钻井液循环系统

合集下载

不间断循环钻井系统介绍

不间断循环钻井系统介绍

不间断循环钻井系统介绍
一、不间断循环钻井系统的工作原理:
1.钻井液从钻井液池中被泵送至泵,随后进入到钻柱中进行钻井作业,排出顶部。

2.钻井液进入到搅拌器进行过滤和搅拌,以确保其质量和性能的稳定。

3.过滤后的钻井液进入高压泵,由高压泵提供的高压将钻井液重新送
回到钻井井口,形成连续的循环。

4.钻井液在井底完成清洁井底、冲刷岩层、控制井压等作用,同时通
过气体分离器分离出气体。

5.钻井液经过过滤器进行再次过滤,去除钻屑和其他固体颗粒,保持
钻井液的稳定性。

6.钻井液通过控制系统控制泵的工作和停止,实现钻井液供应的连续
不间断。

二、不间断循环钻井系统的优势:
1.提高钻井效率:不间断循环钻井系统可以节省循环时间,提高钻井
效率,降低作业成本。

2.减少井壁塌陷和漏失问题:不间断循环钻井系统能够稳定钻井井壁,防止井壁塌陷和漏失问题的发生。

3.较低的环境影响:该系统可以减少钻井液流失以及固体废料排放,
降低对环境的影响。

4.高效的作业管理:不间断循环钻井系统集成了数据收集和分析功能,能够实时监测钻井过程,提供及时反馈,为作业管理提供支持。

5.提高工作安全性:该系统可以降低作业危险系数,减少意外事故的
发生。

三、不间断循环钻井系统的应用领域:
总结起来,不间断循环钻井系统通过连续供应钻井液、减少钻井时间
和提高钻井效率等方式,实现了连续不间断地进行钻井。

它具有提高钻井
效率、降低井壁问题、减少环境影响、高效的作业管理和提高工作安全性
等优势。

因此,在深水钻井、高温高压井和复杂井眼等条件下的钻井作业
中具有广泛应用前景。

钻井液循环系统

钻井液循环系统

钻井液循环系统钻井是勘探和开发石油和天然气资源的基本方法之一,也是现代工业生产的重要手段。

而钻井的成功与否离不开钻井液循环系统。

钻井液循环系统是指通过钻井液将钻废岩挖掘上来,并进行处理和再利用的系统。

下面我们来详细地了解一下钻井液循环系统。

1. 钻井液循环系统的工作原理钻井液循环系统的工作原理非常简单。

首先,钻头在地层下面钻井的同时,钻井液被泵入钻杆内,通过钻杆逐层往下推进。

随着钻头不断钻进地层,钻井液经过管柱流入井底,然后经过钻头,喷向地层。

钻井液在喷向地层的过程中,既能冷却和润滑钻头,又能将打破的岩屑和泥土带回井口,完成钻井液循环的整个过程。

而钻井液循环系统还需要完成以下的工作:一是沉降和过滤岩屑和泥土;二是将钻井液进行处理,如去除杂质和再生利用等;三是控制井下的压力和温度等;四是进行泥浆的泵送和储存,以及压力和重量的调整等。

2. 钻井液循环系统的组成和结构钻井液循环系统主要由工作液循环系统、固控系统、泥浆处理系统、泥浆泵浦系统、压力控制系统、热控制系统、测井系统、安全防护系统等组成。

