111《任意角的概念》课件(新人教A版)
高中数学 1.1.1任意角 新人教A版必修4(2)

【解】 终边在30°角的终边所在直线上的角的集合为 S1={α|α=30°+k·180°,k∈Z},终边在180°-75°=105°角 的终边所在直线上的角的集合为S2={α|α=105°+k·180°,k ∈Z},因此,终边在图中阴影部分内的角α的取值范围为 {α|α=30°+k·180°≤α<105°+k·180°,k∈Z}.
终边相同的角
所有与角α终边相同的角,连同角α在内,可构成一 个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边 相同的角,都可以表示成角α与 整数个周角 的和.
5.终边相同的角相等吗?相等的角终边相同吗? 答:终边相同的角不一定相等,它们相差360°的整数 倍;相等的角,终边相同.
1.解读任意角的概念 (1)用运动的观点来定义角,就可以把角的概念推广到 任意角,包括任意大小的正角、负角和零角. (2)对角的概念的认识关键是抓住“旋转”二字. ①要明确旋转的方向; ②要明确旋转的大小; ③要明确射线未作任何旋转时的位置.
2.终边相同的角的关注点 所有与角α终边相同的角,连同角α在内可以用式子 k·360°+α,k∈Z表示,在运用时需注意以下四点: (1)k是整数,这个条件不能漏掉. (2)α是任意角. (3)k·360°与α之间用“+”连接,如k·360°-30°应看成 k·360°+(-30°),k∈Z. (4)终边相同的角不一定相等,终边相同的角有无数 个,它们相差周角的整数倍.相等的角终边一定相同.
课堂篇02
合作探究
终边相同的角及象限角
【例1】 将下列各角表示为k·360°+α(k∈ Z,0°≤α<360°)的形式,并指出是第几象限角.
(1)420°;(2)-510°;(3)1 020°.
【解】 (1)420°=360°+60°, 而60°角是第一象限角,故420°是第一象限角. (2)-510°=-2×360°+210°, 而210°是第三象限角,故-510°是第三象限角. (3)用1 020°除以360°的商为2,余数为300°, 即1 020°=2×360°+300°, 而300°是第四象限角,故1 020°是第四象限角.
《任意角的概念》

如果存在,那如何从数学角度更好地 刻画这些角?
⑵.“正角”与“负角”、“0º角” 我们把按逆时针方向旋转所形成的角叫做
正角,把按顺时针方向旋转所形成的角叫做 负角,如图,以OA为始边的角α=210°,β= -150°,γ=660°,
2100
6600
-1500
一艘在暗礁区还是沿正北方向航行的测 量船为躲避暗礁而不断改变航向:向右 转30度,再向左转45度,再向右转50度, 再向左转45度,再向右转20度,最后再 向左转10度,问此测量船最后沿怎样的 方向前进?
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
用旋转来描述角,需要注意三个要素
(旋转中心、旋转方向和旋转量)
(1)旋转中心:作为角的顶点.
(2)旋转方向:旋转变换的方向分为逆时针 和顺时针两种,这是一对意义相反的量,根 据以往的经验,我们可以把一对意义相反的 量用正负数来表示,那么许多问题就可以解 决了;
(3)旋转量:
当旋转超过一周时,旋转量即超过360º, 角度的绝对值可大于360º.于是就会出现 720º, - 540º等角度.
1.1.1 任意角
你能说说初中所学的角的概念吗? 分针旋转15分钟,所形成的图形是否构成角?
这个角是多少度? 分针旋转1小时15分钟,所形成的图形是否构成
如果是,那这个角又是多少度呢?
1、角的概念
从一个点出发引出的两条射线构成的几何图形. 这种概念的优点是形象、直观、容易理解,
任意角+课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册

所有与角α终边
相同的角,连同 角α在内,可构 成一个集合S= {β|β=α+k·360°, k∈Z}
11
课堂精讲
角度 1 求与已知角终边相同的角 【例 2-1】 在与角 10 030°终边相同的角中,求满足下列 条件的角. (1)最大的负角;(2)最小的正角;(3)[360°,720°)内的角.
