第十章 统计回归模型

合集下载

【优选】统计回归模型 PPT资料

【优选】统计回归模型 PPT资料



9
9
8.5
x2
8.5
8
8
7.5 -0.2

10 9.5
9 8.5
8 7.5
5
0
0.2
[b,bint,r,rint,stats]=regress(y,x,alpha)
输入 y~n维数据向量
输出 b~的估计值
x= [1 x1 x2 x22] ~n4数
据矩阵, 第1列为全1向量
bint~b的置信区间 r ~残差向量y-xb
alpha(置信水平,)
rint~r的置信区间
参数
0 1 2 3
参数估计值 17.3244 1.3070 -3.6956 0.3486
模型改进
y01 x 12 x 23 x 2 2
x1和x2对y 的影响独立
参数
0
参数估计值 17.3244
置信区间 [5.7282 28.9206]
经嘌呤霉素处理的作用不影响半速度点参数
[11044 11363]
1
1.3070
[0.6829 1.9311 ]
x=
~n 4数据矩阵, 第1列为全1向量
3
0.6712
[0.2538 1.0887 ]
4
-1.4777
[-2.8518 -0.1037 ]
R2=0.9209 F=72.7771 p=0.0000
两模型销售量预测比较
控制价格差x1元,投入广告费x2百万元
y ˆˆ0ˆ1x 1ˆ2x2ˆ3x2 2 yˆ 8.2933(百万支) 区间 ,8.7636]
销售量 (百万支)
7.38
2
3.75
4.00

统计回归模型

统计回归模型

y的90.54%可由模型确定 p远小于=0.05
2的置信区间包含零点
F远超过F检验的临界值 模型从整体上看成立 x2对因变量y 的 影响不太显著
(右端点距零点很近)
x22项显著
可将x2保留在模型中
ˆ ˆ x ˆ x ˆ x2 销售量预测 y ˆ 0 1 1 2 2 3 2
上限用作库存管理的目标值 下限用来把握公司的现金流
若估计x3=3.9,设定x4=3.7,则可以95%的把握 知道销售额在 7.83203.7 29(百万元)以上
模型改进
x1和x2对y 的影响独立 x1和x2对y 的影响有 交互作用
y 0 1 x1 2 x2 x
输出 b~的估计值
bint~b的置信区间
r ~残差向量y-xb
rint~r的置信区间 置信区间 [5.7282 28.9206] [0.6829 1.9311 ] [-7.4989 0.1077 ] [0.0379 0.6594 ] p<0.0001 s2=0.0490
alpha(置信水平,0.05) 参数估计值 0 17.3244 1 1.3070 2 -3.6956 3 0.3486 R2=0.9054 F=82.9409 参数
y 10
9.5 9 8.5 8 7.5 7 5 5.5 6 6.5 7
x1
y~被解释变量(因变量) x1, x2~解释变量(回归变量, 自变量)
0, 1 , 2 , 3 ~回归系数 ~随机误差(均值为零的
正态分布随机变量)
2 y 0 1 x2 2 x2
7.5 x 2
第十章
统计回归模型
10.1 牙膏的销售量
10.2 软件开发人员的薪金

数学模型之统计回归模型

数学模型之统计回归模型

下表列出了某城市18位35岁~44岁经理的年平均收入1x 千元,风险偏好度2x 和人寿保险额y 千元的数据,其中风险偏好度是根据发给每个经理的问卷调查表综合评估得到的,它的数值越大,就越偏爱高风险,研究人员想研究此年龄段中的经理所投保的人寿保险额与年收入及风险偏好度之间的关系。

研究者预计,经理的年均收入和人寿保险额之间存在着二次关系,并有把握地认为风险偏好度对人寿保险额有线性效应,但对风险偏好度对人寿保险额是否有二次效应以及两个自变量是否对人寿保险额有交互效应,心中没底。