其中,工作液循环系统是钻井液循环系统最为重要的一部分,主要由井口、固井器、钻杆、钻头、鉴定器、工作液泵、输送管道、坑、固井液池等组成。

而固控系统则负责控制岩屑和泥土的沉淀和过滤,主要由固体分离器、岩屑分级器、过滤器、坑、固控系统、切屑器等组成。

泥浆处理系统主要负责对钻井液进行再利用,泥浆泵浦系统则用于将处理好的钻井液泵送到井底,压力控制系统则用于控制井下的压力,确保钻进工作的顺利进行。

而热控制系统则主要用于控制钻进过程中产生的热量,保持井下的恒定温度,测井系统则用于获取井下的地质和状况信息。

3. 钻井液循环系统的应用钻井液循环系统广泛应用于石油和天然气开采领域。

通过采用钻井液循环系统,不仅可以提高钻井的效率,更可以保证钻井的成功。

此外,钻井液循环系统还可以帮助钻井人员预测地下水位及水位变化情况,有利于防止地下水污染。

钻井主要设备操作规程

钻井主要设备操作规程

钻井主要设备操作规程钻井是石油勘探中的重要环节,它涉及到许多主要设备的操作。

为了确保钻井作业的安全和高效进行,制定一套科学的操作规程是至关重要的。

本文将介绍钻井主要设备的操作规程,以及在操作过程中需要注意的事项。

一、钻井平台操作规程钻井平台是钻井作业的基础设施,其操作规程主要包括以下几个方面:1. 平台安全:在进行钻井作业前,必须确保钻井平台的结构安全可靠,没有任何潜在的危险因素。

操作人员必须穿戴合适的个人防护装备,并严格按照安全操作规程进行作业。

2. 设备检查:在开始钻井作业之前,必须对钻井平台上的各种设备进行全面检查。

包括钻机、钻杆、钻头、钻井液循环系统等。

确保设备完好无损,能够正常工作。

3. 钻井液管理:钻井液是钻井作业中不可或缺的一部分。

在操作过程中,必须严格控制钻井液的性能和循环系统的稳定性。

定期检查钻井液的密度、黏度、PH值等指标,并根据需要进行调整。

4. 钻井井筒控制:钻井井筒的控制是钻井作业中的关键环节。

在操作过程中,必须根据地层情况和钻井进度,合理控制钻井液的流量和压力。

及时调整钻井参数,确保井筒的稳定性和安全性。

二、钻机操作规程钻机是钻井作业中最重要的设备之一,其操作规程主要包括以下几个方面:1. 钻机启动和停止:在启动钻机之前,必须检查各个部件的工作状态,并确保润滑系统正常工作。

启动钻机后,要逐步增加转速,确保设备平稳运行。

停止钻机时,必须先将转速逐渐降低,然后关闭主电源。

2. 钻杆连接和断开:钻杆是连接钻机和钻头的重要部件。

在连接和断开钻杆时,必须确保操作平稳,避免发生意外。

连接钻杆时,要使用合适的扳手和扳手卡,确保连接紧固。

断开钻杆时,要先松开连接螺纹,然后使用扳手卡固定住钻杆。

3. 钻头选择和更换:钻头是进行钻井作业的关键工具。

在选择钻头时,必须根据地层情况和钻井目标进行合理选择。

在更换钻头时,要先将钻杆拉出井口,然后使用合适的工具进行更换。

4. 钻井液循环系统操作:钻井液循环系统是钻机的重要组成部分。

泥浆检测与应用之钻井液循环系统介绍

泥浆检测与应用之钻井液循环系统介绍

钻井液输送管道:连接钻井液泵、钻 井液罐和钻井液净化设备,实现钻井 液的循环流动
钻井液检测技术
检测项目
01
密度:测量钻井液的密度, 以确定其性能和稳定性
03
含砂量:测量钻井液中的砂 含量,以确定其对钻井设备 的磨损程度
05
酸碱度:测量钻井液的酸碱 度,以确定其对地层的腐蚀 程度
02
粘度:测量钻井液的粘度, 以确定其流动性和剪切应力
效率
携带岩屑:将岩屑 从井底携带至地面,
保持井眼清洁
平衡地层压力:防 止地层坍塌,确保
钻井安全
保护油气层:防止 油气层污染,保护
油气资源
提高钻井效率:降 低钻井成本,提高
钻井速度
钻井液循环系统的组成
钻井液泵:提供动力,将钻井液输 送到钻头
钻井液罐:储存钻井液,调节钻井 液的密度和粘度
钻井液净化设备:去除钻井液中的 杂质,保持钻井液的性能稳定
安全管理
01
定期检查:定期对钻井液循环系统进行检查,确保设备安全运行
02
操作规程:严格遵守操作规程,防止误操作造成安全事故
03
培训教育:加强员工培训教育,提高安全意识和操作技能
04
应急预案:制定应急预案,应对突发安全事故,确保人员安全
谢谢