解 (2)由0°<k·360°+10 030°<360°, 得-10 030°<k·360°<-9 670°, 解得k=-27, 故所求的最小正角为β=310°. (3)由360°≤k·360°+10 030°<720°, 得-9 670°≤k·360°<-9 310°, 解得k=-26, 故所求的角为β=670°.
y
120°
300° O
x
y=- 3x
14
课堂精讲
(1)求适合某种条件且与已知角终边相同的角,其方法是求出与已 知角终边相同的角的一般形式,再依条件构建不等式求出k的值. (2)求终边在给定直线上的角的集合,常用分类讨论的思想,即分 x≥0和x<0两种情况讨论,最后再进行合并.
15
课堂精炼
【训练 2】 写出终边落在 x 轴上的角的集合 S.
解 题干图(1)中,α=360°-30°=330°; 题干图(2)中,β=-360°+60°+150°=-150°; γ=360°+60°+(-β)=360°+60°+150° =570°.
新教材高中数学第五章三角函数5.1.1任意角课件新人教A版必修第一册

【解析】选D.由已知得B⊆C,所以B∪C=C,故D正确.
类型二 终边相同的角的表示及应用(直观想象) 【典例】写出终边落在直线y=x上的角的集合S,并把S中适合不等式360°≤β<720°的元素β写出来.
四步
理解 题意
思路 探求
内容
条件:角的终边在直线y=x上. 结论:①求角的集合; ②求适合-360°≤β<720°的角.
2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③ 475°是第三象限角;④-310°是第一象限角.其中正确的命题有 ( ) A.1个 B.2个 C.3个 D.4个 3.将时钟拨快20分钟,则分针转过的度数是_______.
【解析】1.选C.①终边相同的角必相等错误,如0°与360°终边相同,但不相 等; ②锐角的范围为(0°,90°),必是第一象限角,正确; ③小于90°的角是锐角错误,如负角; ④第二象限的角必大于第一象限的角错误,如120°是第二象限角,390°是第 一象限角; ⑤若角α的终边经过点M(0,-3),则角α是终边在y轴负半轴上的角,故⑤错 误. 其中错误的是①③④⑤.
【变式探究】 如图所示,写出终边落在阴影部分的角的集合.
∪{α|k·360°+210°≤α<k·360°+285°,k∈Z} ={α|2k·180°+30°≤α<2k·180°+105°,k∈Z} ∪{α|(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z} ={α|2k·180°+30°≤α<2k·180°+105°或 (2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z} ={α|n·180°+30°≤α<n·180°+105°,n∈Z}.
任意角的概念说课课件ppt

角的大小可以用度数、弧度等不同的度量单位来表示。根据 角的度数,角可分为锐角、直角、钝角等不同类型的角。此 外,还有与角相关的一系列性质,如角的平分线、角的和差 等。
为什么要引入任意角的概念
实际问题的需求
在现实生活中,很多实际问题涉及到不仅仅是0°到360°范围内的角,还可能涉 及到更大或者更小的角。因此,需要引入任意角的概念来描述这些角度。
数学理论的完善
引入任意角的概念有助于完善数学中关于角的理论体系,使其更加严密和完整 。
任意角的概念简介
01 02
任意角的定义
任意角是指大小不受限制的角,可以超过360°或小于0°。在平面直角坐 标系中,通常以x轴正方向与射线起点为参考,逆时针方向为正,顺时 针方向为负。
任意角的表示方法
任意角可以用角度、弧度两种不同的度量单位来表示。在三角函数中, 通常使用弧度作为角的度量单位。
工程技术中的任意角应用
机器人定位与导航
在机器人技术中,利用任意角可以表示机器人的朝向和位置,从 而实现精准的定位和导航。
航空航天技术
在航空航天领域,通过任意角可以描述飞行器的飞行方向和姿态, 对于飞行器的控制和导航具有重要意义。
电子工程中的相位差
在电子工程中,任意角可以用于描述信号的相位差,对于信号处理 、传输和接收等方面的研究具有重要价值。
练习1
在航海中,船只需要根据罗盘的指示来确定航向。罗盘上的度数与 任意角的概念有何关联?如何利用任意角的知识来解决航向问题?
练习2
在物理实验中,需要测量某物体做圆周运动时的角速度。如何通过 测量得到的数据,利用任意角的概念来计算物体的角速度?
练习3
在钟表中,时针、分针、秒针之间的角度关系如何运用任意角的知识 和计算来解决?