请你通过表中的数据来建立一个合适的回归模型,验证上面的看法,并给出进一步的分析。

x1=[66.290 40.964 72.996 45.010 57.204 26.852 38.122 35.840 75.796 37.408 54.376 46.186 46.130 30.366 39.060 79.380 52.766 55.916];>> y1=[196 63 252 84 126 14 49 49 266 49 105 98 77 14 56 245 133 133]; >> p=polyfit(x1,y1,2) p =3.0246e-002 1.7886e+000 -6.0524e+001>> x2=0:0.01:85;y2=polyval(p,x2); plot(x1,y1,'o',x2,y2)1x y 对的散点图从图中可以发现,随着1x 的增加,y 的值有明显向上弯曲的二次增长趋势,图中的曲线是用二次函数模型εβββ+++=212110x x y (1)拟合的。

(其中ε是随机误差)>> x3=[7 5 10 6 4 5 4 6 9 5 2 7 4 3 5 1 8 6]; >> q=polyfit(x3,y1,1) q =1.3522e+001 3.8743e+001>> x4=0:0.01:15;y3=polyval(q,x4); plot(x3,y1,'o',x4,y3)的一次的散点图对2x y从图中可以发现,随着2x 的增加,y 的值比较明显的线性增长趋势,图中的曲线是用线性函数模型εββ++=210x y (2) 拟合的。

统计回归模型35页PPT

统计回归模型35页PPT

0
29.1133
[13.7013 44.5252]
1
11.1342
[1.9778 20.2906 ]
2
-7.6080
[-12.6932 -2.5228 ]
3
0.6712
[0.2538 1.0887 ]
4
-1.4777
[-2.8518 -0.1037 ]
R2=0.9209 F=72.7771 p=0.0000
价格差x1=其它厂家价格x3-本公司价格x4
估计x3 调整x4 控制x1
通过x1, x2预测y
控制价格差x1=0.2元,投入广告费x2=650万元
y ˆˆ0ˆ1 x 1ˆ2x 2ˆ3 x 2 2 8 .29(百3 万支3)
销售量预测区间为 [7.8230,8.7636](置信度95%)
上限用作库存管理的目标值 下限用来把握公司的现金流
模型求解 MATLAB 统计工具箱
y01 x 12 x 23 x 2 2由数据 y,x1,x2估计
[b,bint,r,rint,stats]=regress(y,x,alpha)
输入 y~n维数据向量
输出 b~的估计值
x= [1 x1 x2 x22] ~n4数
据矩阵, 第1列为全1向量
bint~b的置信区间 r ~残差向量y-xb
1 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型 题 预测在不同价格和广告费用下的牙膏销售量
收集了30个销售周期本公司牙膏销售量、价格、
广告费用,及同期其它厂家同类牙膏的平均售价
销售 周期
1
本公司价 格(元)
3.85
其它厂家 价格(元)
3.80

统计回归模型

统计回归模型

实验报告实验名称统计回归模型所属课程数学模型专业信息与计算科学2018年12月26日图1利用MATLAB 的统计工具箱可以得到回归系数及其置信区间(置信水平为0.05)、检验统计量2R ,F ,P 的结果。

见表2:参数参数估计值 参数置信区间 0β5.5863 [4.57436.5983] 1β-0.0031[-0.0056 -0.0006]20.819355R = 6.80359F = 0.0767782p =表2表2显示,20.819355R =指因变量y (单位成本)的81.93%可由模型确定,F 值超过F 检验的临界值,P 小于置信水平,因而模型从整体看是可用的。

表2的回归系数给出了模型中的0β,1β的估计值,则可得到一次线性关系式为y=5.5863-0.0031x (x ≤500)(2)对该模型做残差图:图2可以看出上面第二个点位异常点,去除第二个点后再进行拟合。

利用MATLAB 的统计工具箱可以得到回归系数及其置信区间(置信水平为0.05)、检验统计量2R ,F ,P 的结果。

见表3:参数参数估计值 参数置信区间 0β 5.5749 [5.0902 , 6.0596] 1β-0.0032[-0.0044 , -0.0020]20.976132R = F=40.8967 p=0.023882 表3表3显示,20.976132R =指因变量y (单位成本)的97.61%可由模型确定,F 值超过F 检验的临界值,P 小于置信水平,因而模型从整体看是可用的。

表3的回归系数给出了模型中的0β,1β的估计值,则可得到一次线性关系式为y=5.5749-0.0032x (x ≤500) (3)3.2模型二的建立与求解令生产批量为x ,单位成本为y 元,当x >500时,y 与x 满足一种线性关系,则可建立线性回归模型。