液含砂量
04
钻井液PH计: 测量钻井液 PH值
05
钻井液电导率 计:测量钻井
液电导率
06
钻井液温度计: 测量钻井液温

07
钻井液流量计: 测量钻井液流

08
钻井液压力计: 测量钻井液压

09
钻井液含气量 计:测量钻井
液含气量

井下动力钻井工作原理

井下动力钻井工作原理

井下动力钻井工作原理
井下动力钻井是一种常用的石油钻井技术,其工作原理主要包括以下几个步骤:
1. 钻井液循环系统:井下动力钻井中,钻井液循环系统起着重要的作用。

钻井液通过泵送进入井底钻头,然后通过钻杆中的通道进入钻头内部,冲刷岩层并将钻屑带到地面。

2. 旋转系统:井下动力钻井中,井下动力装置驱动钻杆旋转,钻杆通过旋转带动钻头在地层中钻探。

旋转系统通常由绕组电动机、蜗轮蜗杆减速器和转动装置组成。

3. 推进系统:在井下动力钻井中,推进系统主要是通过钻杆的上下运动来实现。

钻井液通过钻杆通道进入钻头底部,然后冲击岩层并将钻屑带到井上。

通过调节钻杆的推进速度,可以控制钻头的下压力和钻井速度。

4. 钻头:井下动力钻井中,钻头是进行岩层钻探的关键工具。

钻头通常由钻杆接头、钻头身和钻头嘴三部分组成。

钻头嘴采用合适的切削结构和硬质合金材料,可以快速切削岩石并将钻屑冲刷出井口。

总之,井下动力钻井通过钻井液循环系统、旋转系统、推进系统和钻头等组成部分的相互配合,实现了从井底到地面的高效钻井作业。

第五章 2钻井泵和钻井液循环系统

第五章 2钻井泵和钻井液循环系统
图7-1国产双缸双作用 国产双缸双作用NB8-600泵的主剖面图 国产双缸双作用 - 泵的主剖面图
1.双缸双作用泵的动力端 . 它主要包括底座,装皮带轮的传动轴、主轴、齿轮、 它主要包括底座,装皮带轮的传动轴、主轴、齿轮、 偏心轴、连杆、十字头等。 偏心轴、连杆、十字头等。
在传动轴两边 伸出的轴端上皆可 安装皮带轮, 安装皮带轮,便于 井场布置。 井场布置。 传动轴两端各 由一个单列向心圆 柱滚子轴承支承在 壳体上, 壳体上,而主轴两 端由双列向心球面 滚子轴承支承。 滚子轴承支承。
5.1.2 三缸单作用钻井泵 三缸单作用活塞式泵是60年代中期开始研制并得到 三缸单作用活塞式泵是 年代中期开始研制并得到 迅速推广使用的一种钻井泵, 迅速推广使用的一种钻井泵,在我国及一些国家的深 井钻进中,正在取代双缸双作用钻井泵。 井钻进中,正在取代双缸双作用钻井泵。
三缸单作用钻井泵动力端与双缸双作用泵类似, 三缸单作用钻井泵动力端与双缸双作用泵类似, 仍由传动轴、主轴、连杆、十字头及底座组成, 仍由传动轴、主轴、连杆、十字头及底座组成, 但其 主轴(被动轴 主轴 被动轴) 被动轴 装有三个互成 120°的曲拐 偏心 °的曲拐(偏心 轮)或为具有三个 或为具有三个 互成120°的曲拐 互成 ° 的整体式曲轴。 的整体式曲轴。通 过三套连杆滑块机 构把传动轴的旋转 运动变成三个活塞 分别在其液缸内的 往复运动。 往复运动。
缺点: 缺点:三缸单作用泵由于泵的冲次提 高,导致自吸能力降低,通常情况下应配 导致自吸能力降低, 备灌注系统, 备灌注系统,即用另一台灌注泵向三缸泵 的吸入口供给一定压力的液体, 的吸入口供给一定压力的液体,这样便增 加了附属设备。为了避开灌注问题, 加了附属设备。为了避开灌注问题,我国 一些油田采用高架吸入罐,使吸入液池的 一些油田采用高架吸入罐, 液面高于泵缸中心线, 液面高于泵缸中心线,或降低三缸泵的泵 速等。 速等。 国内外三缸单作用钻井泵的型式较多。 国内外三缸单作用钻井泵的型式较多。 结构和参数差异较大。 结构和参数差异较大。