任意角课件 高一上学期数学人教A版(2019)必修第一册

整数个周角的和.
合内任意两元素的差是360 °的整数倍
名师点睛
对于集合S={β|β=α+k·360°,k∈Z}的理解应注意三点
(1)α是任意角.(一般是在0°~360°之间)
(2)“k∈Z”有三层含义:
①特殊性:每取一个整数值就对应一个具体的角.
360°+90°<475°<360°+180°,-360°<-315°<-270°,所以这四个命题都是真命
题.
探究点二 坐标系中角的概念及其表示
角度1终边相同的角的求解
【例2】 写出与75°角终边相同的角的集合,并求在360°~1 080°范围内与
75°角终边相同的角.
解 与75°角终边相同的角的集合为
规律方法
终边落在特定位置上的角的集合
终边落在x轴的非负半轴上的角的集合为{β|β=k·360°,k∈Z};
终边落在x轴的非正半轴上的角的集合为{β|β=k·360°+180°,k∈Z};
终边落在x轴上的角的集合为{β|β=k·180°,k∈Z};
终边落在y轴的非负半轴上的角的集合为{β|β=k·360°+90°,k∈Z};
叫做互为相反角.角α的相反角记为-α.
问题 角能像实数一样进行运算吗?
五、通过类比,获得概念
角的加法:设,是任意两个角.我们规定,把角的终
边旋转角,这时终边所对应的角是 + .
+
=
角的减法:像实数减法的“减去一个数等于加上这个数的
相反数”一样,我们有 − = + (−).这样,角的减
高中数学第五章三角函数5.1.1任意角讲义新人教A版必修第一册
5.1 任意角和弧度制最新课程标准:了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性.5.1.1 任意角知识点一角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.状元随笔(1)在画图时,常用带箭头的弧来表示旋转的方向.(2)为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可以简记成“α”知识点二角的表示顶点:用O表示;始边:用OA表示,用语言可表示为起始位置;终边:用OB表示,用语言可表示为终止位置.知识点三角的分类在直角坐标系中研究角时,当角的顶点与原点重合,角的始边与x轴的非负半轴重合时,角的终边在第几象限,就说这个角是第几象限角,如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.知识点五终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.状元随笔(1)α为任意角,“k∈Z”这一条件不能漏.(2)k·360 °与α中间用“+”连接,k·360 °-α可理解成k·360 °+(-α).(3)当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差360 °的整数倍.终边不同则表示的角一定不同.[教材解难]象限角的集合表示.[基础自测]1.下列说法中正确的是( )A.终边相同的角都相等B.钝角是第二象限的角C.第一象限的角是锐角 D.第四象限的角是负角解析:终边相同的角不一定相等,第一象限角不一定是锐角,第四象限角可能为正角,也可能为负角,故选B.答案:B2.下列各角:-60°,126°,-63°,0°,99°,其中正角的个数是( )A.1个 B.2个C.3个 D.4个解析:结合正角、负角和零角的概念可知,126°,99°是正角,-60°,-63°是负角,0°是零角,故选B.答案:B3.与30°角终边相同的角的集合是( )A.{α|α=30°+k·360°,k∈ Z}B.{α|α=-30°+k·360°,k∈Z}C.{α|α=30°+k·180°,k∈Z}D.{α|α=-30°+k·180°,k∈Z}解析:由终边相同的角的定义可知与30°角终边相同的角的集合是{α|α=30°+k·360°,k∈Z}.答案:A4.2 019°是第________象限角.解析:2 019°=360°×5+219°,180°<219°<270°.∴2 019°是第三象限角.答案:三题型一 任意角的概念及应用[经典例题]例1 (1)若角的顶点在原点,角的始边与x 轴的非负半轴重合,给出下列四个命题:①0°角是第一象限角;②相等的角的终边一定相同;③终边相同的角有无限多个;④与-30°角终边相同的角都是第四象限角.其中正确的有( )A .1个B .2个C .3个D .4个(2)时针走过2小时40分,则分针转过的角度是________.【解析】 (1)①错误,0°角是象限界角;②③④正确.(2)分针按顺时针方向转动,则转过的角度是负角为-360°×223=-960°. 【答案】 (1)C (2)-960°按照象限分类,角可以分为象限角和象限界角;角的正负是由终边的旋转方向决定的. 