022y X ββε=++(4)其中0β,2β是待估计的回归系数,ε是随机误差。

《数学建模》课件:第十章 统计回归模型

《数学建模》课件:第十章  统计回归模型
根据自变量个数和经验函数形式的不同,回归 分析可以分为一元回归、多元回归、线性回归、多 项式(完全二次、交叉二次等)回归等许多类别。
回归和拟合比较相近,但并不一样。对拟合而言, 一个Y变量对应一个X变量,而回归分析的一个Y变 量则有可能对应多个X变量。从这个角度说,拟合 也属于回归的一种。
/view/0aa4c90c844769eae009ed7d.html? re=view (回归分析的基本理论及软件实现)
linear(线性): y 0 1 x1 m xm
purequadratic(纯二次):
y 0 1x1 m xm
n
jj
x
2 j
j1
interaction(交叉): y 0 1x1 m xm jk x j xk
1 jkm
quadratic(完全二次): y 0 1x1 m xm jk x j xk
6.80
0.55
9.26
问题分析
注意到牙膏是生活必需品,顾客在购买同类 产品时常常会更在意不同品牌之间的价格差异, 而不是他们价格本身。
因此,在研究各因素对销售量的影响时,用价 格差代替公司销售价格和其他厂家平均价格更为合 适。 下面建立牙膏销售量与价格差、广告费之间的关系 模型。
基本模型
y 10
(1) beta=nlinfit(X,Y,function,beta0) (2) [beta,r,J]=nlinfit(X,Y,function,beta0)
10.1 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型; 题 预测在不同价格和广告费用下的牙膏销售量.
收集了30个销售周期本公司牙膏销售量、价格、
1
xn1
xn2

第10章 统计模型-回归分析

第10章 统计模型-回归分析

有:
ˆ b 0 T 1 T ( X X ) X Y ˆ bk
ˆ b 0 62.40 ˆ b 1 1.55 ˆ 0.51 b 2 ˆ 0.10 b3 b ˆ 0.14 4
残 差
置 信 区 间
Y1 1 x11 Y 1 x 2 21 Y X ... ... ... Y n 1 x n1
x12 x 22 ... xn 2
... x1 p ... x 2 p ... ... ... x np
5 参数的区间估计(假设检验)
记: 则有:
CA cij i , j 0,
1
A X X
T
ˆ b i
2 ˆ N (bi , e cii )
ˆ t ˆ t 故bi的区间估计为: b ˆ ˆ c , b i 1 / 2 e ii i 1 / 2 e cii
若因素xi不重要,则有bi=0,即上述区间包含0。
4、预测及作图: z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')
Residuals
4 3 2 1 0 -1 -2 -3 -4 -5 2 4 6 8 10 Case Number 12 14 16
“有进有出”的逐步回归分析(组合优 化)
6 matlab多元线性回归
y 0 1 x1 ... p x p
[b, bint,r,rint,stats]=regress(Y,X,alpha)
回 归 系 数 的 区 间 估 计
ˆ 0 ˆ 1 b ... ˆ p

第十章_logit回归

第十章_logit回归

第十章 logitic 回归本章导读:Logitic 回归模型是离散选择模型之一,属于多重变数分析范畴,是社会学、生物统计学、临床、数量心理学、市场营销、会计与财务等实证分析的常用方法。

10.1 logit 模型和原理Logistic 回归分析是对因变量为定性变量的回归分析。

它是一种非线性模型。

其基本特点是:因变量必须是二分类变量,若令因变量为y ,则常用y=1表示“yes ”,y=0表示“no ”。

[在发放股利与不发放股利的研究中,分别表示发放和不发放股利的公司]。

自变量可以为虚拟变量也可以为连续变量。

从模型的角度出发,不妨把事件发生的情况定义为y=1,事件未发生的情况定义为0,这样取值为0、1的因变量可以写作:⎩⎨⎧===事情未发生事情发生01y 我们可以采用多种方法对取值为0、1的因变量进行分析。