钻井液井下循环系统

钻井液井下循环系统

钻井液井下循环系统钻井液井下循环系统通常是钻井液通过钻杆直接到达钻头处,经钻头水眼喷出,携带井底岩屑,沿环空返回地面。

随着钻井深度的增加,为增加井壁的稳定性,避免压差卡钻,保护油气层,必须在钻井液中加入固相重部分(如重晶石),以增大钻井液密度。

但随着钻井液密度的增大,钻进速度将迅速下降,钻头磨损明显加剧。

国外研制出井下固相分离接头——井下水力旋流分离器(Downhole Hydrocyclones)。

装有井下固相分离器接头的钻井液井下循环系统流程如图所示。

图钻井液井下循环系统改进流程固相分离器接头装于钻头上部,由地面钻井泵供给具有一定能量的钻井液,经其上部通道,从切线方向进入旋流筒,进行净化处理。

分离出来的固相从其上部喷嘴进入环形空间,低固相钻井液进入钻头。

采用此装置,既能保持环空的钻井液密度,保持井壁稳定,又能降低水眼处钻井液粘度和密度,减轻水眼的磨损,提高当量水马力,充分发挥高压喷射清岩于水力破岩的作用,同时由于井底钻井液固相含量的减少,将减轻钻头牙齿的磨损,提高钻头的寿命和机械钻速。

海上井下油水分离用水力旋流器术语用于采出液井下油水分离的水力旋流系统的效益主要在于减少了采出水的开采及处理费用,有效降低了地面处理设备的液体负荷。

地面处理设备的减少对海上应用具有重要意义,地面分离设备的减少和费用的降低可延长油田寿命。

人们正在对井下分离系统进行进一步研究以提供适于海上应用的各种设备。

水力旋流器作为井下油水分离(DOWS)系统之一,让我们先认识一些概念术语。

水力旋流分离水力旋流器已广泛应用于地面油/水分离,其外形尺寸小,结构紧凑,设备成本低,操作费用低。

对水力旋流器的运行情况进行讨论将有助于了解与井下油水分离系统有关的设计问题。

承压流体混合物通过一个或多个切向入口进入水力旋流器,促使流体在装置内旋转,水力旋流器的锥形加速了流体螺旋形流动,建立了自由的旋涡,创建了很大的离心力。

离心力使轻相物质(即油,游离气)汇集到水力旋流器的中心,而重相物质(如水,固体)由于离心力的作用被甩到了外壁,在高压作用下,保持从底流口排出,迫使旋涡中心的浓缩油核逆流。

石油钻井循环系统培训

石油钻井循环系统培训

04
石油钻井循环系统的优化与改进
石油钻井循环系统的性能优化
优化钻井液性能
通过调整钻井液的密度、粘度、切力等参数,提高钻井液 的携带和悬浮能力,减少岩屑和钻屑的沉积,降低钻头和 钻具的磨损。
改进钻头设计和材料
采用新型的钻头设计和材料,提高钻头的耐磨性、抗冲击 性和抗研磨性,延长钻头使用寿命,提高钻井效率。
史数据的学习和分析,为钻井工程师提供智能化的决策建议和优化方案