分针1个小时转过的角度的绝对值是360 °.方法归纳与角的概念有关问题的解决方法正确解答角的概念问题,关键在于正确理解象限角与锐角、直角、钝角、平角、周角等的概念,弄清角的始边与终边及旋转方向与大小.另外需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可.跟踪训练1 在下列说法中:①0°~90°的角是第一象限角;②第二象限角大于第一象限角;③钝角都是第二象限角;④小于90°的角都是锐角.其中错误说法的序号为________.解析:①0°~90°的角是指[0°,90°),0°角不属于任何象限,所以①不正确. ②120°是第二象限角,390°是第一象限角,显然390°>120°,所以②不正确. ③钝角的范围是(90°,180°),显然是第二象限角,所以③正确.④锐角的范围是(0°,90°),小于90°的角也可以是零角或负角,所以④不正确.答案:①②④题型二 终边相同的角[经典例题]例2 写出与75°角终边相同的角的集合,并求在360°~1 080°范围内与75°角终边相同的角.【解析】 与75°角终边相同的角的集合为S ={β|β=k ·360°+75°,k ∈Z }.当360°≤β<1 080°,即360°≤k ·360°+75°<1 080°时,解得1924≤k <21924.又k ∈Z ,所以k =1或k =2.当k =1时,β=435°;当k =2时,β=795°.综上所述,与75°角终边相同且在360°~1 080°范围内的角为435°角和795°角. 状元随笔 根据与角α终边相同的角的集合为S ={β|β=k·360 °+α,k∈Z },写出与75 °角终边相同的角的集合,再取适当的k 值,求出360 °~1 080 °范围内的角.方法归纳(1)写出终边落在直线上的角的集合的步骤①写出在[0°,360°)内相应的角;②由终边相同的角的表示方法写出角的集合;③根据条件能合并一定合并,使结果简洁.(2)终边相同角常用的三个结论①终边相同的角之间相差360°的整数倍;②终边在同一直线上的角之间相差180°的整数倍;③终边在相互垂直的两直线上的角之间相差90°的整数倍.跟踪训练2 写出与下列各角终边相同的角的集合S ,并把S 中满足-360°≤α<720°的元素写出来.(1)60°;(2)-210°;(3)364°13′.解析:(1)S ={α|α=60°+k ·360°,k ∈Z }.当k =-1时,α=-300°;当k =0时,α=60°;当k =1时,α=420°.∴S 中满足-360°≤α<720°的元素是-300°,60°,420°.(2)S ={α|α=-210°+k ·360°,k ∈Z }.当k =0时,α=-210°;当k =1时,α=150°;当k =2时,α=510°.∴S 中满足-360°≤α<720°的元素是-210°,150°,510°.(3)S ={α|α=364°13′+k ·360°,k ∈Z }.当k =-2时,α=-355°47′;当k =-1时,α=4°13′;当k =0时,α=364°13′.∴S中满足-360°≤α<720°的元素是-355°47′,4°13′,364°13′.求与已知角α终边相同的角时,首先将这样的角表示成k·360 °+α(k∈Z)的形式,然后采用赋值法求解相应不等式,确定k的值,求出满足条件的角.题型三象限角与区间角的表示[教材P170例1]例3 在0°~360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角.【解析】-950°12′=129°48′-3×360°,所以在0°~360°范围内,与-950°12′角终边相同的角是129°48′,它是第二象限角.先求出与-950 °12 ′终边相同的角,再判断是第几象限角.教材反思象限角的判定方法(1)根据图象判定.依据是终边相同的角的概念,因为0°~360°之间的角的终边与坐标系中过原点的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内.在直角坐标平面内,在0°~360°范围内没有两个角终边是相同的.跟踪训练3 (1)若α是第四象限角,则-α一定在( )A.第一象限B.第二象限C.第三象限D.第四象限(2)写出终边落在图中阴影部分(包括边界)的角的集合.解析:(1)因为α是第四象限角,所以k·360°-90°<α<k·360°,k∈Z.所以-k·360°<-α<-k·360°+90°,k∈Z,由此可知-α是第一象限角.依题意写出α的范围,再求-α的范围.(2)若角α的终边落在OA上,则α=30°+360°·k,k∈Z.若角α的终边落在OB上,则α=135°+360°·k,k∈Z.所以,角α的终边落在图中阴影区域内时,30°+360°·k≤α≤135°+360°·k,k∈Z.