通常以P 表示事件发生的概率(事件未发生的概率为1-P ),并把P 看作自变量x 的线性函数。

由于y 是0-1型Bernoulli 分布,因此有如下分布:P=P (y=1|x ):自变量为x 时y=1的概率,即发放现金股利公司的概率1-P=P (y=0|x ):自变量为x 时y=0的概率,即不发放现金股利公司的概率 事件发生和不发生的概率比成为发生比,即相对风险,表现为PP odds -=1.因为是以 对数形式出现的,故该发生比为对数发生比(log odds ),表现为)1ln(P P odds -=。

对数发生比也是事件发生概率P 的一个特定函数,通过logistic 转换,该函数可以写成logistic 回归的logit 模型:)1(log )(log PP P it e -= Logit 一方面表达出它是事件发生概率P 的转换单位;另一方面,它作为回归的因变量就可以自己与自变量之间的依存关系保持传统回归模式。

根据离散型随即变量期望值的定义,可得:E(y)=1(P)+0(1-P)=P进而得到x P y E 10)(ββ+==因此,从以上分析可以看出,当因变量的取值为0、1时,均值x y E 10)(ββ+=总是代表给定自变量时y=1的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从输出 Export 可得 ˆ ( ˆ 0 , ˆ1 , ˆ 2 , ˆ 3 , ˆ 4 , ˆ 5 )
10.2 软件开发人员的薪金
建立模型研究薪金与资历、管理责任、教育程度的关系
分析人事策略的合理性,作为新聘用人员薪金的参考
46名软件开发人员的档案资料
编 薪金 资 管 教 编 薪金 资 管 教
10844
4
1
2
a0+a2+a4+a6
19882
5
0
3
a0
11200
6
1
3
a0+a2
18241
大学程度管理人员比更高程度管理人员的薪金高
大学程度非管理人员比更高程度非管理人员的薪金略低
软件开发人员的薪金
对定性因素(如管理、教育),可以引入0-1变量处理, 0-1变量的个数应比定性因素的水平少1 残差分析方法可以发现模型的缺陷,引入交互作用项 常常能够改善模型 剔除异常数据,有助于得到更好的结果 注:可以直接对6种管理—教育组合引入5个0-1变量
第十章 统计回归模型
10.1 牙膏的销售量 10.2 软件开发人员的薪金 10.3 酶促反应 10.4 投资额与国民生产总值和
物价指数
数学建模的基本方法 机理分析 测试分析
由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系,建立合乎机理规 律的数学模型。 通过对数据的统计分析,找出与数据拟合最好的模型
-2000
1
2
3
4
5
6
残差全为正,或全为负,管
理—教育组合处理不当
应在模型中增加管理x2与教育 x3, x4的交互项
进一步的模型 增加管理x2与教育x3, x4的交互项
y a0 a1x1 a2 x2 a3 x3 a4 x4 a5 x2 x3 a6 x2 x4
参数 参数估计值 置信区间
20
e ~组合
2
3
4
5
6
R2: 0.957 0.999 0.9998
残差图十分正常
F: 226 554 36701 最终模型的结果可以应用 置信区间长度更短
模型应用
yˆ aˆ 0 aˆ1 x1 aˆ 2 x 2 aˆ 3 x 3 aˆ 4 x 4 aˆ 5 x 2 x 3 aˆ 6 x 2 x 4
R2=0.999 F=554 p=0.000
-1000
1
2
3
4
5
6
R2,F有改进,所有回归系数置信 区间都不含零点,模型完全可用
消除了不正常现象 异常数据(33号)应去掉
去掉异常数据后的结果
参数 参数估计值
置信区间
a0
11200
[11139 11261]
a1
498
[494 503]
a2
7041
[6962 7120]
输入 y~n维数据向量
输出 b~的估计值
x= [1
x1
x2
x
2 2
]
~n4数
据矩阵, 第1列为全1向量
bint~b的置信区间 r ~残差向量y-xb
alpha(置信水平,0.05)
rint~r的置信区间
参数
0 1 2 3
参数估计值 17.3244 1.3070 -3.6956 0.3486
置信区间 [5.7282 28.9206] [0.6829 1.9311 ] [-7.4989 0.1077 ] [0.0379 0.6594 ]
Stats~ 检验统计量
R2,F, p
R2=0.9054 F=82.9409 p=0.0000
结果分析 y
0
1x1
2x2
3
x
2 2
参数
参数估计值
置信区间
0
17.3244
[5.7282 28.9206]
1
1.3070
[0.6829 1.9311 ]
2
-3.6956
[-7.4989 0.1077 ]
参数估计值
置信区间
0
29.1133
[13.7013 44.5252]
1
11.1342
[1.9778 20.2906 ]
2
-7.6080
[-12.6932 -2.5228 ]
3
0.6712
[0.2538 1.0887 ]
4
-1.4777
[-2.8518 -0.1037 ]
R2=0.9209 F=72.7771 p=0.0000
ˆ 0
ˆ1 x 1
ˆ 2 x 2
ˆ
3
x
2 2
价格差x1=其它厂家价格x3-本公司价格x4
估计x3 调整x4 控制x1
通过x1, x2预测y
控制价格差x1=0.2元,投入广告费x2=650万元