05
石油钻井循环系统的发展趋势与展望
石油钻井循环系统的发展历程与现状
石油钻井循环系统的起源
石油钻井循环系统的起源可以追溯到20世纪初,当时人们开始利 用钻井技术开采石油。
石油钻井循环系统的现状
随着技术的不断进步,石油钻井循环系统已经发展成为一个复杂而 高效的体系,能够满足各种钻井需求。
随着环保意识的提高,石油钻井循 环系统将更加注重环保,减少对环 境的负面影响,同时推动可持续发 展。
谢谢您的聆听
THANKS
钻井过程中应合理利用资源, 降低能源消耗,提高资源利用 效率。
钻井循环系统应符合国家和地 方环保法规要求,确保合规运 营。
石油钻井循环系统的安全与环保事故应急处理
制定应急预案,明确应急组织、救援队伍 、救援装备和救援流程。 加强应急演练,提高操作人员的应急处置 能力。 对事故原因进行深入分析,总结经验教训 ,完善安全与环保管理体系。
优化井身结构和钻井参数
根据地质条件和工程要求,合理设计井身结构和钻井参数 ,如开钻井深、井眼尺寸、钻进速度、钻压等,以实现高 效、安全、低成本的钻井作业。
石油钻井循环系统的节能减排技术
优化泥浆泵和传动系统
通过改进泥浆泵和传动系统的设计, 提高其效率和可靠性,降低能耗和机 械磨损,减少废水和废气的排放。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、缩短机械设备寿命:增大磨损,钻头消耗增 加,泥浆泵易损件消耗增加。
井号 固控方式 材 料 消 耗 钻头(只) 拉杆(根) 缸套(只)
2号井 土池 9 20 7
6号井 固控系统 6 7 4
活塞(只) 凡尔(套)
60 40
25 20
5、增加钻井成本:相邻两井比较 井号 井深(米) 89号 3902 94号 3836
自然沉降法: 井内返出的钻井液在地面循环过程 中,因地面钻井液液池体积大,流速低,钻井液中 的岩屑颗粒在重力作用下沉降到底部而被分离,上 部的钻井液再入井循环使用。 化学沉降法:就是在钻井液中加入少量化学沉淀 剂使分散的微小岩屑一接触这些化学剂就产生絮凝 作用形成较大的颗粒,而迅速沉降。 机械清除法:利用机械设备强制清除有害固相, 改变固相级配。
钻屑污染是指在循环过程中,钻屑在机械及化 学作用下,分散成大小不等的颗粒而混入钻井液 中,使钻井液性能变坏,给钻井工程及油、气层 带来危害。
分散于钻井液中的固体颗粒称为钻井液中的固 相。钻井液中的固相: 一是来源于被破碎岩石产生的钻屑; 二是为钻井工艺要求而人为加入的。 按固相在钻井液中所起的作用可分为有用固相和 有害固相两类。 钻屑是有害固相的主要来源,而且存在于钻井过 程的始终,带来很多危害。因此必须消除有害固相。
粒度级别
一、粗 二、中粗粒 三、中粗 四、细粒
直径(μm)
>20000 250-2000 74-250 44-74
五、超细粒
六、胶体
2-44
<2
钻井中固相颗粒的大小不等,各种颗粒的含 量也不等。固相颗粒的大小称为粒度(及粗细程 度)。各种颗粒占固相总量的百分数称为级配。 钻井过程中,随地层的岩性钻头中类型和钻井 参数的不同,钻井液中的固相含量及粒度级配也 不一样。
钻井液的功能:
1)、冲洗井底,冲刷地层,利于钻进。 2)、带出岩屑,悬浮岩屑。 3)、冷却和润滑钻头、钻具。 4)、平衡地层压力,防止井漏、井喷。 5)、形成泥饼,保护井壁,防止井壁坍塌。 6)、向井下动力钻具传递动力。 7)、地质录井。
清水的缺点: 黏度低,悬浮岩屑能力低,易沉沙卡钻,形不 成泥饼,井壁易塌,不能平衡地层压力。
泥浆中有害固相的危害 1、堵塞油气通道,损害油气层: 1)、钻井液压力大于地层压力时,钻井液向地 层渗透,小于地层油气通道的的固相随之深入,形 成堵塞。即污染油层。 2)、降低机械钻速(单位时间内钻头所钻井眼 的进尺)。 固相含量小于8%范围内:固相含量每增加1%, 机械钻速下降约10%。
3)、诱发井下事故: 固相↑导致: A.密度↑-压漏地层; B.黏度↑-钻头易泥包,起钻拔活塞,诱发井喷、 下钻引起压力激动,引起井漏; C.泥饼变松、变厚-失水大,导致井壁塌;井眼变 小,易卡钻;引发压差卡钻。 D.泥饼摩擦系数↑-扭矩增加,动力消耗大,钻具事 故多,钻具寿命短;
2.钻井液中固相的分类及粒度分布 根据不同的特点,钻井液中的固相有不同的 分类方法。 按固相的密度可分为:高密度固相和低密度 固相。前者是根据钻井要求特意加入的重质材 料,以提高钻井液的密度。 加有重质材料的钻井液称为加重钻井液或加 重泥浆。
低密度固相包括普通钻屑;配置钻井液所需 的膨润土和处理剂。 不含重质材料的钻井液,称为非加重钻井液 或非加重泥浆。 根据美国石油学会(API)的规定,按固相颗 粒的大小可将钻井液中的固相分为三大类: 粘土(或胶质) 粒度小于2μm 泥 粒度为2~74μm 砂(或API砂) 粒度>74μm
钻井液的主要成分有: (1)水(淡水,盐水,饱和盐水等); (2)膨润土(钠膨润土,钙膨润土,有机土或抗 盐土等); (3)化学处理剂(有机类,无机类,表面活性剂 类或生物聚合物类等); (4)油(轻质油或原油等); (5)气体(氮气或天然气)。
不同的钻井流体形成的分散体系不同,所 起的作用不同。从物理化学观点看,钻井液是一 种多相不稳定体系。为满足钻井工艺要求,改善 钻井液性能,常在钻井液中加入各种不同的添加 剂。钻井液在循环过程中,不能始终保持其优良 性能,而要被钻屑、油、气、水、盐及矿物污染, 其中钻屑是最严重的污染。
由于振动筛清除固相的能力有限,到五十年代中 期,旋流分离器开始用于钻井液中的固相控制。
到六十年代随着钻井工艺的发展,对固控的要求 越来越高,因而又发展使用了除泥旋流器,离心机 等机械设备。
由于不同固控设备仅对一定颗粒尺寸范围内的 固相才能发挥最大效能,因此各种固控设备应合理 组合成为一个系统进行应用。到七十年代,这种机 械固控系统已是现代钻井装备的重要组成部分。我 国的固控技术是八十年代发展起来的。
机械清除设备配置 级别 一 二 三 设备 振动筛 除砂器 除泥器 处理能力(μm) >250 32-80 10-52