故角α的取值集合为{α|30°+360°·k≤α≤135°+360°·k,k∈Z}.由图写出终边OA表示的角,终边OB表示的角,再求阴影的范围.答案:(1)A (2)见解析一、选择题1.下列角中,终边在y轴非负半轴上的是( )A.45° B.90°C.180° D.270°解析:根据角的概念可知,90°角是以x轴的非负半轴为始边,逆时针旋转了90°,故其终边在y轴的非负半轴上.答案:B2.把一条射线绕着端点按顺时针方向旋转240°所形成的角是( )A.120° B.-120°C.240° D.-240°解析:一条射线绕着端点按顺时针方向旋转240°所形成的角是-240°,故选D.答案:D3.与-457°角终边相同的角的集合是( )A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}解析:263°=-457°+360°×2,所以263°角与-457°角的终边相同,所以与-457°角终边相同的角可写作α=k·360°+263°,k∈Z.答案:C4.若α为锐角,则下列各角中一定为第四象限角的是( )A.90°-α B.90°+αC.360°-α D.180°+α解析:∵0°<α<90°,∴270°<360°-α<360°,故选C.答案:C二、填空题5.图中从OA旋转到OB,OB1,OB2时所成的角度分别是________、________、________.解析:图(1)中的角是一个正角,α=390°.图(2)中的角是一个负角、一个正角,β=-150°,γ=60°.答案:390° -150° 60°6.已知角α与2α的终边相同,且α∈[0°,360°),则角α=________.解析:由条件知,2α=α+k ·360°,所以α=k ·360°(k ∈Z ),因为α∈[0°,360°),所以α=0°.答案:0°7.如图,终边在阴影部分内的角的集合为________.解析:先写出边界角,再按逆时针顺序写出区域角,则得{α|30°+k ·360°≤α≤150°+k ·360°,k ∈Z }.答案:{α|30°+k ·360°≤α≤150°+k ·360°,k ∈Z }三、解答题8.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36′.解析:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°.因此,-503°36′角是第三象限角,且在0°~360°范围内,与216°24′角有相同的终边.9.已知α与240°角的终边相同,判断α2是第几象限角. 解析:由α=240°+k ·360°,k ∈Z ,得α2=120°+k ·180°,k ∈Z . 若k 为偶数,设k =2n ,n ∈Z ,则α2=120°+n ·360°,n ∈Z ,α2与120°角的终边相同,是第二象限角; 若k 为奇数,设k =2n +1,n ∈Z ,则α2=300°+n ·360°,n ∈Z ,α2与300°角的终边相同,是第四象限角. 所以,α2是第二象限角或第四象限角.[尖子生题库]10.如图所示,分别写出适合下列条件的角的集合:(1)终边落在射线OM上;(2)终边落在直线OM上;(3)终边落在阴影区域内(含边界).解析:(1)终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z}.(2)由(1)得终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z},终边落在射线OM反向延长线上的角的集合为B={α|α=225°+k·360°,k∈Z},则终边落在直线OM上的角的集合为A∪B={α|α=45°+k·360°,k∈Z}∪{α|α=225°+k·360°,k∈Z}={α|α=45°+2k·180°,k∈Z}∪{α|α=45°+(2k+1)·180°,k∈Z}={α|α=45°+n·180°,n∈Z}.(3)终边落在直线ON上的角的集合为C={β|β=60°+n·180°,n∈Z},则终边落在阴影区域内(含边界)的角的集合为S={α|45°+n·180°≤α≤60°+n·180°,n∈Z}.。
任意角 课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
所有与角α终边 相同的角,连同 角α在内,可构 成一个集合S= {β|β=α+k·360°, k∈Z}
合作探究
例 2 (2)写出终边落在 x 轴上的角的集合 S.
解 S={α|α=k1·360°,k1∈Z}
∪{α|α=k2·360°+180°,k2∈Z} ={α|α=2k1·180°,k1∈Z} ∪{α|α=(2k2+1)·180°,k2∈Z} ={α|α=n·180°,n∈Z}.
①420°.②855°.③-510°.
