)(−2)2×3(−8)(2)9+|1−2|−×(−3)2+|40.25−2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)16+32+3−8=4+3﹣2=5(2)(−2)2×23×=2×32−8×14=3﹣2=1(3)9+|1−2|−27×(−3)2+|40.25−2|=3+2−1−53×3+2−2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×|3−8|+2×(﹣1)2022【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+2=4+2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+16+38+1014×934.【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−327+(﹣2)2+4÷(−23).【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)12+(3)2+−913(2)(−3)2+(−1)2022+38+|1−2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=23+3+14×43−9=23+3+3−33=3;(2)原式=3+1+2+2−1=5+2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:49−327+|1−2|+【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+2−1+13=103+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|2−3|−(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−2−3,=−34−2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。

(完整版)人教版七年级下册实数测试题及答案,推荐文档


A.0<m<1
B.1<m<2
C.2<m<3
D.3<m<4
8.已知实数 x,y 满足 x 2 +(y+1)2=0,则 x-y 等于( )
A.3
B.-3
C.1
D.-1
二、填空题(每小题 4 分,共 16 分)
1
9. 的算术平方根是__________.
4
10. 3 -2 的相反数是__________,绝对值是__________.
18.(12 分)先阅读第(1)题的解法,再解答第(2)题:
(1)已知 a,b 是有理数,并且满足等式 5- 3 a=2b+ 2 3
解:∵5- 3 a=2b+ 2 3 -a, 3
∴5- 3 a=(2b-a)+ 2 3 . 3
3 -a,求 a,b 的值.

2b a
a 2.
3
5,
解得
a b
2 3
13 . 6
,
(2)已知 x,y 是有理数,并且满足等式 x2-2y- 2 y=17-4 2 ,求 x+y 的值.
参考答案
1.C 2.D 3.D 4.A 5.C 6.A 7.B 8.A
1
9.
10.2- 3
2- 3
11.7 12.- 2
2
4
13.(1)- ;
5
(2)±0.13;
(3)2.3.
14.(1)-7,0.32, 1 ,0,- 3 64 2
实数
一、选择题(每小题 3 分,共 24 分)
1.81 的算术平方根是( )
1
A.±9
B.
9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档