清洁器
离心机
10-60
2-7
机械清除的特点:
1)设备配套,逐级清除。 2)固相控制容易,泥浆性能稳定,泥浆损失少,污 染小。 3)固控成本较低。
五十年代以前,主要是用振动筛来清除钻井液中 的固相。
固控状况
钻速(米/小时) 泥浆成本(元/米)
很差
1.04 86.6
良好
1.91
63.9
全井累计(万元)
33.8
24.5
所谓钻井液的固相控制,就是清除有害固相,保 存有用固相,或者将钻井液中的固相总量及粒度级配 控制在要求的范围内,以满足钻井工艺对钻井液性能 的要求。通常将钻井液的固相控制简称为固控,习惯 上也称为泥浆的净化。
4.3.2
固相控制方法
近二十年来,随着喷射钻井、优化钻井、优质钻 井液和油气层保护技术的全面实施,固控工艺得到了 迅速的发展、推广和普及。 固控的任务是: 1.从钻井液中清除有害固相,使固相含量不超出 要求。 2.降低钻井液中细微颗粒的比例,保持合理的固 相粒度和级配。
常用的固控方法有:冲稀法,替换法,自然沉 降法,化学沉降法及机械清除法。 冲稀法:就是为保持固相含量基本不变,往高固 相含量的钻井液中加入清水或其它较稀液体,冲稀 成低固相含量的钻井液(同时还应加入适量化学处 理剂)。 替换法:就是为保持钻井液总的体积不变,把高 固相含量的钻井液放掉一部分,然后在替入等量的 处理剂溶液和低固相钻井液,混均后再用。
相关文档
最新文档