解难释疑
12
【例 1】(2)已知角的顶点与坐标原点重合,始边与 x 轴的非负半轴重合,
作出下列各角,并指出它们是第几象限角.
①420°.②855°.③-510°.
[解] 作出各角的终边,如图所示:
由图可知:①420°是第一象限角.②855°是第二象限角. ③-510°是第三象限角.
D.-60°,-180°
合作探究
类型二 终边相同的角的表示及应用
【例 2】在与角 10 030°终边相同的角中,求满足下列条件的 角. ①最大的负角;②最小的正角;③[360°,720°)内的角.
解 与10 030°终边相同的角的一般形式为 β=k·360°+10 030°(k∈Z), ①由-360°<k·360°+10 030°<0°, 得-10 390°<k·360°<-10 030°, 解得k=-28, 故所求的最大负角为β=-50°.
边所对应的角是__α_+_β___.
(3)相反角:把射线OA绕端点O按不同方向旋转相同的量所成的 两个角叫做互为__相__反__角___,角α的相反角记为__-_α____,α- β=α+_(_-_β_)__.
预习检测
数学人教A版必修第一册5.1任意角和弧度制课件
小结
很显然,0°-360°角难以满足我们的需要,所以我们需 要对角的概念进行推广.
一、任意角
角度的概念:平面内一条射线绕着端点从一个位置旋转但另一个位置所形成的图形
正角:一条射线绕其端点按逆
时针方向旋转形成的角
正角:一条射线绕其端点按顺
时针方向旋转形成的角
零角:一条射线没有做任何旋
转(始边与终边重合)
一、任意角
随堂练习一:写出象限角和轴线角的集合
随堂练习二:【多选题】下列各角与52°终边相同的有( )
A.-308°
B.-232°
C.412°
D.-778°
二、弧度制
角度制:用度为单位来度量角的单位制,叫做角度制。 规定周角的1/360叫做1度的角
弧度制:用弧长来度量角的单位制,叫做弧度制。 把长度等于半径长的弧所对的圆心角叫做1弧度的角, 用符号rad表示,读作弧度
二、弧度制
例题:已知一个扇形周长是6cm,该扇形的圆心角是2弧度,求该 扇形的面积
二、弧度制
随堂练习:已知扇形的周长是12,面积是8,求扇形圆心角的弧度?
感谢观看
二、弧度制
弧度的计算:正角的弧度数是一个正数,负 角的弧度数是一个负数,零角的弧度数是0, 如果半径为r的圆的圆心角α所对弧的长为l, 那么,角α的弧度数的绝对值是:
l
r
单位:rad
二、弧度制
随堂思考:表达同一个角,角度和弧度间如何转化?
180°=π
π 1 rad 0.01745rad
Байду номын сангаас180
一、任意角
终边相同的角:所有与α终边相同的角,连同角α在内,可以构成一个集合,常见以 下三种情势:
一、任意角
2020_2021学年新教材高中数学5.1.1任意角课件新人教A版必修第一册
四步
内容
书写 表达
直线y=x与x轴的夹角是45°,在0°~360°范围内,终边在直线y=x 上的角有两个:45°,225°.① 因此,终边在直线y=x上的角的集合: S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z} ={β|β=45°+2k·180°,k∈Z}∪{β|β=45°+(2k+1)·180°, k∈Z}={β|β=45°+n·180°,n∈Z}.② 所以S中适合-360°≤β<720°的元素是: 45°-2×180°=-315°;45°-1×180°=-135°; 45°+0×180°=45°;45°+1×180°=225°; 45°+2×180°=405°;45°+3×180°=585°. 注意解题过程的规范性: ①终边在直线y=x上注意讨论两种情况. ②这种形式的两个集合取并集时合并为一个集合.
四步
题后 反思
内容
在0°~360°范围内,终边在y=x上的角有两个,这是同学们容 易忽视的地方;最后在-360°~720°求角时,要适当选取k的值.
【解题策略】 (1)一般地,可以将所给的角β化成k·360°+α的形式(其中0°≤α<360°, k∈Z),其中的α就是所求的角. (2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负 角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式, 直到所得结果达到要求为止. 特别提醒:表示终边相同的角时,k∈Z这一条件不能省略.
【解析】选D.由已知得B⊆C,所以B∪C=C,故D正确.