ˆ 0
ˆ1 x1
ˆ 2 x 2
ˆ
3
x
2 2
8 .2933
(百万支)
销售量预测区间为 [7.8230,8.7636](置信度95%)
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p=0.0000
y的90.54%可由模型确定 F远超过F检验的临界值
p远小于=0.05
模型从整体上看成立
2的置信区间包含零点 (右端点距零点很近)
x2对因变量y 的 影响不太显著
x22项显著
可将x2保留在模型中
销售量预测 yˆ
0.55
9.26
基本模型
y ~公司牙膏销售量 x1~其它厂家与本公司价格差 x2~公司广告费用
y x x x2
0
11
22
32
y 10
9.5
9
8.5
8
7.5
7
-0.2
0
0.2
0.4
0.6
x1
y 0 1x1
y~被解释变量(因变量)
y 10
9.5
x1, x2~解释变量(回归变量, 自变量) 9 8.5
2
2
价格差 x1=0.3

32 .4535 8 .0513 x 0 .6712 x 2
x1 0.3
2
2
x 2 7 .5357

yˆ yˆ x1 0 .3
10.5
x1 0 .1 10
价格优势会使销售量增加 9.5 9
8.5
加大广告投入使销售量增加 8
( x2大于6百万元)
7.5 5
上限用作库存管理的目标值 下限用来把握公司的现金流
若估计x3=3.9,设定x4=3.7,则可以95%的把握 知道销售额在 7.83203.7 29(百万元)以上
模型改进
x1和x2对y 的影响独立
x1和x2对y 的影响有 交互作用
y
0
1x1
2x2
3
x
2 2
参数 参数估计值
置信区间
0
17.3244
资历每加一年薪金的增长是常数;
管理、教育、资历之间无交互作用
线性回归模型 y a a x a x a x a x
0
11
22
33
44
a0, a1, …, a4是待估计的回归系数,是随机误差
模型求解 y a 0 a 1 x1 a 2 x 2 a 3 x 3 a 4 x 4
参数 参数估计值
a3
-1737
[-1818 -1656]
a4
-356
[-431 –281]
a5
-3056
[-3171 –2942] Nhomakorabeaa61997
[1894 2100]
R2= 0.9998 F=36701 p=0.0000
200 100
0 -100 -200
0 200 100
0 -100 -200
1
e ~ x1
5
10
15
0, 1 , 2 , 3 ~回归系数
8
7.5
~随机误差(均值为零的
正态分布随机变量)
7 5
5.5
6
6.5
x 7
7.5
2
y
0
1x2
2
x
2 2
模型求解 MATLAB 统计工具箱
y
0
1x1
2x2
3
x
2 2
由数据 y,x1,x2估计
[b,bint,r,rint,stats]=regress(y,x,alpha)
500
a0
11204
[11044 11363] 0
a1
497
[486 508]
-500
a2
7048
[6841 7255]
e ~ x1
-1000
a3
-1727
[-1939 -1514]
0
500
5
10
15
20
a4
-348
[-545 –152]
a5
-3071
[-3372 -2769] 0
a6
1836
[1571 2101] -500 e ~组合
回归模型是用统计分析方法建立的最常用的一类模型
• 不涉及回归分析的数学原理和方法 • 通过实例讨论如何选择不同类型的模型 • 对软件得到的结果进行分析,对模型进行改进
10.1 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型 题 预测在不同价格和广告费用下的牙膏销售量
收集了30个销售周期本公司牙膏销售量、价格、
相关文档
最新文档